clean code

This commit is contained in:
Kai-46 2020-10-12 11:05:53 -04:00
parent 18ff4489b3
commit abbb5d136d
40 changed files with 186 additions and 1069 deletions

5
.gitignore vendored
View file

@ -1,6 +1,9 @@
# scripts # scripts
*.sh *.sh
# mac
.DS_Store
# pycharm # pycharm
.idea/ .idea/
@ -141,4 +144,4 @@ dmypy.json
.pytype/ .pytype/
# Cython debug symbols # Cython debug symbols
cython_debug/ cython_debug/

View file

@ -0,0 +1,23 @@
# NeRF++
Codebase for paper:
* Work with 360 capture of large-scale unbounded scenes.
* Support multi-gpu training and inference.
## Data
* Download our preprocessed data from [tanks_and_temples](), [lf_data]().
* Put the data in the code directory.
* Data format.
** Each scene consists of 3 splits: train/test/validation.
** Intrinsics and poses are stored as flattened 4x4 matrices.
** Opencv camera coordinate system is adopted, i.e., x--->right, y--->down, z--->scene.
* Scene normalization: move the average camera center to origin, and put all the camera centers inside the unit sphere.
## Training
```python
python ddp_train_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt
```
## Testing
```python
python ddp_test_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt --render_splits test,camera_path
```

BIN
configs/tanks_and_temples/.DS_Store vendored Normal file

Binary file not shown.

View file

@ -1,49 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_intermediate_M60
expname = tat_intermediate_M60_bg_carve_latest
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,49 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_intermediate_Playground
expname = tat_intermediate_Playground_bg_carve_latest
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,48 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_intermediate_Playground
expname = tat_intermediate_Playground_ddp_bignet
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
N_rand = 256
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
chunk_size = 4096
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 512
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,49 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_intermediate_Train
expname = tat_intermediate_Train_bg_carve_latest
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,7 +1,7 @@
### INPUT ### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere datadir = ./data/tanks_and_temples
scene = tat_training_Truck scene = tat_training_Truck
expname = tat_training_Truck_ddp_implicit expname = tat_training_Truck
basedir = ./logs basedir = ./logs
config = None config = None
ckpt_path = None ckpt_path = None
@ -10,27 +10,16 @@ testskip = 1
### TRAINING ### TRAINING
N_iters = 1250001 N_iters = 1250001
# N_rand = 512
N_rand = 1024 N_rand = 1024
lrate = 0.0005 lrate = 0.0005
lrate_decay_factor = 0.1 lrate_decay_factor = 0.1
lrate_decay_steps = 50000000 lrate_decay_steps = 50000000
### implicit
use_implicit = True
### CASCADE ### CASCADE
cascade_level = 2 cascade_level = 2
cascade_samples = 64,128 cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING ### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
# chunk_size = 4096
chunk_size = 8192 chunk_size = 8192
### RENDERING ### RENDERING
@ -39,15 +28,10 @@ max_freq_log2 = 10
max_freq_log2_viewdirs = 4 max_freq_log2_viewdirs = 4
netdepth = 8 netdepth = 8
netwidth = 256 netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD ### CONSOLE AND TENSORBOARD
i_img = 2000 i_img = 2000
i_print = 100 i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000 i_weights = 5000

