2020-10-21 04:54:43 +02:00
|
|
|
import os
|
|
|
|
import subprocess
|
|
|
|
from extract_sfm import extract_all_to_dir
|
|
|
|
from normalize_cam_dict import normalize_cam_dict
|
|
|
|
|
|
|
|
#########################################################################
|
|
|
|
# Note: configure the colmap_bin to the colmap executable on your machine
|
|
|
|
#########################################################################
|
|
|
|
|
|
|
|
def bash_run(cmd):
|
|
|
|
colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap'
|
|
|
|
cmd = colmap_bin + ' ' + cmd
|
|
|
|
print('\nRunning cmd: ', cmd)
|
|
|
|
|
|
|
|
subprocess.check_call(['/bin/bash', '-c', cmd])
|
|
|
|
|
|
|
|
|
|
|
|
gpu_index = '-1'
|
|
|
|
|
|
|
|
|
|
|
|
def run_sift_matching(img_dir, db_file, remove_exist=False):
|
|
|
|
print('Running sift matching...')
|
|
|
|
|
|
|
|
if remove_exist and os.path.exists(db_file):
|
|
|
|
os.remove(db_file) # otherwise colmap will skip sift matching
|
|
|
|
|
|
|
|
# feature extraction
|
|
|
|
# if there's no attached display, cannot use feature extractor with GPU
|
|
|
|
cmd = ' feature_extractor --database_path {} \
|
|
|
|
--image_path {} \
|
|
|
|
--ImageReader.single_camera 1 \
|
|
|
|
--ImageReader.camera_model SIMPLE_RADIAL \
|
|
|
|
--SiftExtraction.max_image_size 5000 \
|
|
|
|
--SiftExtraction.estimate_affine_shape 0 \
|
|
|
|
--SiftExtraction.domain_size_pooling 1 \
|
|
|
|
--SiftExtraction.use_gpu 1 \
|
|
|
|
--SiftExtraction.max_num_features 16384 \
|
|
|
|
--SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index)
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
# feature matching
|
|
|
|
cmd = ' exhaustive_matcher --database_path {} \
|
|
|
|
--SiftMatching.guided_matching 1 \
|
|
|
|
--SiftMatching.use_gpu 1 \
|
|
|
|
--SiftMatching.max_num_matches 65536 \
|
|
|
|
--SiftMatching.max_error 3 \
|
|
|
|
--SiftMatching.gpu_index {}'.format(db_file, gpu_index)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def run_sfm(img_dir, db_file, out_dir):
|
|
|
|
print('Running SfM...')
|
|
|
|
|
|
|
|
cmd = ' mapper \
|
|
|
|
--database_path {} \
|
|
|
|
--image_path {} \
|
|
|
|
--output_path {} \
|
|
|
|
--Mapper.tri_min_angle 3.0 \
|
|
|
|
--Mapper.filter_min_tri_angle 3.0'.format(db_file, img_dir, out_dir)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_mvs(img_dir, sparse_dir, mvs_dir):
|
|
|
|
print('Preparing for MVS...')
|
|
|
|
|
|
|
|
cmd = ' image_undistorter \
|
|
|
|
--image_path {} \
|
|
|
|
--input_path {} \
|
|
|
|
--output_path {} \
|
|
|
|
--output_type COLMAP \
|
|
|
|
--max_image_size 2000'.format(img_dir, sparse_dir, mvs_dir)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def run_photometric_mvs(mvs_dir, window_radius):
|
|
|
|
print('Running photometric MVS...')
|
|
|
|
|
|
|
|
cmd = ' patch_match_stereo --workspace_path {} \
|
|
|
|
--PatchMatchStereo.window_radius {} \
|
|
|
|
--PatchMatchStereo.min_triangulation_angle 3.0 \
|
|
|
|
--PatchMatchStereo.filter 1 \
|
|
|
|
--PatchMatchStereo.geom_consistency 1 \
|
|
|
|
--PatchMatchStereo.gpu_index={} \
|
|
|
|
--PatchMatchStereo.num_samples 15 \
|
|
|
|
--PatchMatchStereo.num_iterations 12'.format(mvs_dir,
|
|
|
|
window_radius, gpu_index)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def run_fuse(mvs_dir, out_ply):
|
|
|
|
print('Running depth fusion...')
