Space_Invaders/Core/Src/main.c
Thomas 9619f398a2 Prise en compte des bords pour les projectiles
Problème sur les bords en horizontal positif (x je crois mais je doute de tt actuellement).
On utilise BSP_LCD_GetXSize pour les bornes donc ca m'etonne bcp...
2021-04-13 21:49:27 +02:00

1811 lines
51 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
*
* Bonjour ! J'aime beaucoup l'informatique industrielle
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "lwip.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32746g_discovery_lcd.h"
#include "stm32746g_discovery_ts.h"
#include "stdio.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc3;
CRC_HandleTypeDef hcrc;
DAC_HandleTypeDef hdac;
DMA2D_HandleTypeDef hdma2d;
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c3;
LTDC_HandleTypeDef hltdc;
RNG_HandleTypeDef hrng;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim5;
TIM_HandleTypeDef htim8;
UART_HandleTypeDef huart7;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart6;
SDRAM_HandleTypeDef hsdram1;
osThreadId GameMasterHandle;
osThreadId Joueur_1Handle;
osThreadId Block_EnemieHandle;
osThreadId ProjectileHandle;
osMessageQId Queue_EHandle;
osMessageQId Queue_FHandle;
osMessageQId Queue_JHandle;
osMessageQId Queue_PHandle;
osMessageQId Queue_NHandle;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC3_Init(void);
static void MX_I2C1_Init(void);
static void MX_I2C3_Init(void);
static void MX_LTDC_Init(void);
static void MX_RTC_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM5_Init(void);
static void MX_TIM8_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART6_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_DAC_Init(void);
static void MX_UART7_Init(void);
static void MX_FMC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_CRC_Init(void);
static void MX_RNG_Init(void);
void f_GameMaster(void const * argument);
void f_Joueur_1(void const * argument);
void f_block_enemie(void const * argument);
void f_projectile(void const * argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
struct Missile
{
uint16_t x;
uint16_t y;
uint8_t dx;
uint8_t dy;
uint8_t equipe;
uint32_t color;
uint8_t damage;
uint8_t valide;
};
struct Joueur
{
uint16_t x;
uint16_t y;
uint8_t dx;
uint8_t dy;
uint8_t health;
struct Missile missile;
};
// Définition des paramètres du joueurs
struct Joueur joueur = {10, 10, 1, 1, 3};
uint32_t LCD_COLOR_BACKGROUND = LCD_COLOR_BLACK;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
char text[50] = {};
static TS_StateTypeDef TS_State;
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC3_Init();
MX_I2C1_Init();
MX_I2C3_Init();
MX_LTDC_Init();
MX_RTC_Init();
MX_SPI2_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM5_Init();
MX_TIM8_Init();
MX_USART1_UART_Init();
MX_USART6_UART_Init();
MX_ADC1_Init();
MX_DAC_Init();
MX_UART7_Init();
MX_FMC_Init();
MX_DMA2D_Init();
MX_CRC_Init();
MX_RNG_Init();
/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(0, LCD_FB_START_ADDRESS);
BSP_LCD_LayerDefaultInit(1,
LCD_FB_START_ADDRESS + BSP_LCD_GetXSize() * BSP_LCD_GetYSize() * 4);
BSP_LCD_DisplayOn();
BSP_LCD_SelectLayer(1);
BSP_LCD_Clear(LCD_COLOR_BLACK);
BSP_LCD_SetFont(&Font12);
BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
BSP_LCD_SetBackColor(LCD_COLOR_BLACK);
BSP_TS_Init(BSP_LCD_GetXSize(), BSP_LCD_GetYSize());
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* definition and creation of Queue_E */
osMessageQDef(Queue_E, 16, uint16_t);
Queue_EHandle = osMessageCreate(osMessageQ(Queue_E), NULL);
/* definition and creation of Queue_F */
osMessageQDef(Queue_F, 1, uint8_t);
Queue_FHandle = osMessageCreate(osMessageQ(Queue_F), NULL);
/* definition and creation of Queue_J */
osMessageQDef(Queue_J, 16, uint16_t);
Queue_JHandle = osMessageCreate(osMessageQ(Queue_J), NULL);
/* definition and creation of Queue_P */
osMessageQDef(Queue_P, 16, uint16_t);
Queue_PHandle = osMessageCreate(osMessageQ(Queue_P), NULL);
/* definition and creation of Queue_N */
osMessageQDef(Queue_N, 16, uint16_t);
Queue_NHandle = osMessageCreate(osMessageQ(Queue_N), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of GameMaster */
osThreadDef(GameMaster, f_GameMaster, osPriorityNormal, 0, 128);
GameMasterHandle = osThreadCreate(osThread(GameMaster), NULL);
/* definition and creation of Joueur_1 */
osThreadDef(Joueur_1, f_Joueur_1, osPriorityNormal, 0, 128);
Joueur_1Handle = osThreadCreate(osThread(Joueur_1), NULL);
