nerf_tutorial/main.py

647 lines
24 KiB
Python
Raw Normal View History

2021-02-23 09:16:05 +01:00
# Inspired from Pytorch3D NeRF Tutorial
# https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb
# Created on 2021-02-22
import os
import sys
import time
import json
import glob
import torch
import math
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from tqdm import tqdm
# Data structures and functions for rendering
from pytorch3d.structures import Volumes
from pytorch3d.transforms import so3_exponential_map
from pytorch3d.renderer import (
FoVPerspectiveCameras,
NDCGridRaysampler,
MonteCarloRaysampler,
EmissionAbsorptionRaymarcher,
ImplicitRenderer,
RayBundle,
ray_bundle_to_ray_points,
)
# add path for demo utils functions
sys.path.append(os.path.abspath(''))
from utils.plot_image_grid import image_grid
from utils.generate_cow_renders import generate_cow_renders
# Intialize CUDA gpu
device = torch.device("cuda:0")
torch.cuda.set_device(device)
# Generate dataset
target_cameras, target_images, target_silhouettes = \
generate_cow_renders(num_views=40, azimuth_range=180)
print(f'Generated {len(target_images)} images/silhouettes/cameras.')
###############################################################################
# Intitialize the implicit rendered
###############################################################################
# render_size describes the size of both sides of the
# rendered images in pixels. Since an advantage of
# Neural Radiance Fields are high quality renders
# with a significant amount of details, we render
# the implicit function at double the size of
# target images.
render_size = target_images.shape[1] * 2
# Our rendered scene is centered around (0,0,0)
# and is enclosed inside a bounding box
# whose side is roughly equal to 3.0 (world units).
volume_extent_world = 3.0
# 1) Instantiate the raysamplers.
# Here, NDCGridRaysampler generates a rectangular image
# grid of rays whose coordinates follow the PyTorch3d
# coordinate conventions.
raysampler_grid = NDCGridRaysampler(
image_height=render_size,
image_width=render_size,
n_pts_per_ray=128,
min_depth=0.1,
max_depth=volume_extent_world,
)
# MonteCarloRaysampler generates a random subset
# of `n_rays_per_image` rays emitted from the image plane.
raysampler_mc = MonteCarloRaysampler(
min_x = -1.0,
max_x = 1.0,
min_y = -1.0,
max_y = 1.0,
n_rays_per_image=750,
n_pts_per_ray=128,
min_depth=0.1,
max_depth=volume_extent_world,
)
# 2) Instantiate the raymarcher.
# Here, we use the standard EmissionAbsorptionRaymarcher
# which marches along each ray in order to render
# the ray into a single 3D color vector
# and an opacity scalar.
raymarcher = EmissionAbsorptionRaymarcher()
# Finally, instantiate the implicit renders
# for both raysamplers.
renderer_grid = ImplicitRenderer(
raysampler=raysampler_grid, raymarcher=raymarcher,
)
renderer_mc = ImplicitRenderer(
raysampler=raysampler_mc, raymarcher=raymarcher,
)
###############################################################################
# Define the NeRF model
###############################################################################
class HarmonicEmbedding(torch.nn.Module):
def __init__(self, n_harmonic_functions=60, omega0=0.1):
"""
Given an input tensor `x` of shape [minibatch, ... , dim],
the harmonic embedding layer converts each feature
in `x` into a series of harmonic features `embedding`
as follows:
embedding[..., i*dim:(i+1)*dim] = [
sin(x[..., i]),
sin(2*x[..., i]),
sin(4*x[..., i]),
...
sin(2**self.n_harmonic_functions * x[..., i]),
cos(x[..., i]),
cos(2*x[..., i]),
cos(4*x[..., i]),
...
cos(2**self.n_harmonic_functions * x[..., i])
]
Note that `x` is also premultiplied by `omega0` before
evaluting the harmonic functions.