View file

@ -1,48 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_training_Truck
expname = tat_training_Truck_ddp_bignet
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
N_rand = 256
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
chunk_size = 4096
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 512
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,47 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere
scene = tat_training_Truck_subset
expname = tat_training_Truck_subset_bg_carvenew
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 250001
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### CASCADE
cascade_level = 2
cascade_samples = 64,64
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = False
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,54 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_intermediate_Playground
expname = tat_intermediate_Playground_ddp_sparse_addcarve
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### implicit
use_implicit = True
load_min_depth = True
regularize_weight = 0.1
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,54 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_intermediate_Playground
expname = tat_intermediate_Playground_ddp_sparse_addparam
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### implicit
use_implicit = True
load_min_depth = False
regularize_weight = 0.
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,54 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_intermediate_Playground
expname = tat_intermediate_Playground_ddp_sparse_addregularize_pretrain
basedir = ./logs
config = /home/zhangka2/gernot_experi/nerf_bg_latest_ddp/logs/tat_intermediate_Playground_ddp_sparse_addparam/model_210000.pth
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 4096
N_rand = 2048
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 500000
### implicit
use_implicit = True
load_min_depth = False
regularize_weight = 0.1
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
chunk_size = 16384
# chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,55 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_training_Truck
expname = tat_training_Truck_ddp_sparse_addcarve
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 512
N_rand = 1024
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 50000000
### implicit
use_implicit = True
load_min_depth = True
regularize_weight = 0.1
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
# chunk_size = 4096
chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,55 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_training_Truck
expname = tat_training_Truck_ddp_sparse_addparam
basedir = ./logs
config = None
ckpt_path = None
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 512
N_rand = 1024
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 50000000
### implicit
use_implicit = True
load_min_depth = False
regularize_weight = 0.
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
# chunk_size = 4096
chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -1,55 +0,0 @@
### INPUT
datadir = /home/zhangka2/gernot_experi/gernot_data/gernot_nerf_sphere_sparse
scene = tat_training_Truck
expname = tat_training_Truck_ddp_sparse_addregularize_pretrain
basedir = ./logs
config = None
ckpt_path = /home/zhangka2/gernot_experi/nerf_bg_latest_ddp/logs/tat_training_Truck_ddp_sparse_addparam/model_245000.pth
no_reload = False
testskip = 1
### TRAINING
N_iters = 1250001
# N_rand = 512
N_rand = 1024
lrate = 0.0005
lrate_decay_factor = 0.1
lrate_decay_steps = 50000000
### implicit
use_implicit = True
load_min_depth = False
regularize_weight = 0.1
### CASCADE
cascade_level = 2
cascade_samples = 64,128
near_depth = 0.
far_depth = 1.
### TESTING
render_only = False
render_test = False
render_train = False
# chunk_size = 16384
# chunk_size = 4096
chunk_size = 8192
### RENDERING
det = False
max_freq_log2 = 10
max_freq_log2_viewdirs = 4
netdepth = 8
netwidth = 256
raw_noise_std = 1.0
N_iters_perturb = 1000
inv_uniform = False
use_viewdirs = True
white_bkgd = False
### CONSOLE AND TENSORBOARD
i_img = 2000
i_print = 100
i_testset = 5000000
i_video = 5000000
i_weights = 5000

View file

@ -24,16 +24,22 @@ def find_files(dir, exts):
return [] return []
def load_data_split(basedir, scene, split, skip=1, try_load_min_depth=True): def load_data_split(basedir, scene, split, skip=1, try_load_min_depth=True, only_img_files=False):
def parse_txt(filename): def parse_txt(filename):
assert os.path.isfile(filename) assert os.path.isfile(filename)
nums = open(filename).read().split() nums = open(filename).read().split()
return np.array([float(x) for x in nums]).reshape([4, 4]).astype(np.float32) return np.array([float(x) for x in nums]).reshape([4, 4]).astype(np.float32)
split_dir = '{}/{}/{}'.format(basedir, scene, split) split_dir = '{}/{}/{}'.format(basedir, scene, split)
if only_img_files:
img_files = find_files('{}/rgb'.format(split_dir), exts=['*.png', '*.jpg'])
return img_files
# camera parameters files
intrinsics_files = find_files('{}/intrinsics'.format(split_dir), exts=['*.txt']) intrinsics_files = find_files('{}/intrinsics'.format(split_dir), exts=['*.txt'])
pose_files = find_files('{}/pose'.format(split_dir), exts=['*.txt']) pose_files = find_files('{}/pose'.format(split_dir), exts=['*.txt'])
logger.info('raw intrinsics_files: {}'.format(len(intrinsics_files))) logger.info('raw intrinsics_files: {}'.format(len(intrinsics_files)))
logger.info('raw pose_files: {}'.format(len(pose_files))) logger.info('raw pose_files: {}'.format(len(pose_files)))
@ -49,6 +55,7 @@ def load_data_split(basedir, scene, split, skip=1, try_load_min_depth=True):
assert(len(img_files) == cam_cnt) assert(len(img_files) == cam_cnt)
else: else:
img_files = [None, ] * cam_cnt img_files = [None, ] * cam_cnt
# mask files # mask files
mask_files = find_files('{}/mask'.format(split_dir), exts=['*.png', '*.jpg']) mask_files = find_files('{}/mask'.format(split_dir), exts=['*.png', '*.jpg'])
if len(mask_files) > 0: if len(mask_files) > 0:
@ -67,11 +74,12 @@ def load_data_split(basedir, scene, split, skip=1, try_load_min_depth=True):
else: else:
mindepth_files = [None, ] * cam_cnt mindepth_files = [None, ] * cam_cnt
# assume all images have the same size # assume all images have the same size as training image
train_imgfile = find_files('{}/{}/train/rgb'.format(basedir, scene), exts=['*.png', '*.jpg'])[0] train_imgfile = find_files('{}/{}/train/rgb'.format(basedir, scene), exts=['*.png', '*.jpg'])[0]
train_im = imageio.imread(train_imgfile) train_im = imageio.imread(train_imgfile)
H, W = train_im.shape[:2] H, W = train_im.shape[:2]
# create ray samplers
ray_samplers = [] ray_samplers = []
for i in range(cam_cnt): for i in range(cam_cnt):
intrinsics = parse_txt(intrinsics_files[i]) intrinsics = parse_txt(intrinsics_files[i])

