295 lines
9.7 KiB
Python
295 lines
9.7 KiB
Python
import os
|
|
import json
|
|
from database import COLMAPDatabase
|
|
from pyquaternion import Quaternion
|
|
import numpy as np
|
|
import imageio
|
|
import subprocess
|
|
|
|
|
|
def bash_run(cmd):
|
|
# local install of colmap
|
|
env = os.environ.copy()
|
|
env['LD_LIBRARY_PATH'] = '/home/zhangka2/code/colmap/build/__install__/lib'
|
|
|
|
colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap'
|
|
cmd = colmap_bin + ' ' + cmd
|
|
print('\nRunning cmd: ', cmd)
|
|
|
|
subprocess.check_call(['/bin/bash', '-c', cmd], env=env)
|
|
|
|
|
|
gpu_index = '-1'
|
|
|
|
|
|
def run_sift_matching(img_dir, db_file):
|
|
print('Running sift matching...')
|
|
|
|
# if os.path.exists(db_file): # otherwise colmap will skip sift matching
|
|
# os.remove(db_file)
|
|
|
|
# feature extraction
|
|
# if there's no attached display, cannot use feature extractor with GPU
|
|
cmd = ' feature_extractor --database_path {} \
|
|
--image_path {} \
|
|
--ImageReader.camera_model PINHOLE \
|
|
--SiftExtraction.max_image_size 5000 \
|
|
--SiftExtraction.estimate_affine_shape 0 \
|
|
--SiftExtraction.domain_size_pooling 1 \
|
|
--SiftExtraction.num_threads 32 \
|
|
--SiftExtraction.use_gpu 0 \
|
|
--SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index)
|
|
bash_run(cmd)
|
|
|
|
# feature matching
|
|
cmd = ' exhaustive_matcher --database_path {} \
|
|
--SiftMatching.guided_matching 1 \
|
|
--SiftMatching.use_gpu 0 \
|
|
--SiftMatching.gpu_index {}'.format(db_file, gpu_index)
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
def create_init_files(pinhole_dict_file, db_file, out_dir):
|
|
if not os.path.exists(out_dir):
|
|
os.mkdir(out_dir)
|
|
|
|
# create template
|
|
with open(pinhole_dict_file) as fp:
|
|
pinhole_dict = json.load(fp)
|
|
|
|
template = {}
|
|
cameras_line_template = '{camera_id} PINHOLE {width} {height} {fx} {fy} {cx} {cy}\n'
|
|
images_line_template = '{image_id} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {camera_id} {image_name}\n\n'
|
|
|
|
for img_name in pinhole_dict:
|
|
# w, h, fx, fy, cx, cy, qvec, t
|
|
params = pinhole_dict[img_name]
|
|
w = params[0]
|
|
h = params[1]
|
|
fx = params[2]
|
|
fy = params[3]
|
|
cx = params[4]
|
|
cy = params[5]
|
|
qvec = params[6:10]
|
|
tvec = params[10:13]
|
|
|
|
cam_line = cameras_line_template.format(camera_id="{camera_id}", width=w, height=h, fx=fx, fy=fy, cx=cx, cy=cy)
|
|
img_line = images_line_template.format(image_id="{image_id}", qw=qvec[0], qx=qvec[1], qy=qvec[2], qz=qvec[3],
|
|
tx=tvec[0], ty=tvec[1], tz=tvec[2], camera_id="{camera_id}", image_name=img_name)
|
|
template[img_name] = (cam_line, img_line)
|
|
|
|
# read database
|
|
db = COLMAPDatabase.connect(db_file)
|
|
table_images = db.execute("SELECT * FROM images")
|
|
img_name2id_dict = {}
|
|
for row in table_images:
|
|
img_name2id_dict[row[1]] = row[0]
|
|
|
|
cameras_txt_lines = []
|
|
images_txt_lines = []
|
|
for img_name, img_id in img_name2id_dict.items():
|
|
camera_line = template[img_name][0].format(camera_id=img_id)
|
|
cameras_txt_lines.append(camera_line)
|
|
|
|
image_line = template[img_name][1].format(image_id=img_id, camera_id=img_id)
|
|
images_txt_lines.append(image_line)
|
|
|
|
with open(os.path.join(out_dir, 'cameras.txt'), 'w') as fp:
|
|
fp.writelines(cameras_txt_lines)
|
|
|
|
with open(os.path.join(out_dir, 'images.txt'), 'w') as fp:
|
|
fp.writelines(images_txt_lines)
|
|
fp.write('\n')
|
|
|
|
# create an empty points3D.txt
|
|
fp = open(os.path.join(out_dir, 'points3D.txt'), 'w')
|
|
fp.close()
|
|
|
|
|
|
def run_point_triangulation(img_dir, db_file, out_dir):
|
|
print('Running point triangulation...')