"""
super().__init__()
self.register_buffer(
'frequencies',
omega0 * (2.0 ** torch.arange(n_harmonic_functions)),
)
def forward(self, x):
"""
Args:
x: tensor of shape [..., dim]
Returns:
embedding: a harmonic embedding of `x`
of shape [..., n_harmonic_functions * dim * 2]
"""
embed = (x[..., None] * self.frequencies).view(*x.shape[:-1], -1)
return torch.cat((embed.sin(), embed.cos()), dim=-1)
class NeuralRadianceField(torch.nn.Module):
def __init__(self, n_harmonic_functions=60, n_hidden_neurons=256):
super().__init__()
"""
Args:
n_harmonic_functions: The number of harmonic functions
used to form the harmonic embedding of each point.
n_hidden_neurons: The number of hidden units in the
fully connected layers of the MLPs of the model.
"""
# The harmonic embedding layer converts input 3D coordinates
# to a representation that is more suitable for
# processing with a deep neural network.
self.harmonic_embedding = HarmonicEmbedding(n_harmonic_functions)
# The dimension of the harmonic embedding.
embedding_dim = n_harmonic_functions * 2 * 3
# self.mlp is a simple 2-layer multi-layer perceptron
# which converts the input per-point harmonic embeddings
# to a latent representation.
# Not that we use Softplus activations instead of ReLU.
self.mlp = torch.nn.Sequential(
torch.nn.Linear(embedding_dim, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
)
# Given features predicted by self.mlp, self.color_layer
# is responsible for predicting a 3-D per-point vector
# that represents the RGB color of the point.
self.color_layer = torch.nn.Sequential(
torch.nn.Linear(n_hidden_neurons + embedding_dim, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, 3),
torch.nn.Sigmoid(),
# To ensure that the colors correctly range between [0-1],
# the layer is terminated with a sigmoid layer.
)
# The density layer converts the features of self.mlp
# to a 1D density value representing the raw opacity
# of each point.
self.density_layer = torch.nn.Sequential(
torch.nn.Linear(n_hidden_neurons, 1),
torch.nn.Softplus(beta=10.0),
# Sofplus activation ensures that the raw opacity
# is a non-negative number.
)
# We set the bias of the density layer to -1.5
# in order to initialize the opacities of the
# ray points to values close to 0.
# This is a crucial detail for ensuring convergence
# of the model.
self.density_layer[0].bias.data[0] = -1.5
def _get_densities(self, features):
"""
This function takes `features` predicted by `self.mlp`
and converts them to `raw_densities` with `self.density_layer`.
`raw_densities` are later mapped to [0-1] range with
1 - inverse exponential of `raw_densities`.
"""
raw_densities = self.density_layer(features)
return 1 - (-raw_densities).exp()
def _get_colors(self, features, rays_directions):
"""
This function takes per-point `features` predicted by `self.mlp`
and evaluates the color model in order to attach to each
point a 3D vector of its RGB color.
In order to represent viewpoint dependent effects,
before evaluating `self.color_layer`, `NeuralRadianceField`
concatenates to the `features` a harmonic embedding
of `ray_directions`, which are per-point directions
of point rays expressed as 3D l2-normalized vectors
in world coordinates.
"""
spatial_size = features.shape[:-1]
# Normalize the ray_directions to unit l2 norm.
rays_directions_normed = torch.nn.functional.normalize(
rays_directions, dim=-1
)
# Obtain the harmonic embedding of the normalized ray directions.
rays_embedding = self.harmonic_embedding(
rays_directions_normed
)
# Expand the ray directions tensor so that its spatial size
# is equal to the size of features.
rays_embedding_expand = rays_embedding[..., None, :].expand(
*spatial_size, rays_embedding.shape[-1]
)
# Concatenate ray direction embeddings with
# features and evaluate the color model.
color_layer_input = torch.cat(
(features, rays_embedding_expand),
dim=-1
)
return self.color_layer(color_layer_input)
def forward(
self,
ray_bundle: RayBundle,
**kwargs,
):
"""
The forward function accepts the parametrizations of
3D points sampled along projection rays. The forward
pass is responsible for attaching a 3D vector
and a 1D scalar representing the point's
RGB color and opacity respectively.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
origins of the sampling rays in world coords.
directions: A tensor of shape `(minibatch, ..., 3)`
containing the direction vectors of sampling rays in world coords.
lengths: A tensor of shape `(minibatch, ..., num_points_per_ray)`
containing the lengths at which the rays are sampled.
