nerf_plus_plus/colmap_runner/run_colmap_posed.py

296 lines
9.7 KiB
Python
Raw Normal View History

2021-03-21 02:38:48 +01:00
import os
import json
from database import COLMAPDatabase
from pyquaternion import Quaternion
import numpy as np
import imageio
import subprocess
def bash_run(cmd):
# local install of colmap
env = os.environ.copy()
env['LD_LIBRARY_PATH'] = '/home/zhangka2/code/colmap/build/__install__/lib'
colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap'
cmd = colmap_bin + ' ' + cmd
print('\nRunning cmd: ', cmd)
subprocess.check_call(['/bin/bash', '-c', cmd], env=env)
gpu_index = '-1'
def run_sift_matching(img_dir, db_file):
print('Running sift matching...')
# if os.path.exists(db_file): # otherwise colmap will skip sift matching
# os.remove(db_file)
# feature extraction
# if there's no attached display, cannot use feature extractor with GPU
cmd = ' feature_extractor --database_path {} \
--image_path {} \
--ImageReader.camera_model PINHOLE \
--SiftExtraction.max_image_size 5000 \
--SiftExtraction.estimate_affine_shape 0 \
--SiftExtraction.domain_size_pooling 1 \
--SiftExtraction.num_threads 32 \
--SiftExtraction.use_gpu 0 \
--SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index)
bash_run(cmd)
# feature matching
cmd = ' exhaustive_matcher --database_path {} \
--SiftMatching.guided_matching 1 \
--SiftMatching.use_gpu 0 \
--SiftMatching.gpu_index {}'.format(db_file, gpu_index)
bash_run(cmd)
def create_init_files(pinhole_dict_file, db_file, out_dir):
if not os.path.exists(out_dir):
os.mkdir(out_dir)
# create template
with open(pinhole_dict_file) as fp:
pinhole_dict = json.load(fp)
template = {}
cameras_line_template = '{camera_id} PINHOLE {width} {height} {fx} {fy} {cx} {cy}\n'
images_line_template = '{image_id} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {camera_id} {image_name}\n\n'
for img_name in pinhole_dict:
# w, h, fx, fy, cx, cy, qvec, t
params = pinhole_dict[img_name]
w = params[0]
h = params[1]
fx = params[2]
fy = params[3]
cx = params[4]
cy = params[5]
qvec = params[6:10]
tvec = params[10:13]
cam_line = cameras_line_template.format(camera_id="{camera_id}", width=w, height=h, fx=fx, fy=fy, cx=cx, cy=cy)
img_line = images_line_template.format(image_id="{image_id}", qw=qvec[0], qx=qvec[1], qy=qvec[2], qz=qvec[3],
tx=tvec[0], ty=tvec[1], tz=tvec[2], camera_id="{camera_id}", image_name=img_name)
template[img_name] = (cam_line, img_line)
# read database
db = COLMAPDatabase.connect(db_file)
table_images = db.execute("SELECT * FROM images")
img_name2id_dict = {}
for row in table_images:
img_name2id_dict[row[1]] = row[0]
cameras_txt_lines = []
images_txt_lines = []
for img_name, img_id in img_name2id_dict.items():
camera_line = template[img_name][0].format(camera_id=img_id)
cameras_txt_lines.append(camera_line)
image_line = template[img_name][1].format(image_id=img_id, camera_id=img_id)
images_txt_lines.append(image_line)
with open(os.path.join(out_dir, 'cameras.txt'), 'w') as fp:
fp.writelines(cameras_txt_lines)
with open(os.path.join(out_dir, 'images.txt'), 'w') as fp:
fp.writelines(images_txt_lines)
fp.write('\n')
# create an empty points3D.txt
fp = open(os.path.join(out_dir, 'points3D.txt'), 'w')
fp.close()
def run_point_triangulation(img_dir, db_file, out_dir):
print('Running point triangulation...')
# triangulate points
cmd = ' point_triangulator --database_path {} \
--image_path {} \
--input_path {} \
--output_path {} \
--Mapper.tri_ignore_two_view_tracks 1'.format(db_file, img_dir, out_dir, out_dir)
bash_run(cmd)
# this step is optional
def run_global_ba(in_dir, out_dir):
print('Running global BA...')
