diff --git a/424-Systeme_Non_Lineaires/Cours/chap4.tex b/424-Systeme_Non_Lineaires/Cours/chap4.tex index 247a10e..406f9aa 100644 --- a/424-Systeme_Non_Lineaires/Cours/chap4.tex +++ b/424-Systeme_Non_Lineaires/Cours/chap4.tex @@ -19,7 +19,15 @@ On prend $x=X\sin \omega t$. Dans le cas linéaire, seule la valeur de $\omega$ \begin{figure}[h!] \centering -\includegraphics[scale=0.4]{2/424-1.png} +\begin{tikzpicture} + \draw[-latex] (-4,0) -- (4,0)node[above]{$Re$}; + \draw[-latex] (0,-4) -- (0,4)node[left]{$Im$}; + \draw (0,0) to[out=110,in=0] (-2,1) to[out=180,in=80] (-4,-3) node[below]{$X_1$}; + \draw (0,0) to[out=130,in=0] (-1,0.7) to[out=180,in=80] (-3,-3)node[below]{$X_2$}; + \draw (0,0) to[out=150,in=0] (-0.5,0.3) to[out=180,in=80](-2,-3) node[below]{$X_3$}; + \node[above] at (-2,1) {$T_{BO}$}; +\end{tikzpicture} + \caption{Modification du lieu en fonction de l'amplitude} \end{figure} Puisque $H(p)$ rejette les harmoniques d'ordre supérieur à 1, on peut donc décomposer \[y(t)=P \sin \omega t + Q \cos \omega t\] @@ -294,24 +302,36 @@ i.e. en notant $\left.\derivp[]{X}\right|_{\zero}=\left.\derivp[]{X}\right|_0$ \centering \begin{tikzpicture} \begin{axis} - [axis lines= middle, - ticks=none, domain=0:10, - xmin=0,xmax=10,ymin=-2,ymax=2] - \addplot[black,smooth]{cos(2*deg(x))}; - \addplot[black,smooth]{cos(2*deg(x))*(exp(x/10))}; - + [axis lines= middle,scale=0.8, + ticks=none, domain=0:10,samples=100, + xmin=0,xmax=10,ymin=-2,ymax=2,clip=false] + \addplot[black,smooth,dashed]{cos(2*deg(x))}; + \addplot[black,smooth]{cos(2*deg(x))*(1+0.3*exp(x/8))}; + \addplot[black,smooth]{cos(2*deg(x))*(1+0.3*exp(-x/5))}; + \draw[-latex] (axis cs: -0.1,1) -- (axis cs: -0.1,1.3) node[midway,left]{$\delta x >0 $}; + \draw (axis cs:10,1.5) node[right]{$m>0$}; + \draw (axis cs:10,0.5) node[right]{$m<0$}; \end{axis} + \end{tikzpicture}\qquad% + \begin{tikzpicture} + \begin{axis} + [axis lines= middle,scale=0.8, + ticks=none, domain=0:10,samples=100, + xmin=0,xmax=10,ymin=-2,ymax=2,clip=false] + \addplot[black,smooth,dashed]{cos(2*deg(x))}; + \addplot[black,smooth]{cos(2*deg(x))*(1-0.3*exp(x/8))}; + \addplot[black,smooth]{cos(2*deg(x))*(1-0.3*exp(-x/5))}; + \draw[-latex] (axis cs: -0.1,1) -- (axis cs: -0.1,0.7) node[midway,left]{$\delta x< 0$}; + \draw (axis cs:10,0) node[right]{$m>0$}; + \draw (axis cs:10,0.5) node[right]{$m<0$}; + \end{axis} + \end{tikzpicture} -\includegraphics[scale=0.4]{2/424-61.png} \end{figure} $m > 0$ et $\delta X > 0$ : CL est stable $m < 0$ et $\delta X > 0$ : CL est instable -\begin{figure}[h!] -\centering -\includegraphics[scale=0.4]{2/424-62.png} -\end{figure} $\delta X < 0$ et $m < 0$ : CL est stable $\delta X < 0$ et $m > 0$ : CL est instable