Returns:
rays_densities: A tensor of shape `(minibatch, ..., num_points_per_ray, 1)`
denoting the opacitiy of each ray point.
rays_colors: A tensor of shape `(minibatch, ..., num_points_per_ray, 3)`
denoting the color of each ray point.
"""
# We first convert the ray parametrizations to world
# coordinates with `ray_bundle_to_ray_points`.
rays_points_world = ray_bundle_to_ray_points(ray_bundle)
# rays_points_world.shape = [minibatch x ... x 3]
# For each 3D world coordinate, we obtain its harmonic embedding.
embeds = self.harmonic_embedding(
rays_points_world
)
# embeds.shape = [minibatch x ... x self.n_harmonic_functions*6]
# self.mlp maps each harmonic embedding to a latent feature space.
features = self.mlp(embeds)
# features.shape = [minibatch x ... x n_hidden_neurons]
# Finally, given the per-point features,
# execute the density and color branches.
rays_densities = self._get_densities(features)
# rays_densities.shape = [minibatch x ... x 1]
rays_colors = self._get_colors(features, ray_bundle.directions)
# rays_colors.shape = [minibatch x ... x 3]
return rays_densities, rays_colors
def batched_forward(
self,
ray_bundle: RayBundle,
n_batches: int = 16,
**kwargs,
):
"""
This function is used to allow for memory efficient processing
of input rays. The input rays are first split to `n_batches`
chunks and passed through the `self.forward` function one at a time
in a for loop. Combined with disabling Pytorch gradient caching
(`torch.no_grad()`), this allows for rendering large batches
of rays that do not all fit into GPU memory in a single forward pass.
In our case, batched_forward is used to export a fully-sized render
of the radiance field for visualisation purposes.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
origins of the sampling rays in world coords.
directions: A tensor of shape `(minibatch, ..., 3)`
containing the direction vectors of sampling rays in world coords.
lengths: A tensor of shape `(minibatch, ..., num_points_per_ray)`
containing the lengths at which the rays are sampled.
n_batches: Specifies the number of batches the input rays are split into.
The larger the number of batches, the smaller the memory footprint
and the lower the processing speed.
Returns:
rays_densities: A tensor of shape `(minibatch, ..., num_points_per_ray, 1)`
denoting the opacitiy of each ray point.
rays_colors: A tensor of shape `(minibatch, ..., num_points_per_ray, 3)`
denoting the color of each ray point.
"""
# Parse out shapes needed for tensor reshaping in this function.
n_pts_per_ray = ray_bundle.lengths.shape[-1]
spatial_size = [*ray_bundle.origins.shape[:-1], n_pts_per_ray]
# Split the rays to `n_batches` batches.
tot_samples = ray_bundle.origins.shape[:-1].numel()
batches = torch.chunk(torch.arange(tot_samples), n_batches)
# For each batch, execute the standard forward pass.
batch_outputs = [
self.forward(
RayBundle(
origins=ray_bundle.origins.view(-1, 3)[batch_idx],
directions=ray_bundle.directions.view(-1, 3)[batch_idx],
lengths=ray_bundle.lengths.view(-1, n_pts_per_ray)[batch_idx],
xys=None,
)
) for batch_idx in batches
]
# Concatenate the per-batch rays_densities and rays_colors
# and reshape according to the sizes of the inputs.
rays_densities, rays_colors = [
torch.cat(
[batch_output[output_i] for batch_output in batch_outputs], dim=0
).view(*spatial_size, -1) for output_i in (0, 1)
]
return rays_densities, rays_colors
###############################################################################
# Helper functions
###############################################################################
def huber(x, y, scaling=0.1):
"""
A helper function for evaluating the smooth L1 (huber) loss
between the rendered silhouettes and colors.
"""
diff_sq = (x - y) ** 2
loss = ((1 + diff_sq / (scaling**2)).clamp(1e-4).sqrt() - 1) * float(scaling)
return loss
def sample_images_at_mc_locs(target_images, sampled_rays_xy):
"""
Given a set of Monte Carlo pixel locations `sampled_rays_xy`,
this method samples the tensor `target_images` at the
respective 2D locations.