/* definition and creation of Block_Enemie */
osThreadDef(Block_Enemie, f_block_enemie, osPriorityIdle, 0, 128);
Block_EnemieHandle = osThreadCreate(osThread(Block_Enemie), NULL);
/* definition and creation of Projectile */
osThreadDef(Projectile, f_projectile, osPriorityNormal, 0, 128);
ProjectileHandle = osThreadCreate(osThread(Projectile), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* Code de base */
HAL_GPIO_WritePin(LED13_GPIO_Port, LED13_Pin,
HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin));
HAL_GPIO_WritePin(LED14_GPIO_Port, LED14_Pin,
HAL_GPIO_ReadPin(BP2_GPIO_Port, BP2_Pin));
sprintf(text, "BP1 : %d", HAL_GPIO_ReadPin(BP1_GPIO_Port, BP1_Pin));
BSP_LCD_DisplayStringAtLine(5, (uint8_t *)text);
;
sConfig.Channel = ADC_CHANNEL_7;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
sConfig.Channel = ADC_CHANNEL_6;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
sConfig.Channel = ADC_CHANNEL_8;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
HAL_ADC_Start(&hadc1);
BSP_TS_GetState(&TS_State);
if (TS_State.touchDetected)
{
BSP_LCD_FillCircle(TS_State.touchX[0], TS_State.touchY[0], 4);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_6) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_RTC
|RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART6
|RCC_PERIPHCLK_UART7|RCC_PERIPHCLK_I2C1
|RCC_PERIPHCLK_I2C3|RCC_PERIPHCLK_CLK48;
PeriphClkInitStruct.PLLSAI.PLLSAIN = 384;
PeriphClkInitStruct.PLLSAI.PLLSAIR = 5;
PeriphClkInitStruct.PLLSAI.PLLSAIQ = 2;
PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV8;
PeriphClkInitStruct.PLLSAIDivQ = 1;
PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_8;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInitStruct.Usart6ClockSelection = RCC_USART6CLKSOURCE_PCLK2;
PeriphClkInitStruct.Uart7ClockSelection = RCC_UART7CLKSOURCE_PCLK1;
PeriphClkInitStruct.I2c1ClockSelection = RCC_I2C1CLKSOURCE_PCLK1;
PeriphClkInitStruct.I2c3ClockSelection = RCC_I2C3CLKSOURCE_PCLK1;
PeriphClkInitStruct.Clk48ClockSelection = RCC_CLK48SOURCE_PLLSAIP;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief ADC3 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC3_Init(void)
{
/* USER CODE BEGIN ADC3_Init 0 */
/* USER CODE END ADC3_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC3_Init 1 */
/* USER CODE END ADC3_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc3.Init.ContinuousConvMode = DISABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 1;
hadc3.Init.DMAContinuousRequests = DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC3_Init 2 */
/* USER CODE END ADC3_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief DAC Initialization Function
* @param None
* @retval None
*/
static void MX_DAC_Init(void)
{
/* USER CODE BEGIN DAC_Init 0 */
/* USER CODE END DAC_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC_Init 1 */
/* USER CODE END DAC_Init 1 */
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC_Init 2 */
/* USER CODE END DAC_Init 2 */
}
/**
* @brief DMA2D Initialization Function
* @param None
* @retval None
*/
static void MX_DMA2D_Init(void)
{
/* USER CODE BEGIN DMA2D_Init 0 */
/* USER CODE END DMA2D_Init 0 */
/* USER CODE BEGIN DMA2D_Init 1 */
/* USER CODE END DMA2D_Init 1 */
hdma2d.Instance = DMA2D;
hdma2d.Init.Mode = DMA2D_M2M;
hdma2d.Init.ColorMode = DMA2D_OUTPUT_ARGB8888;
hdma2d.Init.OutputOffset = 0;
hdma2d.LayerCfg[1].InputOffset = 0;
hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_ARGB8888;
hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
hdma2d.LayerCfg[1].InputAlpha = 0;
if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
{
Error_Handler();
}
if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DMA2D_Init 2 */
/* USER CODE END DMA2D_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00C0EAFF;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief I2C3 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C3_Init(void)
{
/* USER CODE BEGIN I2C3_Init 0 */
/* USER CODE END I2C3_Init 0 */
/* USER CODE BEGIN I2C3_Init 1 */
/* USER CODE END I2C3_Init 1 */
hi2c3.Instance = I2C3;
hi2c3.Init.Timing = 0x00C0EAFF;
hi2c3.Init.OwnAddress1 = 0;
hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3.Init.OwnAddress2 = 0;
hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c3) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C3_Init 2 */
/* USER CODE END I2C3_Init 2 */
}
/**
* @brief LTDC Initialization Function
* @param None
* @retval None
*/
static void MX_LTDC_Init(void)