View file

@ -5,6 +5,9 @@ import torch.nn as nn
from utils import TINY_NUMBER, HUGE_NUMBER from utils import TINY_NUMBER, HUGE_NUMBER
from collections import OrderedDict from collections import OrderedDict
from nerf_network import Embedder, MLPNet from nerf_network import Embedder, MLPNet
import os
import logging
logger = logging.getLogger(__package__)
###################################################################################### ######################################################################################
@ -44,14 +47,6 @@ def depth2pts_outside(ray_o, ray_d, depth):
class NerfNet(nn.Module): class NerfNet(nn.Module):
def __init__(self, args): def __init__(self, args):
'''
:param D: network depth
:param W: network width
:param input_ch: input channels for encodings of (x, y, z)
:param input_ch_viewdirs: input channels for encodings of view directions
:param skips: skip connection in network
:param use_viewdirs: if True, will use the view directions as input
'''
super().__init__() super().__init__()
# foreground # foreground
self.fg_embedder_position = Embedder(input_dim=3, self.fg_embedder_position = Embedder(input_dim=3,
@ -146,3 +141,48 @@ class NerfNet(nn.Module):
('bg_depth', bg_depth_map), ('bg_depth', bg_depth_map),
('bg_lambda', bg_lambda)]) ('bg_lambda', bg_lambda)])
return ret return ret
def remap_name(name):
name = name.replace('.', '-') # dot is not allowed by pytorch
if name[-1] == '/':
name = name[:-1]
idx = name.rfind('/')
for i in range(2):
if idx >= 0:
idx = name[:idx].rfind('/')
return name[idx + 1:]
class NerfNetWithAutoExpo(nn.Module):
def __init__(self, args, optim_autoexpo=False, img_names=None):
super().__init__()
self.nerf_net = NerfNet(args)
self.optim_autoexpo = optim_autoexpo
if self.optim_autoexpo:
assert(img_names is not None)
logger.info('Optimizing autoexposure!')
self.img_names = [remap_name(x) for x in img_names]
logger.info('\n'.join(self.img_names))
self.autoexpo_params = nn.ParameterDict(OrderedDict([(x, nn.Parameter(torch.Tensor([0.5, 0.]))) for x in self.img_names]))
def forward(self, ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals, img_name=None):
'''
:param ray_o, ray_d: [..., 3]
:param fg_z_max: [...,]
:param fg_z_vals, bg_z_vals: [..., N_samples]
:return
'''
ret = self.nerf_net(ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals)
if img_name is not None:
img_name = remap_name(img_name)
if self.optim_autoexpo and (img_name in self.autoexpo_params):
autoexpo = self.autoexpo_params[img_name]
scale = torch.abs(autoexpo[0]) + 0.5 # make sure scale is always positive
shift = autoexpo[1]
ret['autoexpo'] = (scale, shift)
return ret

