add colmap scripts for posed images
This commit is contained in:
parent
03741cf85a
commit
cd251d6c40
2 changed files with 647 additions and 0 deletions
352
colmap_runner/database.py
Normal file
352
colmap_runner/database.py
Normal file
|
@ -0,0 +1,352 @@
|
|||
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
#
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
#
|
||||
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
|
||||
# its contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
#
|
||||
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
|
||||
|
||||
# This script is based on an original implementation by True Price.
|
||||
|
||||
import sys
|
||||
import sqlite3
|
||||
import numpy as np
|
||||
|
||||
|
||||
IS_PYTHON3 = sys.version_info[0] >= 3
|
||||
|
||||
MAX_IMAGE_ID = 2**31 - 1
|
||||
|
||||
CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras (
|
||||
camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
||||
model INTEGER NOT NULL,
|
||||
width INTEGER NOT NULL,
|
||||
height INTEGER NOT NULL,
|
||||
params BLOB,
|
||||
prior_focal_length INTEGER NOT NULL)"""
|
||||
|
||||
CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors (
|
||||
image_id INTEGER PRIMARY KEY NOT NULL,
|
||||
rows INTEGER NOT NULL,
|
||||
cols INTEGER NOT NULL,
|
||||
data_500 BLOB,
|
||||
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""
|
||||
|
||||
CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images (
|
||||
image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
||||
name TEXT NOT NULL UNIQUE,
|
||||
camera_id INTEGER NOT NULL,
|
||||
prior_qw REAL,
|
||||
prior_qx REAL,
|
||||
prior_qy REAL,
|
||||
prior_qz REAL,
|
||||
prior_tx REAL,
|
||||
prior_ty REAL,
|
||||
prior_tz REAL,
|
||||
CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}),
|
||||
FOREIGN KEY(camera_id) REFERENCES cameras(camera_id))
|
||||
""".format(MAX_IMAGE_ID)
|
||||
|
||||
CREATE_TWO_VIEW_GEOMETRIES_TABLE = """
|
||||
CREATE TABLE IF NOT EXISTS two_view_geometries (
|
||||
pair_id INTEGER PRIMARY KEY NOT NULL,
|
||||
rows INTEGER NOT NULL,
|
||||
cols INTEGER NOT NULL,
|
||||
data_500 BLOB,
|
||||
config INTEGER NOT NULL,
|
||||
F BLOB,
|
||||
E BLOB,
|
||||
H BLOB)
|
||||
"""
|
||||
|
||||
CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints (
|
||||
image_id INTEGER PRIMARY KEY NOT NULL,
|
||||
rows INTEGER NOT NULL,
|
||||
cols INTEGER NOT NULL,
|
||||
data_500 BLOB,
|
||||
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)
|
||||
"""
|
||||
|
||||
CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches (
|
||||
pair_id INTEGER PRIMARY KEY NOT NULL,
|
||||
rows INTEGER NOT NULL,
|
||||
cols INTEGER NOT NULL,
|
||||
data_500 BLOB)"""
|
||||
|
||||
CREATE_NAME_INDEX = \
|
||||
"CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)"
|
||||
|
||||
CREATE_ALL = "; ".join([
|
||||
CREATE_CAMERAS_TABLE,
|
||||
CREATE_IMAGES_TABLE,
|
||||
CREATE_KEYPOINTS_TABLE,
|
||||
CREATE_DESCRIPTORS_TABLE,
|
||||
CREATE_MATCHES_TABLE,
|
||||
CREATE_TWO_VIEW_GEOMETRIES_TABLE,
|
||||
CREATE_NAME_INDEX
|
||||
])
|
||||
|
||||
|
||||
def image_ids_to_pair_id(image_id1, image_id2):
|
||||
if image_id1 > image_id2:
|
||||
image_id1, image_id2 = image_id2, image_id1
|
||||
return image_id1 * MAX_IMAGE_ID + image_id2