|
|
|
|
# triangulate points
|
|
cmd = ' point_triangulator --database_path {} \
|
|
--image_path {} \
|
|
--input_path {} \
|
|
--output_path {} \
|
|
--Mapper.tri_ignore_two_view_tracks 1'.format(db_file, img_dir, out_dir, out_dir)
|
|
bash_run(cmd)
|
|
|
|
|
|
# this step is optional
|
|
def run_global_ba(in_dir, out_dir):
|
|
print('Running global BA...')
|
|
if not os.path.exists(out_dir):
|
|
os.mkdir(out_dir)
|
|
|
|
cmd = ' bundle_adjuster --input_path {in_dir} --output_path {out_dir}'.format(in_dir=in_dir, out_dir=out_dir)
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
def prepare_mvs(img_dir, sfm_dir, mvs_dir):
|
|
if not os.path.exists(mvs_dir):
|
|
os.mkdir(mvs_dir)
|
|
|
|
images_symlink = os.path.join(mvs_dir, 'images')
|
|
if os.path.exists(images_symlink):
|
|
os.unlink(images_symlink)
|
|
os.symlink(os.path.relpath(img_dir, mvs_dir),
|
|
images_symlink)
|
|
|
|
sparse_symlink = os.path.join(mvs_dir, 'sparse')
|
|
if os.path.exists(sparse_symlink):
|
|
os.unlink(sparse_symlink)
|
|
os.symlink(os.path.relpath(sfm_dir, mvs_dir),
|
|
sparse_symlink)
|
|
|
|
# prepare stereo directory
|
|
stereo_dir = os.path.join(mvs_dir, 'stereo')
|
|
for subdir in [stereo_dir,
|
|
os.path.join(stereo_dir, 'depth_maps'),
|
|
os.path.join(stereo_dir, 'normal_maps'),
|
|
os.path.join(stereo_dir, 'consistency_graphs')]:
|
|
if not os.path.exists(subdir):
|
|
os.mkdir(subdir)
|
|
|
|
# write patch-match.cfg and fusion.cfg
|
|
image_names = sorted(os.listdir(os.path.join(mvs_dir, 'images')))
|
|
|
|
with open(os.path.join(stereo_dir, 'patch-match.cfg'), 'w') as fp:
|
|
for img_name in image_names:
|
|
fp.write(img_name + '\n__auto__, 20\n')
|
|
|
|
# use all images
|
|
# fp.write(img_name + '\n__all__\n')
|
|
|
|
# randomly choose 20 images
|
|
# from random import shuffle
|
|
# candi_src_images = [x for x in image_names if x != img_name]
|
|
# shuffle(candi_src_images)
|
|
# max_src_images = 10
|
|
# fp.write(img_name + '\n' + ', '.join(candi_src_images[:max_src_images]) + '\n')
|
|
|
|
with open(os.path.join(stereo_dir, 'fusion.cfg'), 'w') as fp:
|
|
for img_name in image_names:
|
|
fp.write(img_name + '\n')
|
|
|
|
|
|
def run_photometric_mvs(mvs_dir, window_radius):
|
|
print('Running photometric MVS...')
|
|
|
|
cmd = ' patch_match_stereo --workspace_path {} \
|
|
--PatchMatchStereo.window_radius {} \
|
|
--PatchMatchStereo.min_triangulation_angle 3.0 \
|
|
--PatchMatchStereo.filter 1 \
|
|
--PatchMatchStereo.geom_consistency 1 \
|
|
--PatchMatchStereo.gpu_index={} \
|
|
--PatchMatchStereo.num_samples 15 \
|
|
--PatchMatchStereo.num_iterations 12'.format(mvs_dir,
|
|
window_radius, gpu_index)
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
def run_fuse(mvs_dir, out_ply):
|
|
print('Running depth fusion...')