View file

@ -2,17 +2,17 @@ import torch
# import torch.nn as nn # import torch.nn as nn
import torch.optim import torch.optim
import torch.distributed import torch.distributed
from torch.nn.parallel import DistributedDataParallel as DDP # from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing import torch.multiprocessing
import numpy as np import numpy as np
import os import os
from collections import OrderedDict # from collections import OrderedDict
from ddp_model import NerfNet # from ddp_model import NerfNet
import time import time
from data_loader_split import load_data_split from data_loader_split import load_data_split
from utils import mse2psnr, colorize_np, to8b from utils import mse2psnr, colorize_np, to8b
import imageio import imageio
from ddp_run_nerf import config_parser, setup_logger, setup, cleanup, render_single_image from ddp_train_nerf import config_parser, setup_logger, setup, cleanup, render_single_image, create_nerf
import logging import logging
@ -37,46 +37,7 @@ def ddp_test_nerf(rank, args):
args.chunk_size = 4096 args.chunk_size = 4096
###### create network and wrap in ddp; each process should do this ###### create network and wrap in ddp; each process should do this
# fix random seed just to make sure the network is initialized with same weights at different processes start, models = create_nerf(rank, args)
torch.manual_seed(777)
# very important!!! otherwise it might introduce extra memory in rank=0 gpu
torch.cuda.set_device(rank)
models = OrderedDict()
models['cascade_level'] = args.cascade_level
models['cascade_samples'] = [int(x.strip()) for x in args.cascade_samples.split(',')]
for m in range(models['cascade_level']):
net = NerfNet(args).to(rank)
net = DDP(net, device_ids=[rank], output_device=rank)
optim = torch.optim.Adam(net.parameters(), lr=args.lrate)
models['net_{}'.format(m)] = net
models['optim_{}'.format(m)] = optim
start = -1
###### load pretrained weights; each process should do this
if (args.ckpt_path is not None) and (os.path.isfile(args.ckpt_path)):
ckpts = [args.ckpt_path]
else:
ckpts = [os.path.join(args.basedir, args.expname, f)
for f in sorted(os.listdir(os.path.join(args.basedir, args.expname))) if f.endswith('.pth')]
def path2iter(path):
tmp = os.path.basename(path)[:-4]
idx = tmp.rfind('_')
return int(tmp[idx + 1:])
ckpts = sorted(ckpts, key=path2iter)
logger.info('Found ckpts: {}'.format(ckpts))
if len(ckpts) > 0 and not args.no_reload:
fpath = ckpts[-1]
logger.info('Reloading from: {}'.format(fpath))
start = path2iter(fpath)
# configure map_location properly for different processes
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
to_load = torch.load(fpath, map_location=map_location)
for m in range(models['cascade_level']):
for name in ['net_{}'.format(m), 'optim_{}'.format(m)]:
models[name].load_state_dict(to_load[name])
models[name].load_state_dict(to_load[name])
render_splits = [x.strip() for x in args.render_splits.strip().split(',')] render_splits = [x.strip() for x in args.render_splits.strip().split(',')]
# start testing # start testing
@ -157,4 +118,3 @@ if __name__ == '__main__':
setup_logger() setup_logger()
test() test()