|
||||
|
||||
|
||||
def pair_id_to_image_ids(pair_id):
|
||||
image_id2 = pair_id % MAX_IMAGE_ID
|
||||
image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID
|
||||
return image_id1, image_id2
|
||||
|
||||
|
||||
def array_to_blob(array):
|
||||
if IS_PYTHON3:
|
||||
return array.tostring()
|
||||
else:
|
||||
return np.getbuffer(array)
|
||||
|
||||
|
||||
def blob_to_array(blob, dtype, shape=(-1,)):
|
||||
if IS_PYTHON3:
|
||||
return np.fromstring(blob, dtype=dtype).reshape(*shape)
|
||||
else:
|
||||
return np.frombuffer(blob, dtype=dtype).reshape(*shape)
|
||||
|
||||
|
||||
class COLMAPDatabase(sqlite3.Connection):
|
||||
|
||||
@staticmethod
|
||||
def connect(database_path):
|
||||
return sqlite3.connect(database_path, factory=COLMAPDatabase)
|
||||
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(COLMAPDatabase, self).__init__(*args, **kwargs)
|
||||
|
||||
self.create_tables = lambda: self.executescript(CREATE_ALL)
|
||||
self.create_cameras_table = \
|
||||
lambda: self.executescript(CREATE_CAMERAS_TABLE)
|
||||
self.create_descriptors_table = \
|
||||
lambda: self.executescript(CREATE_DESCRIPTORS_TABLE)
|
||||
self.create_images_table = \
|
||||
lambda: self.executescript(CREATE_IMAGES_TABLE)
|
||||
self.create_two_view_geometries_table = \
|
||||
lambda: self.executescript(CREATE_TWO_VIEW_GEOMETRIES_TABLE)
|
||||
self.create_keypoints_table = \
|
||||
lambda: self.executescript(CREATE_KEYPOINTS_TABLE)
|
||||
self.create_matches_table = \
|
||||
lambda: self.executescript(CREATE_MATCHES_TABLE)
|
||||
self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX)
|
||||
|
||||
def add_camera(self, model, width, height, params,
|
||||
prior_focal_length=False, camera_id=None):
|
||||
params = np.asarray(params, np.float64)
|
||||
cursor = self.execute(
|
||||
"INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)",
|
||||
(camera_id, model, width, height, array_to_blob(params),
|
||||
prior_focal_length))
|
||||
return cursor.lastrowid
|
||||
|
||||
def add_image(self, name, camera_id,
|
||||
prior_q=np.zeros(4), prior_t=np.zeros(3), image_id=None):
|
||||
cursor = self.execute(
|
||||
"INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
|
||||
(image_id, name, camera_id, prior_q[0], prior_q[1], prior_q[2],
|
||||
prior_q[3], prior_t[0], prior_t[1], prior_t[2]))
|
||||
return cursor.lastrowid
|
||||
|
||||
def add_keypoints(self, image_id, keypoints):
|
||||
assert(len(keypoints.shape) == 2)
|
||||
assert(keypoints.shape[1] in [2, 4, 6])
|
||||
|
||||
keypoints = np.asarray(keypoints, np.float32)
|
||||
self.execute(
|
||||
"INSERT INTO keypoints VALUES (?, ?, ?, ?)",
|
||||
(image_id,) + keypoints.shape + (array_to_blob(keypoints),))
|
||||
|
||||
def add_descriptors(self, image_id, descriptors):
|
||||
descriptors = np.ascontiguousarray(descriptors, np.uint8)
|
||||
self.execute(
|
||||
"INSERT INTO descriptors VALUES (?, ?, ?, ?)",
|
||||
(image_id,) + descriptors.shape + (array_to_blob(descriptors),))
|
||||
|
||||
def add_matches(self, image_id1, image_id2, matches):
|
||||
assert(len(matches.shape) == 2)
|
||||
assert(matches.shape[1] == 2)
|
||||
|
||||
if image_id1 > image_id2:
|
||||
matches = matches[:,::-1]
|
||||
|
||||
pair_id = image_ids_to_pair_id(image_id1, image_id2)
