voxelisation and marching cubes algorithms
This commit is contained in:
parent
adf7d25d37
commit
33adb79bf9
1 changed files with 154 additions and 0 deletions
154
voxelisation.py
Normal file
154
voxelisation.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
import os
|
||||
|
||||
import mcubes
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed
|
||||
import trimesh
|
||||
from tqdm import tqdm
|
||||
|
||||
from ddp_train_nerf import (cleanup, config_parser, create_nerf, setup,
|
||||
setup_logger)
|
||||
|
||||
parser = config_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
# hardcode settings
|
||||
args.world_size = 1
|
||||
args.rank = 0
|
||||
|
||||
# setup
|
||||
setup(args.rank, args.world_size)
|
||||
start, models = create_nerf(args.rank, args)
|
||||
|
||||
net_0 = models['net_0']
|
||||
|
||||
fg_far_depth = 1
|
||||
|
||||
# weird way to do it, should be change if something better exists
|
||||
for idx, m in enumerate(net_0.modules()):
|
||||
#print(idx, "->", m)
|
||||
|
||||
# foreground
|
||||
if idx == 3:
|
||||
fg_embedder_position = m
|
||||
if idx == 4:
|
||||
fg_embedder_viewdir = m
|
||||
if idx == 5:
|
||||
fg_mlp_net = m
|
||||
|
||||
# background
|
||||
# if idx == 40:
|
||||
# bg_embedder_position = m
|
||||
# if idx == 41:
|
||||
# bg_embedder_viewdir = m
|
||||
# if idx == 42:
|
||||
# bg_mlp_net = m
|
||||
|
||||
# put everything on GPU
|
||||
device = "cuda"
|
||||
|
||||
def query_occupancy(position, embedder_position, embedder_viewdir, mlp_net, device="cuda"):
|
||||
"""
|
||||
Given a position returns the occupancy probabily of the network.
|
||||
|
||||
Given a poisition, appropriate embedders and the MLPNet, return the
|
||||
corresponding occupancy.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
position : torch.tensor
|
||||
A (x,y,z) tensor of the position to query
|
||||
embedder_position, embedder_viewder : nerf_network.Embedder
|
||||
Positional and view directions embedders
|
||||
mlp_net : nerf_network.MLPNet
|
||||
A simple MLP implementation written for NeRF
|
||||
device : str, optional
|
||||
The torch device, can be either `cpu` or `cuda`
|
||||
|
||||
Returns
|
||||
-------
|
||||
sigma : float
|
||||
The occupancy at the given position.
|
||||
"""
|
||||
|
||||
# take a random ray direction as it does not matter for sigma
|
||||
ray_d = torch.rand(3, device=device)
|
||||
|
||||
# normalize ray direction
|
||||
ray_d_norm = torch.norm(ray_d)
|
||||
ray_d = ray_d / ray_d_norm
|
||||
|
||||
# forge the input
|
||||
nn_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
|
||||
|
||||
# forward the NN
|
||||
nn_raw = mlp_net(nn_input)
|
||||
sigma = float(nn_raw["sigma"])
|
||||
|
||||
return sigma
|
||||
|
||||
# annonymous function
|
||||
f = lambda x, y, z: query_occupancy(torch.tensor([x,y,z], dtype=torch.float32, device=device), fg_embedder_position, fg_embedder_viewdir, mlp_net)
|
||||
|
||||
def marching_cube_and_render(sigma_list, threshold):
|
||||
|
||||
vertices, triangles = mcubes.marching_cubes(sigma_list, threshold)
|
||||
mesh = trimesh.Trimesh(vertices / N - .5, triangles)
|
||||
mesh.show()
|
||||
|
||||
|
||||
#position = torch.rand(3, device=device)
|
||||
#position = torch.tensor([0.1, 0.1, 0.1], device=device)
|
||||
|
||||
ray_d = torch.rand(3, device=device)
|
||||
# normalize ray direction
|
||||
ray_d_norm = torch.norm(ray_d)
|
||||
ray_d = ray_d / ray_d_norm
|
||||
|
||||
|
||||
N = 100
|
||||
t = np.linspace(-1, 1, N+1)
|
||||
|
||||
query_pts = np.stack(np.meshgrid(t, t, t), -1).astype(np.float32)
|
||||
#print(query_pts.shape)
|
||||
sh = query_pts.shape
|
||||
flat = query_pts.reshape([-1,3])
|
||||
|
||||
#raw_voxel = torch.zeros(N+1, N+1, N+1, 4) # N, D, H, W
|
||||
fg_raw_voxel = torch.zeros(N+1, N+1, N+1)
|
||||
#bg_raw_voxel = torch.zeros(N+1, N+1, N+1)
|
||||
|
||||
i = 0
|
||||
for x,y,z in tqdm(flat):
|
||||
|
||||
position = torch.tensor([x,y,z], device=device)
|
||||
#bg_position = torch.cat((position, torch.tensor([1], device=device)))
|
||||
|
||||
# concat the output of the embedding
|
||||
fg_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
|
||||
#bg_input = torch.cat((bg_embedder_position(bg_position), bg_embedder_viewdir(ray_d)), dim=-1)
|
||||
|
||||
# forward
|
||||
fg_raw = fg_mlp_net(fg_input)
|
||||
#bg_raw = bg_mlp_net(bg_input)
|
||||
|
||||
#raw_voxel.append(position + float(nn_raw['sigma']))
|
||||
fg_sigma = float(fg_raw["sigma"])
|
||||
#bg_sigma = float(bg_raw["sigma"])
|
||||
|
||||
nx, ny, nz = np.unravel_index(i, (N+1, N+1, N+1))
|
||||
i += 1 # update index
|
||||
#raw_voxel[unraveled_index] = torch.tensor([sigma, x, y, z])
|
||||
fg_raw_voxel[nx, ny, nz] = fg_sigma
|
||||
#bg_raw_voxel[nx, ny, nz] = bg_sigma
|
||||
|
||||
|
||||
fg_sigma = np.array(fg_raw_voxel)
|
||||
#bg_sigma = np.array(bg_raw_voxel)
|
||||
threshold = 0.5
|
||||
|
||||
|
||||
#vertices, triangles = mcubes.marching_cubes(sigma, threshold)
|
||||
#mesh = trimesh.Trimesh(vertices / N - .5, triangles)
|
||||
#mesh.show()
|
Loading…
Reference in a new issue