View file

@ -1,18 +1,20 @@
import torch import torch
# import torch.nn as nn import torch.nn as nn
import torch.optim import torch.optim
import torch.distributed import torch.distributed
from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing import torch.multiprocessing
import os import os
from collections import OrderedDict from collections import OrderedDict
from ddp_model import NerfNet from ddp_model import NerfNetWithAutoExpo
import time import time
from data_loader_split import load_data_split from data_loader_split import load_data_split
import numpy as np import numpy as np
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from utils import img2mse, mse2psnr, img_HWC2CHW, colorize, TINY_NUMBER from utils import img2mse, mse2psnr, img_HWC2CHW, colorize, TINY_NUMBER
import logging import logging
import json
logger = logging.getLogger(__package__) logger = logging.getLogger(__package__)
@ -274,6 +276,59 @@ def cleanup():
torch.distributed.destroy_process_group() torch.distributed.destroy_process_group()
def create_nerf(rank, args):
###### create network and wrap in ddp; each process should do this
# fix random seed just to make sure the network is initialized with same weights at different processes
torch.manual_seed(777)
# very important!!! otherwise it might introduce extra memory in rank=0 gpu
torch.cuda.set_device(rank)
models = OrderedDict()
models['cascade_level'] = args.cascade_level
models['cascade_samples'] = [int(x.strip()) for x in args.cascade_samples.split(',')]
for m in range(models['cascade_level']):
img_names = None
if args.optim_autoexpo:
# load training image names for autoexposure
f = os.path.join(args.basedir, args.expname, 'train_images.json')
with open(f) as file:
img_names = json.load(file)
net = NerfNetWithAutoExpo(args, optim_autoexpo=args.optim_autoexpo, img_names=img_names).to(rank)
net = DDP(net, device_ids=[rank], output_device=rank, find_unused_parameters=True)
# net = DDP(net, device_ids=[rank], output_device=rank)
optim = torch.optim.Adam(net.parameters(), lr=args.lrate)
models['net_{}'.format(m)] = net
models['optim_{}'.format(m)] = optim
start = -1
###### load pretrained weights; each process should do this
if (args.ckpt_path is not None) and (os.path.isfile(args.ckpt_path)):
ckpts = [args.ckpt_path]
else:
ckpts = [os.path.join(args.basedir, args.expname, f)
for f in sorted(os.listdir(os.path.join(args.basedir, args.expname))) if f.endswith('.pth')]
def path2iter(path):
tmp = os.path.basename(path)[:-4]
idx = tmp.rfind('_')
return int(tmp[idx + 1:])
ckpts = sorted(ckpts, key=path2iter)
logger.info('Found ckpts: {}'.format(ckpts))
if len(ckpts) > 0 and not args.no_reload:
fpath = ckpts[-1]
logger.info('Reloading from: {}'.format(fpath))
start = path2iter(fpath)
# configure map_location properly for different processes
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
to_load = torch.load(fpath, map_location=map_location)
for m in range(models['cascade_level']):
for name in ['net_{}'.format(m), 'optim_{}'.format(m)]:
models[name].load_state_dict(to_load[name])
models[name].load_state_dict(to_load[name])
return start, models
def ddp_train_nerf(rank, args): def ddp_train_nerf(rank, args):
###### set up multi-processing ###### set up multi-processing
setup(rank, args.world_size) setup(rank, args.world_size)
@ -306,50 +361,20 @@ def ddp_train_nerf(rank, args):
file.write(open(args.config, 'r').read()) file.write(open(args.config, 'r').read())
torch.distributed.barrier() torch.distributed.barrier()
ray_samplers = load_data_split(args.datadir, args.scene, split='train', try_load_min_depth=args.load_min_depth) ray_samplers = load_data_split(args.datadir, args.scene, split='train',
val_ray_samplers = load_data_split(args.datadir, args.scene, split='validation', try_load_min_depth=args.load_min_depth) try_load_min_depth=args.load_min_depth)
val_ray_samplers = load_data_split(args.datadir, args.scene, split='validation',
try_load_min_depth=args.load_min_depth, skip=args.testskip)
# write training image names for autoexposure
if args.optim_autoexpo:
f = os.path.join(args.basedir, args.expname, 'train_images.json')
with open(f, 'w') as file:
img_names = [ray_samplers[i].img_path for i in range(len(ray_samplers))]
json.dump(img_names, file, indent=2)
###### create network and wrap in ddp; each process should do this ###### create network and wrap in ddp; each process should do this
# fix random seed just to make sure the network is initialized with same weights at different processes start, models = create_nerf(rank, args)
torch.manual_seed(777)
# very important!!! otherwise it might introduce extra memory in rank=0 gpu
torch.cuda.set_device(rank)
models = OrderedDict()
models['cascade_level'] = args.cascade_level
models['cascade_samples'] = [int(x.strip()) for x in args.cascade_samples.split(',')]
for m in range(models['cascade_level']):
net = NerfNet(args).to(rank)