|
||||
matches = np.asarray(matches, np.uint32)
|
||||
self.execute(
|
||||
"INSERT INTO matches VALUES (?, ?, ?, ?)",
|
||||
(pair_id,) + matches.shape + (array_to_blob(matches),))
|
||||
|
||||
def add_two_view_geometry(self, image_id1, image_id2, matches,
|
||||
F=np.eye(3), E=np.eye(3), H=np.eye(3), config=2):
|
||||
assert(len(matches.shape) == 2)
|
||||
assert(matches.shape[1] == 2)
|
||||
|
||||
if image_id1 > image_id2:
|
||||
matches = matches[:,::-1]
|
||||
|
||||
pair_id = image_ids_to_pair_id(image_id1, image_id2)
|
||||
matches = np.asarray(matches, np.uint32)
|
||||
F = np.asarray(F, dtype=np.float64)
|
||||
E = np.asarray(E, dtype=np.float64)
|
||||
H = np.asarray(H, dtype=np.float64)
|
||||
self.execute(
|
||||
"INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?)",
|
||||
(pair_id,) + matches.shape + (array_to_blob(matches), config,
|
||||
array_to_blob(F), array_to_blob(E), array_to_blob(H)))
|
||||
|
||||
|
||||
def example_usage():
|
||||
import os
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--database_path", default="database.db")
|
||||
args = parser.parse_args()
|
||||
|
||||
if os.path.exists(args.database_path):
|
||||
logging.info("ERROR: database path already exists -- will not modify it.")
|
||||
return
|
||||
|
||||
# Open the database.
|
||||
|
||||
db = COLMAPDatabase.connect(args.database_path)
|
||||
|
||||
# For convenience, try creating all the tables upfront.
|
||||
|
||||
db.create_tables()
|
||||
|
||||
# Create dummy cameras.
|
||||
|
||||
model1, width1, height1, params1 = \
|
||||
0, 1024, 768, np.array((1024., 512., 384.))
|
||||
model2, width2, height2, params2 = \
|
||||
2, 1024, 768, np.array((1024., 512., 384., 0.1))
|
||||
|
||||
camera_id1 = db.add_camera(model1, width1, height1, params1)
|
||||
camera_id2 = db.add_camera(model2, width2, height2, params2)
|
||||
|
||||
# Create dummy images.
|
||||
|
||||
image_id1 = db.add_image("image1.png", camera_id1)
|
||||
image_id2 = db.add_image("image2.png", camera_id1)
|
||||
image_id3 = db.add_image("image3.png", camera_id2)
|
||||
image_id4 = db.add_image("image4.png", camera_id2)
|
||||
|
||||
# Create dummy keypoints.
|
||||
#
|
||||
# Note that COLMAP supports:
|
||||
# - 2D keypoints: (x, y)
|
||||
# - 4D keypoints: (x, y, theta, scale)
|
||||
# - 6D affine keypoints: (x, y, a_11, a_12, a_21, a_22)
|
||||
|
||||
num_keypoints = 1000
|
||||
keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1)
|
||||
keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1)
|
||||
keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2)
|
||||
keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2)
|
||||
|
||||
db.add_keypoints(image_id1, keypoints1)
|
||||
db.add_keypoints(image_id2, keypoints2)
|
||||
db.add_keypoints(image_id3, keypoints3)
|
||||
db.add_keypoints(image_id4, keypoints4)
|
||||
|
||||
# Create dummy matches.
|
||||
|
||||
M = 50
|
||||
matches12 = np.random.randint(num_keypoints, size=(M, 2))
|
||||
matches23 = np.random.randint(num_keypoints, size=(M, 2))
|
||||
matches34 = np.random.randint(num_keypoints, size=(M, 2))
|
||||
|
||||
db.add_matches(image_id1, image_id2, matches12)
|
||||
db.add_matches(image_id2, image_id3, matches23)
|
||||
db.add_matches(image_id3, image_id4, matches34)
