nerf_plus_plus/colmap_runner/run_colmap.py
2020-11-17 10:49:50 -05:00

168 lines
5.9 KiB
Python

import os
import subprocess
from extract_sfm import extract_all_to_dir
from normalize_cam_dict import normalize_cam_dict
#########################################################################
# Note: configure the colmap_bin to the colmap executable on your machine
#########################################################################
def bash_run(cmd):
colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap'
cmd = colmap_bin + ' ' + cmd
print('\nRunning cmd: ', cmd)
subprocess.check_call(['/bin/bash', '-c', cmd])
gpu_index = '-1'
def run_sift_matching(img_dir, db_file, remove_exist=False):
print('Running sift matching...')
if remove_exist and os.path.exists(db_file):
os.remove(db_file) # otherwise colmap will skip sift matching
# feature extraction
# if there's no attached display, cannot use feature extractor with GPU
cmd = ' feature_extractor --database_path {} \
--image_path {} \
--ImageReader.single_camera 1 \
--ImageReader.camera_model SIMPLE_RADIAL \
--SiftExtraction.max_image_size 5000 \
--SiftExtraction.estimate_affine_shape 0 \
--SiftExtraction.domain_size_pooling 1 \
--SiftExtraction.use_gpu 1 \
--SiftExtraction.max_num_features 16384 \
--SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index)
bash_run(cmd)
# feature matching
cmd = ' exhaustive_matcher --database_path {} \
--SiftMatching.guided_matching 1 \
--SiftMatching.use_gpu 1 \
--SiftMatching.max_num_matches 65536 \
--SiftMatching.max_error 3 \
--SiftMatching.gpu_index {}'.format(db_file, gpu_index)
bash_run(cmd)
def run_sfm(img_dir, db_file, out_dir):
print('Running SfM...')
cmd = ' mapper \
--database_path {} \
--image_path {} \
--output_path {} \
--Mapper.tri_min_angle 3.0 \
--Mapper.filter_min_tri_angle 3.0'.format(db_file, img_dir, out_dir)
bash_run(cmd)
def prepare_mvs(img_dir, sparse_dir, mvs_dir):
print('Preparing for MVS...')
cmd = ' image_undistorter \
--image_path {} \
--input_path {} \
--output_path {} \
--output_type COLMAP \
--max_image_size 2000'.format(img_dir, sparse_dir, mvs_dir)
bash_run(cmd)
def run_photometric_mvs(mvs_dir, window_radius):
print('Running photometric MVS...')
cmd = ' patch_match_stereo --workspace_path {} \
--PatchMatchStereo.window_radius {} \
--PatchMatchStereo.min_triangulation_angle 3.0 \
--PatchMatchStereo.filter 1 \
--PatchMatchStereo.geom_consistency 1 \
--PatchMatchStereo.gpu_index={} \
--PatchMatchStereo.num_samples 15 \
--PatchMatchStereo.num_iterations 12'.format(mvs_dir,
window_radius, gpu_index)
bash_run(cmd)
def run_fuse(mvs_dir, out_ply):
print('Running depth fusion...')
cmd = ' stereo_fusion --workspace_path {} \
--output_path {} \
--input_type geometric'.format(mvs_dir, out_ply)
bash_run(cmd)
def run_possion_mesher(in_ply, out_ply, trim):
print('Running possion mesher...')
cmd = ' poisson_mesher \
--input_path {} \
--output_path {} \
--PoissonMeshing.trim {}'.format(in_ply, out_ply, trim)
bash_run(cmd)
def main(img_dir, out_dir, run_mvs=False):
os.makedirs(out_dir, exist_ok=True)
#### run sfm
sfm_dir = os.path.join(out_dir, 'sfm')
os.makedirs(sfm_dir, exist_ok=True)
img_dir_link = os.path.join(sfm_dir, 'images')
if os.path.exists(img_dir_link):
os.remove(img_dir_link)
os.symlink(img_dir, img_dir_link)
db_file = os.path.join(sfm_dir, 'database.db')
run_sift_matching(img_dir, db_file, remove_exist=False)
sparse_dir = os.path.join(sfm_dir, 'sparse')
os.makedirs(sparse_dir, exist_ok=True)
run_sfm(img_dir, db_file, sparse_dir)
# undistort images
mvs_dir = os.path.join(out_dir, 'mvs')
os.makedirs(mvs_dir, exist_ok=True)
prepare_mvs(img_dir, sparse_dir, mvs_dir)
# extract camera parameters and undistorted images
os.makedirs(os.path.join(out_dir, 'posed_images'), exist_ok=True)
extract_all_to_dir(os.path.join(mvs_dir, 'sparse'), os.path.join(out_dir, 'posed_images'))
undistorted_img_dir = os.path.join(mvs_dir, 'images')
posed_img_dir_link = os.path.join(out_dir, 'posed_images/images')
if os.path.exists(posed_img_dir_link):
os.remove(posed_img_dir_link)
os.symlink(undistorted_img_dir, posed_img_dir_link)
# normalize average camera center to origin, and put all cameras inside the unit sphere
normalize_cam_dict(os.path.join(out_dir, 'posed_images/kai_cameras.json'),
os.path.join(out_dir, 'posed_images/kai_cameras_normalized.json'))
if run_mvs:
# run mvs
run_photometric_mvs(mvs_dir, window_radius=7)
out_ply = os.path.join(out_dir, 'mvs/fused.ply')
run_fuse(mvs_dir, out_ply)
out_mesh_ply = os.path.join(out_dir, 'mvs/meshed_trim_3.ply')
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
if __name__ == '__main__':
### note: this script is intended for the case where all images are taken by the same camera, i.e., intrinisics are shared.
img_dir = ''
out_dir = ''
run_mvs = False
main(img_dir, out_dir, run_mvs=run_mvs)