net = DDP(net, device_ids=[rank], output_device=rank)
optim = torch.optim.Adam(net.parameters(), lr=args.lrate)
models['net_{}'.format(m)] = net
models['optim_{}'.format(m)] = optim
start = -1
###### load pretrained weights; each process should do this
if (args.ckpt_path is not None) and (os.path.isfile(args.ckpt_path)):
ckpts = [args.ckpt_path]
else:
ckpts = [os.path.join(args.basedir, args.expname, f)
for f in sorted(os.listdir(os.path.join(args.basedir, args.expname))) if f.endswith('.pth')]
def path2iter(path):
tmp = os.path.basename(path)[:-4]
idx = tmp.rfind('_')
return int(tmp[idx + 1:])
ckpts = sorted(ckpts, key=path2iter)
logger.info('Found ckpts: {}'.format(ckpts))
if len(ckpts) > 0 and not args.no_reload:
fpath = ckpts[-1]
logger.info('Reloading from: {}'.format(fpath))
start = path2iter(fpath)
# configure map_location properly for different processes
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
to_load = torch.load(fpath, map_location=map_location)
for m in range(models['cascade_level']):
for name in ['net_{}'.format(m), 'optim_{}'.format(m)]:
models[name].load_state_dict(to_load[name])
models[name].load_state_dict(to_load[name])
##### important!!! ##### important!!!
# make sure different processes sample different rays # make sure different processes sample different rays
@ -416,13 +441,23 @@ def ddp_train_nerf(rank, args):
bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1)) bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1))
optim.zero_grad() optim.zero_grad()
ret = net(ray_batch['ray_o'], ray_batch['ray_d'], fg_far_depth, fg_depth, bg_depth) ret = net(ray_batch['ray_o'], ray_batch['ray_d'], fg_far_depth, fg_depth, bg_depth, img_name=ray_batch['img_name'])
all_rets.append(ret) all_rets.append(ret)
rgb_gt = ray_batch['rgb'].to(rank) rgb_gt = ray_batch['rgb'].to(rank)
loss = img2mse(ret['rgb'], rgb_gt) if 'autoexpo' in ret:
scalars_to_log['level_{}/loss'.format(m)] = loss.item() scale, shift = ret['autoexpo']
scalars_to_log['level_{}/pnsr'.format(m)] = mse2psnr(loss.item()) scalars_to_log['level_{}/autoexpo_scale'.format(m)] = scale.item()
scalars_to_log['level_{}/autoexpo_shift'.format(m)] = shift.item()
# rgb_gt = scale * rgb_gt + shift
rgb_pred = (ret['rgb'] - shift) / scale
rgb_loss = img2mse(rgb_pred, rgb_gt)
loss = rgb_loss + args.lambda_autoexpo * (torch.abs(scale-1.)+torch.abs(shift))
else:
rgb_loss = img2mse(ret['rgb'], rgb_gt)
loss = rgb_loss
scalars_to_log['level_{}/loss'.format(m)] = rgb_loss.item()
scalars_to_log['level_{}/pnsr'.format(m)] = mse2psnr(rgb_loss.item())
loss.backward() loss.backward()
optim.step() optim.step()
@ -462,7 +497,7 @@ def ddp_train_nerf(rank, args):
logger.info('Logged a random training view in {} seconds'.format(dt)) logger.info('Logged a random training view in {} seconds'.format(dt))
log_view_to_tb(writer, global_step, log_data, gt_img=ray_samplers[idx].get_img(), mask=None, prefix='train/') log_view_to_tb(writer, global_step, log_data, gt_img=ray_samplers[idx].get_img(), mask=None, prefix='train/')
log_data = None del log_data
torch.cuda.empty_cache() torch.cuda.empty_cache()
if rank == 0 and (global_step % args.i_weights == 0 and global_step > 0): if rank == 0 and (global_step % args.i_weights == 0 and global_step > 0):
@ -523,6 +558,11 @@ def config_parser():
# multiprocess learning # multiprocess learning
parser.add_argument("--world_size", type=int, default='-1', parser.add_argument("--world_size", type=int, default='-1',
help='number of processes') help='number of processes')
# optimize autoexposure
parser.add_argument("--optim_autoexpo", action='store_true',
help='optimize autoexposure parameters')
parser.add_argument("--lambda_autoexpo", type=float, default=1., help='regularization weight for autoexposure')
# learning rate options # learning rate options
parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate') parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
parser.add_argument("--lrate_decay_factor", type=float, default=0.1, parser.add_argument("--lrate_decay_factor", type=float, default=0.1,
@ -530,8 +570,6 @@ def config_parser():
parser.add_argument("--lrate_decay_steps", type=int, default=5000, parser.add_argument("--lrate_decay_steps", type=int, default=5000,
help='decay learning rate by a factor every specified number of steps') help='decay learning rate by a factor every specified number of steps')
# rendering options # rendering options
parser.add_argument("--inv_uniform", action='store_true',
help='if True, will uniformly sample inverse depths')
parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples') parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples')
parser.add_argument("--max_freq_log2", type=int, default=10, parser.add_argument("--max_freq_log2", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)') help='log2 of max freq for positional encoding (3D location)')