|
||||
|
||||
# Commit the data_500 to the file.
|
||||
|
||||
db.commit()
|
||||
|
||||
# Read and check cameras.
|
||||
|
||||
rows = db.execute("SELECT * FROM cameras")
|
||||
|
||||
camera_id, model, width, height, params, prior = next(rows)
|
||||
params = blob_to_array(params, np.float64)
|
||||
assert camera_id == camera_id1
|
||||
assert model == model1 and width == width1 and height == height1
|
||||
assert np.allclose(params, params1)
|
||||
|
||||
camera_id, model, width, height, params, prior = next(rows)
|
||||
params = blob_to_array(params, np.float64)
|
||||
assert camera_id == camera_id2
|
||||
assert model == model2 and width == width2 and height == height2
|
||||
assert np.allclose(params, params2)
|
||||
|
||||
# Read and check keypoints.
|
||||
|
||||
keypoints = dict(
|
||||
(image_id, blob_to_array(data, np.float32, (-1, 2)))
|
||||
for image_id, data in db.execute(
|
||||
"SELECT image_id, data_500 FROM keypoints"))
|
||||
|
||||
assert np.allclose(keypoints[image_id1], keypoints1)
|
||||
assert np.allclose(keypoints[image_id2], keypoints2)
|
||||
assert np.allclose(keypoints[image_id3], keypoints3)
|
||||
assert np.allclose(keypoints[image_id4], keypoints4)
|
||||
|
||||
# Read and check matches.
|
||||
|
||||
pair_ids = [image_ids_to_pair_id(*pair) for pair in
|
||||
((image_id1, image_id2),
|
||||
(image_id2, image_id3),
|
||||
(image_id3, image_id4))]
|
||||
|
||||
matches = dict(
|
||||
(pair_id_to_image_ids(pair_id),
|
||||
blob_to_array(data, np.uint32, (-1, 2)))
|
||||
for pair_id, data in db.execute("SELECT pair_id, data_500 FROM matches")
|
||||
)
|
||||
|
||||
assert np.all(matches[(image_id1, image_id2)] == matches12)
|
||||
assert np.all(matches[(image_id2, image_id3)] == matches23)
|
||||
assert np.all(matches[(image_id3, image_id4)] == matches34)
|
||||
|
||||
# Clean up.
|
||||
|
||||
db.close()
|
||||
|
||||
if os.path.exists(args.database_path):
|
||||
os.remove(args.database_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
example_usage()
|
295
colmap_runner/run_colmap_posed.py
Normal file
295
colmap_runner/run_colmap_posed.py
Normal file
|
@ -0,0 +1,295 @@
|
|||
import os
|
||||
import json
|
||||
from database import COLMAPDatabase
|
||||
from pyquaternion import Quaternion
|
||||
import numpy as np
|
||||
import imageio
|
||||
import subprocess
|
||||
|
||||
|
||||
def bash_run(cmd):
|
||||
# local install of colmap
|
||||
env = os.environ.copy()
|
||||
env['LD_LIBRARY_PATH'] = '/home/zhangka2/code/colmap/build/__install__/lib'
|
||||
|
||||
colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap'
|
||||
cmd = colmap_bin + ' ' + cmd
|
||||
print('\nRunning cmd: ', cmd)
|
||||
|
||||
subprocess.check_call(['/bin/bash', '-c', cmd], env=env)
|
||||
|
||||
|
||||
gpu_index = '-1'
|
||||
|
||||
|
||||
def run_sift_matching(img_dir, db_file):
|
||||
print('Running sift matching...')
