* Download our preprocessed data from [tanks_and_temples](https://drive.google.com/file/d/11KRfN91W1AxAW6lOFs4EeYDbeoQZCi87/view?usp=sharing), [lf_data](https://drive.google.com/file/d/1gsjDjkbTh4GAR9fFqlIDZ__qR9NYTURQ/view?usp=sharing).
* Put the data in the sub-folder data/ of this code directory.
**Note**: due to restriction imposed by torch.distributed.gather function, please make sure the number of pixels in each image is divisible by the number of GPUs if you render images parallelly.
* Split distortion-free images and `kai_cameras_normalized.json` according to your need. You might find the self-explanatory script `data_loader_split.py` helpful when you try converting the json file to data format compatible with NeRF++.
Check `camera_visualizer/visualize_cameras.py` for visualizing cameras in 3D. It creates an interactive viewer for you to inspect whether your cameras have been normalized to be compatible with this codebase. Below is a screenshot of the viewer: green cameras are used for training, blue ones are for testing, while yellow ones denote a novel camera path to be synthesized; red sphere is the unit sphere.
You can use `camera_inspector/inspect_epipolar_geometry.py` to inspect if the camera paramters are correct and follow the Opencv convention assumed by this codebase. The script creates a viewer for visually inspecting two-view epipolar geometry like below: for key points in the left image, it plots their correspoinding epipolar lines in the right image. If the epipolar geometry does not look correct in this visualization, it's likely that there are some issues with the camera parameters.