This function is used in order to extract the colors from
ground truth images that correspond to the colors
rendered using `MonteCarloRaysampler`.
"""
ba = target_images.shape[0]
dim = target_images.shape[-1]
spatial_size = sampled_rays_xy.shape[1:-1]
# In order to sample target_images, we utilize
# the grid_sample function which implements a
# bilinear image sampler.
# Note that we have to invert the sign of the
# sampled ray positions to convert the NDC xy locations
# of the MonteCarloRaysampler to the coordinate
# convention of grid_sample.
images_sampled = torch.nn.functional.grid_sample(
target_images.permute(0, 3, 1, 2),
-sampled_rays_xy.view(ba, -1, 1, 2), # note the sign inversion
align_corners=True
)
return images_sampled.permute(0, 2, 3, 1).view(
ba, *spatial_size, dim
)
def show_full_render(
neural_radiance_field, camera,
target_image, target_silhouette,
loss_history_color, loss_history_sil,
):
"""
This is a helper function for visualizing the
intermediate results of the learning.
Since the `NeuralRadianceField` suffers from
a large memory footprint, which does not allow to
render the full image grid in a single forward pass,
we utilize the `NeuralRadianceField.batched_forward`
function in combination with disabling the gradient caching.
This chunks the set of emitted rays to batches and
evaluates the implicit function on one-batch at a time
to prevent GPU memory overflow.
"""
# Prevent gradient caching.
with torch.no_grad():
# Render using the grid renderer and the
# batched_forward function of neural_radiance_field.
rendered_image_silhouette, _ = renderer_grid(
cameras=camera,
volumetric_function=neural_radiance_field.batched_forward
)
# Split the rendering result to a silhouette render
# and the image render.
rendered_image, rendered_silhouette = (
rendered_image_silhouette[0].split([3, 1], dim=-1)
)
# Generate plots.
fig, ax = plt.subplots(2, 3, figsize=(15, 10))
ax = ax.ravel()
clamp_and_detach = lambda x: x.clamp(0.0, 1.0).cpu().detach().numpy()
ax[0].plot(list(range(len(loss_history_color))), loss_history_color, linewidth=1)
ax[1].imshow(clamp_and_detach(rendered_image))
ax[2].imshow(clamp_and_detach(rendered_silhouette[..., 0]))
ax[3].plot(list(range(len(loss_history_sil))), loss_history_sil, linewidth=1)
ax[4].imshow(clamp_and_detach(target_image))
ax[5].imshow(clamp_and_detach(target_silhouette))
for ax_, title_ in zip(
ax,
(
"loss color", "rendered image", "rendered silhouette",
"loss silhouette", "target image", "target silhouette",
)
):
if not title_.startswith('loss'):
ax_.grid("off")
ax_.axis("off")
ax_.set_title(title_)
fig.canvas.draw(); fig.show()
display.clear_output(wait=True)
display.display(fig)
return fig
###############################################################################
# Fit the radiance field
###############################################################################
# First move all relevant variables to the correct device.
renderer_grid = renderer_grid.to(device)
renderer_mc = renderer_mc.to(device)
target_cameras = target_cameras.to(device)
target_images = target_images.to(device)
target_silhouettes = target_silhouettes.to(device)
# Set the seed for reproducibility
torch.manual_seed(1)
# Instantiate the radiance field model.
neural_radiance_field = NeuralRadianceField().to(device)
# Instantiate the Adam optimizer. We set its master learning rate to 1e-3.
lr = 1e-3
optimizer = torch.optim.Adam(neural_radiance_field.parameters(), lr=lr)
# We sample 6 random cameras in a minibatch. Each camera
# emits raysampler_mc.n_pts_per_image rays.
batch_size = 6
# 3000 iterations take ~20 min on a Tesla M40 and lead to
# reasonably sharp results. However, for the best possible
# results, we recommend setting n_iter=20000.
n_iter = 3000
# Init the loss history buffers.
loss_history_color, loss_history_sil = [], []
# The main optimization loop.
for iteration in range(n_iter):
# In case we reached the last 75% of iterations,
# decrease the learning rate of the optimizer 10-fold.
if iteration == round(n_iter * 0.75):
print('Decreasing LR 10-fold ...')