|
||||
|
||||
# if os.path.exists(db_file): # otherwise colmap will skip sift matching
|
||||
# os.remove(db_file)
|
||||
|
||||
# feature extraction
|
||||
# if there's no attached display, cannot use feature extractor with GPU
|
||||
cmd = ' feature_extractor --database_path {} \
|
||||
--image_path {} \
|
||||
--ImageReader.camera_model PINHOLE \
|
||||
--SiftExtraction.max_image_size 5000 \
|
||||
--SiftExtraction.estimate_affine_shape 0 \
|
||||
--SiftExtraction.domain_size_pooling 1 \
|
||||
--SiftExtraction.num_threads 32 \
|
||||
--SiftExtraction.use_gpu 0 \
|
||||
--SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index)
|
||||
bash_run(cmd)
|
||||
|
||||
# feature matching
|
||||
cmd = ' exhaustive_matcher --database_path {} \
|
||||
--SiftMatching.guided_matching 1 \
|
||||
--SiftMatching.use_gpu 0 \
|
||||
--SiftMatching.gpu_index {}'.format(db_file, gpu_index)
|
||||
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
def create_init_files(pinhole_dict_file, db_file, out_dir):
|
||||
if not os.path.exists(out_dir):
|
||||
os.mkdir(out_dir)
|
||||
|
||||
# create template
|
||||
with open(pinhole_dict_file) as fp:
|
||||
pinhole_dict = json.load(fp)
|
||||
|
||||
template = {}
|
||||
cameras_line_template = '{camera_id} PINHOLE {width} {height} {fx} {fy} {cx} {cy}\n'
|
||||
images_line_template = '{image_id} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {camera_id} {image_name}\n\n'
|
||||
|
||||
for img_name in pinhole_dict:
|
||||
# w, h, fx, fy, cx, cy, qvec, t
|
||||
params = pinhole_dict[img_name]
|
||||
w = params[0]
|
||||
h = params[1]
|
||||
fx = params[2]
|
||||
fy = params[3]
|
||||
cx = params[4]
|
||||
cy = params[5]
|
||||
qvec = params[6:10]
|
||||
tvec = params[10:13]
|
||||
|
||||
cam_line = cameras_line_template.format(camera_id="{camera_id}", width=w, height=h, fx=fx, fy=fy, cx=cx, cy=cy)
|
||||
img_line = images_line_template.format(image_id="{image_id}", qw=qvec[0], qx=qvec[1], qy=qvec[2], qz=qvec[3],
|
||||
tx=tvec[0], ty=tvec[1], tz=tvec[2], camera_id="{camera_id}", image_name=img_name)
|
||||
template[img_name] = (cam_line, img_line)
|
||||
|
||||
# read database
|
||||
db = COLMAPDatabase.connect(db_file)
|
||||
table_images = db.execute("SELECT * FROM images")
|
||||
img_name2id_dict = {}
|
||||
for row in table_images:
|
||||
img_name2id_dict[row[1]] = row[0]
|
||||
|
||||
cameras_txt_lines = []
|
||||
images_txt_lines = []
|
||||
for img_name, img_id in img_name2id_dict.items():
|
||||
camera_line = template[img_name][0].format(camera_id=img_id)
|
||||
cameras_txt_lines.append(camera_line)
|
||||
|
||||
image_line = template[img_name][1].format(image_id=img_id, camera_id=img_id)
|
||||
images_txt_lines.append(image_line)
|
||||
|
||||
with open(os.path.join(out_dir, 'cameras.txt'), 'w') as fp:
|
||||
fp.writelines(cameras_txt_lines)
|
||||
|
||||
with open(os.path.join(out_dir, 'images.txt'), 'w') as fp:
|
||||
fp.writelines(images_txt_lines)
|
||||
fp.write('\n')
|
||||
|
||||
# create an empty points3D.txt
|
||||
fp = open(os.path.join(out_dir, 'points3D.txt'), 'w')
|
||||
fp.close()
|
||||
|
||||
|
||||
def run_point_triangulation(img_dir, db_file, out_dir):
|
||||
print('Running point triangulation...')
|
||||
|
||||
# triangulate points
|
||||
cmd = ' point_triangulator --database_path {} \
|
||||
--image_path {} \
|
||||
--input_path {} \
|
||||
--output_path {} \
|
||||
--Mapper.tri_ignore_two_view_tracks 1'.format(db_file, img_dir, out_dir, out_dir)
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
# this step is optional
|
||||
def run_global_ba(in_dir, out_dir):
|
||||
print('Running global BA...')