|
|
|
|
cmd = ' stereo_fusion --workspace_path {} \
|
|
--output_path {} \
|
|
--input_type geometric'.format(mvs_dir, out_ply)
|
|
bash_run(cmd)
|
|
|
|
|
|
def run_possion_mesher(in_ply, out_ply, trim):
|
|
print('Running possion mesher...')
|
|
|
|
cmd = ' poisson_mesher \
|
|
--input_path {} \
|
|
--output_path {} \
|
|
--PoissonMeshing.trim {}'.format(in_ply, out_ply, trim)
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
def main(img_dir, pinhole_dict_file, out_dir):
|
|
if not os.path.exists(out_dir):
|
|
os.mkdir(out_dir)
|
|
|
|
db_file = os.path.join(out_dir, 'database.db')
|
|
run_sift_matching(img_dir, db_file)
|
|
|
|
sfm_dir = os.path.join(out_dir, 'sfm')
|
|
create_init_files(pinhole_dict_file, db_file, sfm_dir)
|
|
run_point_triangulation(img_dir, db_file, sfm_dir)
|
|
|
|
# # optional
|
|
# run_global_ba(sfm_dir, sfm_dir)
|
|
|
|
mvs_dir = os.path.join(out_dir, 'mvs')
|
|
prepare_mvs(img_dir, sfm_dir, mvs_dir)
|
|
run_photometric_mvs(mvs_dir, window_radius=5)
|
|
|
|
out_ply = os.path.join(out_dir, 'fused.ply')
|
|
run_fuse(mvs_dir, out_ply)
|
|
|
|
out_mesh_ply = os.path.join(out_dir, 'meshed_trim_3.ply')
|
|
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
|
|
|
|
|
|
def convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir):
|
|
print('Writing pinhole_dict to: ', pinhole_dict_file)
|
|
|
|
with open(cam_dict_file) as fp:
|
|
cam_dict = json.load(fp)
|
|
|
|
pinhole_dict = {}
|
|
for img_name in cam_dict:
|
|
data_item = cam_dict[img_name]
|
|
if 'img_size' in data_item:
|
|
w, h = data_item['img_size']
|
|
else:
|
|
im = imageio.imread(os.path.join(img_dir, img_name))
|
|
h, w = im.shape[:2]
|
|
|
|
K = np.array(data_item['K']).reshape((4, 4))
|
|
W2C = np.array(data_item['W2C']).reshape((4, 4))
|
|
|
|
# params
|
|
fx = K[0, 0]
|
|
fy = K[1, 1]
|
|
assert(np.isclose(K[0, 1], 0.))
|
|
cx = K[0, 2]
|
|
cy = K[1, 2]
|
|
|
|
print(img_name)
|
|
R = W2C[:3, :3]
|
|
print(R)
|
|
u, s_old, vh = np.linalg.svd(R, full_matrices=False)
|
|
s = np.round(s_old)
|
|
print('s: {} ---> {}'.format(s_old, s))
|
|
R = np.dot(u * s, vh)
|
|
|
|
qvec = Quaternion(matrix=R)
|
|
tvec = W2C[:3, 3]
|
|
|
|
params = [w, h, fx, fy, cx, cy,
|
|
qvec[0], qvec[1], qvec[2], qvec[3],
|
|
tvec[0], tvec[1], tvec[2]]
|
|
pinhole_dict[img_name] = params
|
|
|
|
with open(pinhole_dict_file, 'w') as fp:
|
|
json.dump(pinhole_dict, fp, indent=2, sort_keys=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
img_dir = ''
|
|
cam_dict_file = ''
|
|
out_dir = ''
|
|
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
pinhole_dict_file = os.path.join(out_dir, 'pinhole_dict.json')
|
|
convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir)
|
|
|
|
main(img_dir, pinhole_dict_file, out_dir)
|