|
|
|
|
|
|
|
|
cmd = ' stereo_fusion --workspace_path {} \
|
|
|
|
--output_path {} \
|
|
|
|
--input_type geometric'.format(mvs_dir, out_ply)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def run_possion_mesher(in_ply, out_ply, trim):
|
|
|
|
print('Running possion mesher...')
|
|
|
|
|
|
|
|
cmd = ' poisson_mesher \
|
|
|
|
--input_path {} \
|
|
|
|
--output_path {} \
|
|
|
|
--PoissonMeshing.trim {}'.format(in_ply, out_ply, trim)
|
|
|
|
|
|
|
|
bash_run(cmd)
|
|
|
|
|
|
|
|
|
|
|
|
def main(img_dir, out_dir, run_mvs=False):
|
|
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
|
|
|
|
|
|
#### run sfm
|
|
|
|
sfm_dir = os.path.join(out_dir, 'sfm')
|
|
|
|
os.makedirs(sfm_dir, exist_ok=True)
|
|
|
|
|
|
|
|
img_dir_link = os.path.join(sfm_dir, 'images')
|
|
|
|
if os.path.exists(img_dir_link):
|
|
|
|
os.remove(img_dir_link)
|
|
|
|
os.symlink(img_dir, img_dir_link)
|
|
|
|
|
|
|
|
db_file = os.path.join(sfm_dir, 'database.db')
|
|
|
|
run_sift_matching(img_dir, db_file, remove_exist=False)
|
|
|
|
sparse_dir = os.path.join(sfm_dir, 'sparse')
|
|
|
|
os.makedirs(sparse_dir, exist_ok=True)
|
|
|
|
run_sfm(img_dir, db_file, sparse_dir)
|
|
|
|
|
|
|
|
# undistort images
|
|
|
|
mvs_dir = os.path.join(out_dir, 'mvs')
|
|
|
|
os.makedirs(mvs_dir, exist_ok=True)
|
|
|
|
prepare_mvs(img_dir, sparse_dir, mvs_dir)
|
|
|
|
|
|
|
|
# extract camera parameters and undistorted images
|
|
|
|
os.makedirs(os.path.join(out_dir, 'posed_images'), exist_ok=True)
|
|
|
|
extract_all_to_dir(os.path.join(mvs_dir, 'sparse'), os.path.join(out_dir, 'posed_images'))
|
|
|
|
undistorted_img_dir = os.path.join(mvs_dir, 'images')
|
|
|
|
posed_img_dir_link = os.path.join(out_dir, 'posed_images/images')
|
|
|
|
if os.path.exists(posed_img_dir_link):
|
|
|
|
os.remove(posed_img_dir_link)
|
|
|
|
os.symlink(undistorted_img_dir, posed_img_dir_link)
|
|
|
|
# normalize average camera center to origin, and put all cameras inside the unit sphere
|
|
|
|
normalize_cam_dict(os.path.join(out_dir, 'posed_images/kai_cameras.json'),
|
|
|
|
os.path.join(out_dir, 'posed_images/kai_cameras_normalized.json'))
|
|
|
|
|
|
|
|
if run_mvs:
|
|
|
|
# run mvs
|
|
|
|
run_photometric_mvs(mvs_dir, window_radius=7)
|
|
|
|
|
|
|
|
out_ply = os.path.join(out_dir, 'mvs/fused.ply')
|
|
|
|
run_fuse(mvs_dir, out_ply)
|
|
|
|
|
|
|
|
out_mesh_ply = os.path.join(out_dir, 'mvs/meshed_trim_3.ply')
|
|
|
|
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2020-11-17 16:49:50 +01:00
|
|
|
### note: this script is intended for the case where all images are taken by the same camera, i.e., intrinisics are shared.
|
|
|
|
|
2020-10-21 04:54:43 +02:00
|
|
|
img_dir = ''
|
|
|
|
out_dir = ''
|
|
|
|
run_mvs = False
|
|
|
|
main(img_dir, out_dir, run_mvs=run_mvs)
|
|
|
|
|