|
||||
if not os.path.exists(out_dir):
|
||||
os.mkdir(out_dir)
|
||||
|
||||
cmd = ' bundle_adjuster --input_path {in_dir} --output_path {out_dir}'.format(in_dir=in_dir, out_dir=out_dir)
|
||||
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
def prepare_mvs(img_dir, sfm_dir, mvs_dir):
|
||||
if not os.path.exists(mvs_dir):
|
||||
os.mkdir(mvs_dir)
|
||||
|
||||
images_symlink = os.path.join(mvs_dir, 'images')
|
||||
if os.path.exists(images_symlink):
|
||||
os.unlink(images_symlink)
|
||||
os.symlink(os.path.relpath(img_dir, mvs_dir),
|
||||
images_symlink)
|
||||
|
||||
sparse_symlink = os.path.join(mvs_dir, 'sparse')
|
||||
if os.path.exists(sparse_symlink):
|
||||
os.unlink(sparse_symlink)
|
||||
os.symlink(os.path.relpath(sfm_dir, mvs_dir),
|
||||
sparse_symlink)
|
||||
|
||||
# prepare stereo directory
|
||||
stereo_dir = os.path.join(mvs_dir, 'stereo')
|
||||
for subdir in [stereo_dir,
|
||||
os.path.join(stereo_dir, 'depth_maps'),
|
||||
os.path.join(stereo_dir, 'normal_maps'),
|
||||
os.path.join(stereo_dir, 'consistency_graphs')]:
|
||||
if not os.path.exists(subdir):
|
||||
os.mkdir(subdir)
|
||||
|
||||
# write patch-match.cfg and fusion.cfg
|
||||
image_names = sorted(os.listdir(os.path.join(mvs_dir, 'images')))
|
||||
|
||||
with open(os.path.join(stereo_dir, 'patch-match.cfg'), 'w') as fp:
|
||||
for img_name in image_names:
|
||||
fp.write(img_name + '\n__auto__, 20\n')
|
||||
|
||||
# use all images
|
||||
# fp.write(img_name + '\n__all__\n')
|
||||
|
||||
# randomly choose 20 images
|
||||
# from random import shuffle
|
||||
# candi_src_images = [x for x in image_names if x != img_name]
|
||||
# shuffle(candi_src_images)
|
||||
# max_src_images = 10
|
||||
# fp.write(img_name + '\n' + ', '.join(candi_src_images[:max_src_images]) + '\n')
|
||||
|
||||
with open(os.path.join(stereo_dir, 'fusion.cfg'), 'w') as fp:
|
||||
for img_name in image_names:
|
||||
fp.write(img_name + '\n')
|
||||
|
||||
|
||||
def run_photometric_mvs(mvs_dir, window_radius):
|
||||
print('Running photometric MVS...')
|
||||
|
||||
cmd = ' patch_match_stereo --workspace_path {} \
|
||||
--PatchMatchStereo.window_radius {} \
|
||||
--PatchMatchStereo.min_triangulation_angle 3.0 \
|
||||
--PatchMatchStereo.filter 1 \
|
||||
--PatchMatchStereo.geom_consistency 1 \
|
||||
--PatchMatchStereo.gpu_index={} \
|
||||
--PatchMatchStereo.num_samples 15 \
|
||||
--PatchMatchStereo.num_iterations 12'.format(mvs_dir,
|
||||
window_radius, gpu_index)
|
||||
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
def run_fuse(mvs_dir, out_ply):
|
||||
print('Running depth fusion...')
|
||||
|
||||
cmd = ' stereo_fusion --workspace_path {} \
|
||||
--output_path {} \
|
||||
--input_type geometric'.format(mvs_dir, out_ply)
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
def run_possion_mesher(in_ply, out_ply, trim):
|
||||
print('Running possion mesher...')
