passage en tikz
This commit is contained in:
parent
6d34563513
commit
438d8939f7
1 changed files with 32 additions and 12 deletions
|
@ -19,7 +19,15 @@ On prend $x=X\sin \omega t$. Dans le cas linéaire, seule la valeur de $\omega$
|
||||||
|
|
||||||
\begin{figure}[h!]
|
\begin{figure}[h!]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[scale=0.4]{2/424-1.png}
|
\begin{tikzpicture}
|
||||||
|
\draw[-latex] (-4,0) -- (4,0)node[above]{$Re$};
|
||||||
|
\draw[-latex] (0,-4) -- (0,4)node[left]{$Im$};
|
||||||
|
\draw (0,0) to[out=110,in=0] (-2,1) to[out=180,in=80] (-4,-3) node[below]{$X_1$};
|
||||||
|
\draw (0,0) to[out=130,in=0] (-1,0.7) to[out=180,in=80] (-3,-3)node[below]{$X_2$};
|
||||||
|
\draw (0,0) to[out=150,in=0] (-0.5,0.3) to[out=180,in=80](-2,-3) node[below]{$X_3$};
|
||||||
|
\node[above] at (-2,1) {$T_{BO}$};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{Modification du lieu en fonction de l'amplitude}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
Puisque $H(p)$ rejette les harmoniques d'ordre supérieur à 1, on peut donc décomposer \[y(t)=P \sin \omega t + Q \cos \omega t\]
|
Puisque $H(p)$ rejette les harmoniques d'ordre supérieur à 1, on peut donc décomposer \[y(t)=P \sin \omega t + Q \cos \omega t\]
|
||||||
|
@ -294,24 +302,36 @@ i.e. en notant $\left.\derivp[]{X}\right|_{\zero}=\left.\derivp[]{X}\right|_0$
|
||||||
\centering
|
\centering
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
\begin{axis}
|
\begin{axis}
|
||||||
[axis lines= middle,
|
[axis lines= middle,scale=0.8,
|
||||||
ticks=none, domain=0:10,
|
ticks=none, domain=0:10,samples=100,
|
||||||
xmin=0,xmax=10,ymin=-2,ymax=2]
|
xmin=0,xmax=10,ymin=-2,ymax=2,clip=false]
|
||||||
\addplot[black,smooth]{cos(2*deg(x))};
|
\addplot[black,smooth,dashed]{cos(2*deg(x))};
|
||||||
\addplot[black,smooth]{cos(2*deg(x))*(exp(x/10))};
|
\addplot[black,smooth]{cos(2*deg(x))*(1+0.3*exp(x/8))};
|
||||||
|
\addplot[black,smooth]{cos(2*deg(x))*(1+0.3*exp(-x/5))};
|
||||||
|
\draw[-latex] (axis cs: -0.1,1) -- (axis cs: -0.1,1.3) node[midway,left]{$\delta x >0 $};
|
||||||
|
\draw (axis cs:10,1.5) node[right]{$m>0$};
|
||||||
|
\draw (axis cs:10,0.5) node[right]{$m<0$};
|
||||||
\end{axis}
|
\end{axis}
|
||||||
|
\end{tikzpicture}\qquad%
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
[axis lines= middle,scale=0.8,
|
||||||
|
ticks=none, domain=0:10,samples=100,
|
||||||
|
xmin=0,xmax=10,ymin=-2,ymax=2,clip=false]
|
||||||
|
\addplot[black,smooth,dashed]{cos(2*deg(x))};
|
||||||
|
\addplot[black,smooth]{cos(2*deg(x))*(1-0.3*exp(x/8))};
|
||||||
|
\addplot[black,smooth]{cos(2*deg(x))*(1-0.3*exp(-x/5))};
|
||||||
|
\draw[-latex] (axis cs: -0.1,1) -- (axis cs: -0.1,0.7) node[midway,left]{$\delta x< 0$};
|
||||||
|
\draw (axis cs:10,0) node[right]{$m>0$};
|
||||||
|
\draw (axis cs:10,0.5) node[right]{$m<0$};
|
||||||
|
\end{axis}
|
||||||
|
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
\includegraphics[scale=0.4]{2/424-61.png}
|
|
||||||
\end{figure}
|
\end{figure}
|
||||||
$m > 0$ et $\delta X > 0$ : CL est stable
|
$m > 0$ et $\delta X > 0$ : CL est stable
|
||||||
|
|
||||||
$m < 0$ et $\delta X > 0$ : CL est instable
|
$m < 0$ et $\delta X > 0$ : CL est instable
|
||||||
|
|
||||||
\begin{figure}[h!]
|
|
||||||
\centering
|
|
||||||
\includegraphics[scale=0.4]{2/424-62.png}
|
|
||||||
\end{figure}
|
|
||||||
$\delta X < 0$ et $m < 0$ : CL est stable
|
$\delta X < 0$ et $m < 0$ : CL est stable
|
||||||
|
|
||||||
$\delta X < 0$ et $m > 0$ : CL est instable
|
$\delta X < 0$ et $m > 0$ : CL est instable
|
||||||
|
|
Loading…
Reference in a new issue