View file

@ -172,11 +172,12 @@ class RaySamplerSingleImage(object):
('depth', depth), ('depth', depth),
('rgb', rgb), ('rgb', rgb),
('mask', mask), ('mask', mask),
('min_depth', min_depth) ('min_depth', min_depth),
('img_name', self.img_path)
]) ])
# return torch tensors # return torch tensors
for k in ret: for k in ret:
if ret[k] is not None: if isinstance(ret[k], np.ndarray):
ret[k] = torch.from_numpy(ret[k]) ret[k] = torch.from_numpy(ret[k])
return ret return ret

View file

@ -1,19 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C pascal
#SBATCH --mem=40G
#SBATCH --time=24:00:00
#SBATCH --output=slurm_%A.out
#SBATCH --qos=high
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
#$PYTHON -u $CODE_DIR/ddp_test_nerf.py --config $CODE_DIR/configs/lf_data/lf_africa.txt
$PYTHON -u $CODE_DIR/ddp_test_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck.txt

View file

@ -1,24 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:3
#SBATCH -c 8
#SBATCH -C turing
#SBATCH --mem=16G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest
echo $CODE_DIR
#$PYTHON -u $CODE_DIR/run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_addregularize.txt
#$PYTHON -u $CODE_DIR/nerf_render_path.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_addregularize.txt
#$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_addregularize.txt
$PYTHON -u $CODE_DIR/nerf_render_path.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_playground.txt
$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_playground.txt
#$PYTHON -u $CODE_DIR/nerf_render_path.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_addregularize.txt
#$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_addregularize.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_intermediate_playground_addparam.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_intermediate_playground_addcarve.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_intermediate_playground_addregularize.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_training_truck_addparam.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:4
#SBATCH -c 10
####SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_training_truck_addcarve.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=60G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples_sparse/tat_training_truck_addregularize.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:8
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=80G
#SBATCH --time=24:00:00
#SBATCH --output=slurm_%A.out
#SBATCH --qos=high
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/lf_data/lf_africa.txt

View file

@ -1,17 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:8
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=100G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
######## #SBATCH --qos=high
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/lf_data/lf_basket.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=80G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
#SBATCH --qos=normal
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/lf_data/lf_ship.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:8
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=80G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
#SBATCH --qos=normal
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/lf_data/lf_torch.txt

View file

@ -1,18 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:3
#SBATCH -c 8
#SBATCH -C turing
#SBATCH --mem=16G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest
echo $CODE_DIR
$PYTHON -u $CODE_DIR/run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_m60.txt
$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_m60.txt

View file

@ -1,18 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:3
#SBATCH -c 8
#SBATCH -C turing
#SBATCH --mem=16G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest
echo $CODE_DIR
$PYTHON -u $CODE_DIR/run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_playground.txt
$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_playground.txt

View file

@ -1,15 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:8
#SBATCH -c 25
#SBATCH -C turing
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_playground_bignet.txt

View file

@ -1,18 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:3
#SBATCH -c 8
#SBATCH -C turing
#SBATCH --mem=16G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest
echo $CODE_DIR
$PYTHON -u $CODE_DIR/run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_train.txt
$PYTHON -u $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_intermediate_train.txt

View file

@ -1,16 +0,0 @@
#!/bin/bash
#SBATCH -p q6
#SBATCH --gres=gpu:4
#SBATCH -c 10
#SBATCH -C turing
#SBATCH --mem=50G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck.txt

View file

@ -1,15 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:8
#SBATCH -c 25
#SBATCH -C turing
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
PYTHON=/home/zhangka2/anaconda3/envs/nerf-ddp/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg_latest_ddp
echo $CODE_DIR
$PYTHON -u $CODE_DIR/ddp_run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_bignet.txt

View file

@ -1,19 +0,0 @@
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu:3
#SBATCH -c 8
#SBATCH -C turing
#SBATCH --mem=16G
#SBATCH --time=48:00:00
#SBATCH --output=slurm_%A.out
#SBATCH --exclude=isl-gpu17
PYTHON=/home/zhangka2/anaconda3/envs/nerf/bin/python
CODE_DIR=/home/zhangka2/gernot_experi/nerf_bg
echo $CODE_DIR
$PYTHON $CODE_DIR/run_nerf.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_subset.txt
$PYTHON $CODE_DIR/nerf_render_image.py --config $CODE_DIR/configs/tanks_and_temples/tat_training_truck_subset.txt