if not os.path.exists(out_dir):
os.mkdir(out_dir)
cmd = ' bundle_adjuster --input_path {in_dir} --output_path {out_dir}'.format(in_dir=in_dir, out_dir=out_dir)
bash_run(cmd)
def prepare_mvs(img_dir, sfm_dir, mvs_dir):
if not os.path.exists(mvs_dir):
os.mkdir(mvs_dir)
images_symlink = os.path.join(mvs_dir, 'images')
if os.path.exists(images_symlink):
os.unlink(images_symlink)
os.symlink(os.path.relpath(img_dir, mvs_dir),
images_symlink)
sparse_symlink = os.path.join(mvs_dir, 'sparse')
if os.path.exists(sparse_symlink):
os.unlink(sparse_symlink)
os.symlink(os.path.relpath(sfm_dir, mvs_dir),
sparse_symlink)
# prepare stereo directory
stereo_dir = os.path.join(mvs_dir, 'stereo')
for subdir in [stereo_dir,
os.path.join(stereo_dir, 'depth_maps'),
os.path.join(stereo_dir, 'normal_maps'),
os.path.join(stereo_dir, 'consistency_graphs')]:
if not os.path.exists(subdir):
os.mkdir(subdir)
# write patch-match.cfg and fusion.cfg
image_names = sorted(os.listdir(os.path.join(mvs_dir, 'images')))
with open(os.path.join(stereo_dir, 'patch-match.cfg'), 'w') as fp:
for img_name in image_names:
fp.write(img_name + '\n__auto__, 20\n')
# use all images
# fp.write(img_name + '\n__all__\n')
# randomly choose 20 images
# from random import shuffle
# candi_src_images = [x for x in image_names if x != img_name]
# shuffle(candi_src_images)
# max_src_images = 10
# fp.write(img_name + '\n' + ', '.join(candi_src_images[:max_src_images]) + '\n')
with open(os.path.join(stereo_dir, 'fusion.cfg'), 'w') as fp:
for img_name in image_names:
fp.write(img_name + '\n')
def run_photometric_mvs(mvs_dir, window_radius):
print('Running photometric MVS...')
cmd = ' patch_match_stereo --workspace_path {} \
--PatchMatchStereo.window_radius {} \
--PatchMatchStereo.min_triangulation_angle 3.0 \
--PatchMatchStereo.filter 1 \
--PatchMatchStereo.geom_consistency 1 \
--PatchMatchStereo.gpu_index={} \
--PatchMatchStereo.num_samples 15 \
--PatchMatchStereo.num_iterations 12'.format(mvs_dir,
window_radius, gpu_index)
bash_run(cmd)
def run_fuse(mvs_dir, out_ply):
print('Running depth fusion...')
cmd = ' stereo_fusion --workspace_path {} \
--output_path {} \
--input_type geometric'.format(mvs_dir, out_ply)
bash_run(cmd)
def run_possion_mesher(in_ply, out_ply, trim):
print('Running possion mesher...')
cmd = ' poisson_mesher \
--input_path {} \
--output_path {} \
--PoissonMeshing.trim {}'.format(in_ply, out_ply, trim)
bash_run(cmd)
def main(img_dir, pinhole_dict_file, out_dir):
if not os.path.exists(out_dir):
os.mkdir(out_dir)
db_file = os.path.join(out_dir, 'database.db')
run_sift_matching(img_dir, db_file)
sfm_dir = os.path.join(out_dir, 'sfm')
create_init_files(pinhole_dict_file, db_file, sfm_dir)
run_point_triangulation(img_dir, db_file, sfm_dir)
# # optional
# run_global_ba(sfm_dir, sfm_dir)
mvs_dir = os.path.join(out_dir, 'mvs')
prepare_mvs(img_dir, sfm_dir, mvs_dir)
run_photometric_mvs(mvs_dir, window_radius=5)
out_ply = os.path.join(out_dir, 'fused.ply')
run_fuse(mvs_dir, out_ply)
out_mesh_ply = os.path.join(out_dir, 'meshed_trim_3.ply')
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
def convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir):
print('Writing pinhole_dict to: ', pinhole_dict_file)
with open(cam_dict_file) as fp:
cam_dict = json.load(fp)
pinhole_dict = {}
for img_name in cam_dict:
data_item = cam_dict[img_name]
if 'img_size' in data_item:
w, h = data_item['img_size']
else:
im = imageio.imread(os.path.join(img_dir, img_name))
h, w = im.shape[:2]
K = np.array(data_item['K']).reshape((4, 4))
W2C = np.array(data_item['W2C']).reshape((4, 4))
# params
fx = K[0, 0]
fy = K[1, 1]
assert(np.isclose(K[0, 1], 0.))
cx = K[0, 2]
cy = K[1, 2]
print(img_name)
R = W2C[:3, :3]
print(R)
u, s_old, vh = np.linalg.svd(R, full_matrices=False)
s = np.round(s_old)
print('s: {} ---> {}'.format(s_old, s))
R = np.dot(u * s, vh)
qvec = Quaternion(matrix=R)
tvec = W2C[:3, 3]
params = [w, h, fx, fy, cx, cy,
qvec[0], qvec[1], qvec[2], qvec[3],
tvec[0], tvec[1], tvec[2]]
pinhole_dict[img_name] = params
with open(pinhole_dict_file, 'w') as fp:
json.dump(pinhole_dict, fp, indent=2, sort_keys=True)
if __name__ == '__main__':
img_dir = ''
cam_dict_file = ''
out_dir = ''
os.makedirs(out_dir, exist_ok=True)
pinhole_dict_file = os.path.join(out_dir, 'pinhole_dict.json')
convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir)
main(img_dir, pinhole_dict_file, out_dir)