{
/* USER CODE BEGIN LTDC_Init 0 */
/* USER CODE END LTDC_Init 0 */
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* USER CODE BEGIN LTDC_Init 1 */
/* USER CODE END LTDC_Init 1 */
hltdc.Instance = LTDC;
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Init.HorizontalSync = 40;
hltdc.Init.VerticalSync = 9;
hltdc.Init.AccumulatedHBP = 53;
hltdc.Init.AccumulatedVBP = 11;
hltdc.Init.AccumulatedActiveW = 533;
hltdc.Init.AccumulatedActiveH = 283;
hltdc.Init.TotalWidth = 565;
hltdc.Init.TotalHeigh = 285;
hltdc.Init.Backcolor.Blue = 0;
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
if (HAL_LTDC_Init(&hltdc) != HAL_OK)
{
Error_Handler();
}
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = 480;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = 272;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
pLayerCfg.Alpha = 255;
pLayerCfg.Alpha0 = 0;
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
pLayerCfg.FBStartAdress = 0xC0000000;
pLayerCfg.ImageWidth = 480;
pLayerCfg.ImageHeight = 272;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LTDC_Init 2 */
/* USER CODE END LTDC_Init 2 */
}
/**
* @brief RNG Initialization Function
* @param None
* @retval None
*/
static void MX_RNG_Init(void)
{
/* USER CODE BEGIN RNG_Init 0 */
/* USER CODE END RNG_Init 0 */
/* USER CODE BEGIN RNG_Init 1 */
/* USER CODE END RNG_Init 1 */
hrng.Instance = RNG;
if (HAL_RNG_Init(&hrng) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RNG_Init 2 */
/* USER CODE END RNG_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
RTC_AlarmTypeDef sAlarm = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 0x1;
sDate.Year = 0x0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/** Enable the Alarm A
*/
sAlarm.AlarmTime.Hours = 0x0;
sAlarm.AlarmTime.Minutes = 0x0;
sAlarm.AlarmTime.Seconds = 0x0;
sAlarm.AlarmTime.SubSeconds = 0x0;
sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET;
sAlarm.AlarmMask = RTC_ALARMMASK_NONE;
sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL;
sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
sAlarm.AlarmDateWeekDay = 0x1;
sAlarm.Alarm = RTC_ALARM_A;
if (HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/** Enable the Alarm B
*/
sAlarm.Alarm = RTC_ALARM_B;
if (HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/** Enable the TimeStamp
*/
if (HAL_RTCEx_SetTimeStamp(&hrtc, RTC_TIMESTAMPEDGE_RISING, RTC_TIMESTAMPPIN_POS1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief SPI2 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_4BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_HARD_OUTPUT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 7;
hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 4294967295;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_DISABLE;
sSlaveConfig.InputTrigger = TIM_TS_ITR0;
if (HAL_TIM_SlaveConfigSynchro(&htim3, &sSlaveConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM5 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM5_Init(void)
{
/* USER CODE BEGIN TIM5_Init 0 */
/* USER CODE END TIM5_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM5_Init 1 */
/* USER CODE END TIM5_Init 1 */
htim5.Instance = TIM5;
htim5.Init.Prescaler = 0;
htim5.Init.CounterMode = TIM_COUNTERMODE_UP;
htim5.Init.Period = 4294967295;
htim5.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim5.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim5) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim5, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim5, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM5_Init 2 */
/* USER CODE END TIM5_Init 2 */
}
/**
* @brief TIM8 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM8_Init(void)
{
/* USER CODE BEGIN TIM8_Init 0 */
/* USER CODE END TIM8_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM8_Init 1 */
/* USER CODE END TIM8_Init 1 */
htim8.Instance = TIM8;
htim8.Init.Prescaler = 0;
htim8.Init.CounterMode = TIM_COUNTERMODE_UP;
htim8.Init.Period = 65535;
htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim8.Init.RepetitionCounter = 0;
htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim8) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim8, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim8) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim8, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim8, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM8_Init 2 */
/* USER CODE END TIM8_Init 2 */