|
||||
|
||||
cmd = ' poisson_mesher \
|
||||
--input_path {} \
|
||||
--output_path {} \
|
||||
--PoissonMeshing.trim {}'.format(in_ply, out_ply, trim)
|
||||
|
||||
bash_run(cmd)
|
||||
|
||||
|
||||
def main(img_dir, pinhole_dict_file, out_dir):
|
||||
if not os.path.exists(out_dir):
|
||||
os.mkdir(out_dir)
|
||||
|
||||
db_file = os.path.join(out_dir, 'database.db')
|
||||
run_sift_matching(img_dir, db_file)
|
||||
|
||||
sfm_dir = os.path.join(out_dir, 'sfm')
|
||||
create_init_files(pinhole_dict_file, db_file, sfm_dir)
|
||||
run_point_triangulation(img_dir, db_file, sfm_dir)
|
||||
|
||||
# # optional
|
||||
# run_global_ba(sfm_dir, sfm_dir)
|
||||
|
||||
mvs_dir = os.path.join(out_dir, 'mvs')
|
||||
prepare_mvs(img_dir, sfm_dir, mvs_dir)
|
||||
run_photometric_mvs(mvs_dir, window_radius=5)
|
||||
|
||||
out_ply = os.path.join(out_dir, 'fused.ply')
|
||||
run_fuse(mvs_dir, out_ply)
|
||||
|
||||
out_mesh_ply = os.path.join(out_dir, 'meshed_trim_3.ply')
|
||||
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
|
||||
|
||||
|
||||
def convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir):
|
||||
print('Writing pinhole_dict to: ', pinhole_dict_file)
|
||||
|
||||
with open(cam_dict_file) as fp:
|
||||
cam_dict = json.load(fp)
|
||||
|
||||
pinhole_dict = {}
|
||||
for img_name in cam_dict:
|
||||
data_item = cam_dict[img_name]
|
||||
if 'img_size' in data_item:
|
||||
w, h = data_item['img_size']
|
||||
else:
|
||||
im = imageio.imread(os.path.join(img_dir, img_name))
|
||||
h, w = im.shape[:2]
|
||||
|
||||
K = np.array(data_item['K']).reshape((4, 4))
|
||||
W2C = np.array(data_item['W2C']).reshape((4, 4))
|
||||
|
||||
# params
|
||||
fx = K[0, 0]
|
||||
fy = K[1, 1]
|
||||
assert(np.isclose(K[0, 1], 0.))
|
||||
cx = K[0, 2]
|
||||
cy = K[1, 2]
|
||||
|
||||
print(img_name)
|
||||
R = W2C[:3, :3]
|
||||
print(R)
|
||||
u, s_old, vh = np.linalg.svd(R, full_matrices=False)
|
||||
s = np.round(s_old)
|
||||
print('s: {} ---> {}'.format(s_old, s))
|
||||
R = np.dot(u * s, vh)
|
||||
|
||||
qvec = Quaternion(matrix=R)
|
||||
tvec = W2C[:3, 3]
|
||||
|
||||
params = [w, h, fx, fy, cx, cy,
|
||||
qvec[0], qvec[1], qvec[2], qvec[3],
|
||||
tvec[0], tvec[1], tvec[2]]
|
||||
pinhole_dict[img_name] = params
|
||||
|
||||
with open(pinhole_dict_file, 'w') as fp:
|
||||
json.dump(pinhole_dict, fp, indent=2, sort_keys=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
img_dir = ''
|
||||
cam_dict_file = ''
|
||||
out_dir = ''
|
||||
|
||||
os.makedirs(out_dir, exist_ok=True)
|
||||
pinhole_dict_file = os.path.join(out_dir, 'pinhole_dict.json')
|
||||
convert_cam_dict_to_pinhole_dict(cam_dict_file, pinhole_dict_file, img_dir)
|
||||
|
||||
main(img_dir, pinhole_dict_file, out_dir)
|
Loading…
Reference in a new issue