devoirs de 455
This commit is contained in:
parent
c9283f845e
commit
1097541b93
4 changed files with 108 additions and 2 deletions
|
@ -7,12 +7,15 @@
|
|||
\subsection{version objet}
|
||||
|
||||
\inputminted{python}{../algo_code/huffman2.py}
|
||||
\section{Codage arithétique}
|
||||
\section{Codage arithmétique}
|
||||
\inputminted{python}{../algio_code/code_arithmetique.py}
|
||||
\section{Codage LZW}
|
||||
\inputminted{python}{../algo_code/LZW.py}
|
||||
\section{Quantification}
|
||||
\subsection{Quantification uniforme}
|
||||
\inputminted{python}{../algo_code/quantif.py}
|
||||
\subsection{Algorithme de Llyod-max}
|
||||
\inputminted{python}{../algo_code/llyod_max.py}
|
||||
\subsection{Algorithme LBG}
|
||||
en 2D , ne pas essayer de tracer les cellule de voronoi
|
||||
\section{Codeur prédictif}
|
||||
|
|
|
@ -74,6 +74,5 @@ def arithm_pratique(X,p):
|
|||
l[-1] = 2*l[-1]-0.5
|
||||
h[-1] = 2*h[-1]-0.5
|
||||
return c
|
||||
|
||||
#print(arithm(X,p))
|
||||
print(arithm_pratique(X,p))
|
||||
|
|
58
455-Codage_Sources/algo_code/llyod_max.py
Executable file
58
455-Codage_Sources/algo_code/llyod_max.py
Executable file
|
@ -0,0 +1,58 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
from sipy import integrate
|
||||
from scipy import norm
|
||||
|
||||
M = 8
|
||||
X = np.random.normal(0,1,1000)
|
||||
|
||||
def ddp(x):
|
||||
mean = 0,
|
||||
sigma = 1
|
||||
return norm.pdf(x,mean,sigma)
|
||||
|
||||
def init_thres_vec(M,X):
|
||||
step = (np.max(X)-np.min(X))/M
|
||||
thres_intervals = np.array([])
|
||||
mid = np.mean(X)
|
||||
for i in range(int(M/2)):
|
||||
thres_intervals = np.append(thres_vec,mid+(i+1)*step)
|
||||
thres_intervals = np.insert(thtres_vec,0,mid-(1+1)*step)
|
||||
return thres_intervals
|
||||
|
||||
def quant(x,thres,intervals):
|
||||
thres= np.append(thres, np.inf)
|
||||
thres= np.insert(thres, 0, -np.inf)
|
||||
x_hat_q = np.zeros(np.shape(x))
|
||||
for i in range(len(thres)-1):
|
||||
if i == 0:
|
||||
x_hat_q = np.where(np.logical_and(x > thres[i], x <= thres[i+1]),
|
||||
np.full(np.size(x_hat_q), intervals[i]), x_hat_q)
|
||||
elif i == range(len(thres))[-1]-1:
|
||||
x_hat_q = np.where(np.logical_and(x > thres[i], x <= thres[i+1]),
|
||||
np.full(np.size(x_hat_q), intervals[i]), x_hat_q)
|
||||
else:
|
||||
x_hat_q = np.where(np.logical_and(x > thres[i], x < thres[i+1]),
|
||||
np.full(np.size(x_hat_q), intervals[i]), x_hat_q)
|
||||
return x_hat_q
|
||||
|
||||
|
||||
def LlyodMax(X,intervals, max_iter=1000,eps=1e-5):
|
||||
err_min = np.inf
|
||||
for i in range(max_iter):
|
||||
for j in range(len(x_hat_q)):
|
||||
centroids[i] = integrate.quad(lambda x : x*ddp(x),
|
||||
intervals[j],intervals[j+1])[0]/
|
||||
integrate.quad(lambda x : ddp(x),
|
||||
intervals[j],intervals[j+1])[0]
|
||||
intervals = 0.5*(centroids[1:]+centroids[:-1])
|
||||
x_hat = quant(X,centroids,intervals)
|
||||
err = np.linalg.norm(X-x_hat)
|
||||
if err < err_min:
|
||||
err_min =err
|
||||
intervals_min = intervals
|
||||
centroids_min = centroids
|
||||
if err_min< 1e-5:
|
||||
break
|
||||
best_x_hat = quant(X,centroids_min,intervals_min)
|
||||
return best_x_hat
|
46
455-Codage_Sources/algo_code/quantif.py
Executable file
46
455-Codage_Sources/algo_code/quantif.py
Executable file
|
@ -0,0 +1,46 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
N = 1000
|
||||
X = np.random.rand(N)
|
||||
X_c = (X - 0.5)*10
|
||||
|
||||
def quantif_uniforme(M,X,xmin=-1,xmax=1,d=0):
|
||||
"""
|
||||
réalise la quantification uniforme d'un vecteur sur M niveau
|
||||
"""
|
||||
delta = 2 * xmax/M # pas de quantification
|
||||
Q = np.zeros(len(X))
|
||||
for k in range(len(X)):
|
||||
q = (X[k]/ delta)
|
||||
if abs(q)<d: #seuil
|
||||
Q[k] = 0
|
||||
continue
|
||||
elif abs(q)<2*delta:
|
||||
if q <0:
|
||||
Q[k] =-1
|
||||
else:
|
||||
Q[k] = 1
|
||||
continue
|
||||
else:
|
||||
Q[k] = int(q)
|
||||
|
||||
return Q,delta
|
||||
|
||||
def reverse_quantif(Q,delta):
|
||||
return Q*delta
|
||||
|
||||
Q,delta = quantif_uniforme(4,X_c)
|
||||
Q_2,delta = quantif_uniforme(4,X_c,d=0.5):
|
||||
|
||||
|
||||
print(len(Q),len(X_c))
|
||||
plt.figure()
|
||||
plt.grid()
|
||||
plt.plot(X_c,Q,'.')
|
||||
plt.plot(X_c,Q_2,'.')
|
||||
plt.show()
|
||||
|
||||
|
Loading…
Reference in a new issue