reformat voxelisation

This commit is contained in:
otthorn 2021-06-23 18:57:41 +02:00
parent 33adb79bf9
commit 67c023daba

View file

@ -7,8 +7,13 @@ import torch.distributed
import trimesh
from tqdm import tqdm
from ddp_train_nerf import (cleanup, config_parser, create_nerf, setup,
setup_logger)
from ddp_train_nerf import (
cleanup,
config_parser,
create_nerf,
setup,
setup_logger,
)
parser = config_parser()
args = parser.parse_args()
@ -21,7 +26,7 @@ args.rank = 0
setup(args.rank, args.world_size)
start, models = create_nerf(args.rank, args)
net_0 = models['net_0']
net_0 = models["net_0"]
fg_far_depth = 1
@ -48,7 +53,10 @@ for idx, m in enumerate(net_0.modules()):
# put everything on GPU
device = "cuda"
def query_occupancy(position, embedder_position, embedder_viewdir, mlp_net, device="cuda"):
def query_occupancy(
position, embedder_position, embedder_viewdir, mlp_net, device="cuda"
):
"""
Given a position returns the occupancy probabily of the network.
@ -80,7 +88,9 @@ def query_occupancy(position, embedder_position, embedder_viewdir, mlp_net, devi
ray_d = ray_d / ray_d_norm
# forge the input
nn_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
nn_input = torch.cat(
(fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1
)
# forward the NN
nn_raw = mlp_net(nn_input)
@ -88,13 +98,20 @@ def query_occupancy(position, embedder_position, embedder_viewdir, mlp_net, devi
return sigma
# annonymous function
f = lambda x, y, z: query_occupancy(torch.tensor([x,y,z], dtype=torch.float32, device=device), fg_embedder_position, fg_embedder_viewdir, mlp_net)
f = lambda x, y, z: query_occupancy(
torch.tensor([x, y, z], dtype=torch.float32, device=device),
fg_embedder_position,
fg_embedder_viewdir,
mlp_net,
)
def marching_cube_and_render(sigma_list, threshold):
vertices, triangles = mcubes.marching_cubes(sigma_list, threshold)
mesh = trimesh.Trimesh(vertices / N - .5, triangles)
mesh = trimesh.Trimesh(vertices / N - 0.5, triangles)
mesh.show()
@ -126,7 +143,9 @@ for x,y,z in tqdm(flat):
# bg_position = torch.cat((position, torch.tensor([1], device=device)))
# concat the output of the embedding
fg_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
fg_input = torch.cat(
(fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1
)
# bg_input = torch.cat((bg_embedder_position(bg_position), bg_embedder_viewdir(ray_d)), dim=-1)
# forward