optimizer = torch.optim.Adam(
neural_radiance_field.parameters(), lr=lr * 0.1
)
# Zero the optimizer gradient.
optimizer.zero_grad()
# Sample random batch indices.
batch_idx = torch.randperm(len(target_cameras))[:batch_size]
# Sample the minibatch of cameras.
batch_cameras = FoVPerspectiveCameras(
R = target_cameras.R[batch_idx],
T = target_cameras.T[batch_idx],
znear = target_cameras.znear[batch_idx],
zfar = target_cameras.zfar[batch_idx],
aspect_ratio = target_cameras.aspect_ratio[batch_idx],
fov = target_cameras.fov[batch_idx],
device = device,
)
# Evaluate the nerf model.
rendered_images_silhouettes, sampled_rays = renderer_mc(
cameras=batch_cameras,
volumetric_function=neural_radiance_field
)
rendered_images, rendered_silhouettes = (
rendered_images_silhouettes.split([3, 1], dim=-1)
)
# Compute the silhoutte error as the mean huber
# loss between the predicted masks and the
# sampled target silhouettes.
silhouettes_at_rays = sample_images_at_mc_locs(
target_silhouettes[batch_idx, ..., None],
sampled_rays.xys
)
sil_err = huber(
rendered_silhouettes,
silhouettes_at_rays,
).abs().mean()
# Compute the color error as the mean huber
# loss between the rendered colors and the
# sampled target images.
colors_at_rays = sample_images_at_mc_locs(
target_images[batch_idx],
sampled_rays.xys
)
color_err = huber(
rendered_images,
colors_at_rays,
).abs().mean()
# The optimization loss is a simple
# sum of the color and silhouette errors.
loss = color_err + sil_err
# Log the loss history.
loss_history_color.append(float(color_err))
loss_history_sil.append(float(sil_err))
# Every 10 iterations, print the current values of the losses.
if iteration % 10 == 0:
print(
f'Iteration {iteration:05d}:'
+ f' loss color = {float(color_err):1.2e}'
+ f' loss silhouette = {float(sil_err):1.2e}'
)
# Take the optimization step.
loss.backward()
optimizer.step()
# Visualize the full renders every 100 iterations.
if iteration % 100 == 0:
show_idx = torch.randperm(len(target_cameras))[:1]
show_full_render(
neural_radiance_field,
FoVPerspectiveCameras(
R = target_cameras.R[show_idx],
T = target_cameras.T[show_idx],
znear = target_cameras.znear[show_idx],
zfar = target_cameras.zfar[show_idx],
aspect_ratio = target_cameras.aspect_ratio[show_idx],
fov = target_cameras.fov[show_idx],
device = device,
),
target_images[show_idx][0],
target_silhouettes[show_idx][0],
loss_history_color,
loss_history_sil,
)
###############################################################################
# Visualizing the optimized neural radiance field
###############################################################################
def generate_rotating_nerf(neural_radiance_field, n_frames = 50):
logRs = torch.zeros(n_frames, 3, device=device)
logRs[:, 1] = torch.linspace(-3.14, 3.14, n_frames, device=device)
Rs = so3_exponential_map(logRs)
Ts = torch.zeros(n_frames, 3, device=device)
Ts[:, 2] = 2.7
frames = []
print('Rendering rotating NeRF ...')
for R, T in zip(tqdm(Rs), Ts):
camera = FoVPerspectiveCameras(
R=R[None],
T=T[None],
znear=target_cameras.znear[0],
zfar=target_cameras.zfar[0],
aspect_ratio=target_cameras.aspect_ratio[0],
fov=target_cameras.fov[0],
device=device,
)
# Note that we again render with `NDCGridSampler`
# and the batched_forward function of neural_radiance_field.
frames.append(
renderer_grid(
cameras=camera,
volumetric_function=neural_radiance_field.batched_forward,
)[0][..., :3]
)
return torch.cat(frames)
with torch.no_grad():
rotating_nerf_frames = generate_rotating_nerf(neural_radiance_field, n_frames=3*5)
image_grid(rotating_nerf_frames.clamp(0., 1.).cpu().numpy(), rows=3, cols=5, rgb=True, fill=True)
plt.show()