HAL_TIM_MspPostInit(&htim8);
}
/**
* @brief UART7 Initialization Function
* @param None
* @retval None
*/
static void MX_UART7_Init(void)
{
/* USER CODE BEGIN UART7_Init 0 */
/* USER CODE END UART7_Init 0 */
/* USER CODE BEGIN UART7_Init 1 */
/* USER CODE END UART7_Init 1 */
huart7.Instance = UART7;
huart7.Init.BaudRate = 115200;
huart7.Init.WordLength = UART_WORDLENGTH_8B;
huart7.Init.StopBits = UART_STOPBITS_1;
huart7.Init.Parity = UART_PARITY_NONE;
huart7.Init.Mode = UART_MODE_TX_RX;
huart7.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart7.Init.OverSampling = UART_OVERSAMPLING_16;
huart7.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart7.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart7) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART7_Init 2 */
/* USER CODE END UART7_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART6 Initialization Function
* @param None
* @retval None
*/
static void MX_USART6_UART_Init(void)
{
/* USER CODE BEGIN USART6_Init 0 */
/* USER CODE END USART6_Init 0 */
/* USER CODE BEGIN USART6_Init 1 */
/* USER CODE END USART6_Init 1 */
huart6.Instance = USART6;
huart6.Init.BaudRate = 115200;
huart6.Init.WordLength = UART_WORDLENGTH_8B;
huart6.Init.StopBits = UART_STOPBITS_1;
huart6.Init.Parity = UART_PARITY_NONE;
huart6.Init.Mode = UART_MODE_TX_RX;
huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart6.Init.OverSampling = UART_OVERSAMPLING_16;
huart6.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart6.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart6) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART6_Init 2 */
/* USER CODE END USART6_Init 2 */
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_1;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_DISABLE;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_DISABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 16;
SdramTiming.ExitSelfRefreshDelay = 16;
SdramTiming.SelfRefreshTime = 16;
SdramTiming.RowCycleDelay = 16;
SdramTiming.WriteRecoveryTime = 16;
SdramTiming.RPDelay = 16;
SdramTiming.RCDDelay = 16;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOJ_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOK_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, LED14_Pin|LED15_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OTG_FS_PowerSwitchOn_GPIO_Port, OTG_FS_PowerSwitchOn_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED16_GPIO_Port, LED16_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_BL_CTRL_GPIO_Port, LCD_BL_CTRL_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LCD_DISP_GPIO_Port, LCD_DISP_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOH, LED13_Pin|LED17_Pin|LED11_Pin|LED12_Pin
|LED2_Pin|LED18_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(EXT_RST_GPIO_Port, EXT_RST_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : PE3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_D7_Pin ULPI_D6_Pin ULPI_D5_Pin ULPI_D2_Pin
ULPI_D1_Pin ULPI_D4_Pin */
GPIO_InitStruct.Pin = ULPI_D7_Pin|ULPI_D6_Pin|ULPI_D5_Pin|ULPI_D2_Pin
|ULPI_D1_Pin|ULPI_D4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : BP2_Pin BP1_Pin */
GPIO_InitStruct.Pin = BP2_Pin|BP1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : LED14_Pin LED15_Pin */
GPIO_InitStruct.Pin = LED14_Pin|LED15_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_VBUS_Pin */
GPIO_InitStruct.Pin = OTG_FS_VBUS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_VBUS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : Audio_INT_Pin */
GPIO_InitStruct.Pin = Audio_INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(Audio_INT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OTG_FS_PowerSwitchOn_Pin LED16_Pin */
GPIO_InitStruct.Pin = OTG_FS_PowerSwitchOn_Pin|LED16_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : LED3_Pin LCD_DISP_Pin */
GPIO_InitStruct.Pin = LED3_Pin|LCD_DISP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pin : uSD_Detect_Pin */
GPIO_InitStruct.Pin = uSD_Detect_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(uSD_Detect_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_BL_CTRL_Pin */
GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LCD_BL_CTRL_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OTG_FS_OverCurrent_Pin */
GPIO_InitStruct.Pin = OTG_FS_OverCurrent_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_OverCurrent_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : TP3_Pin NC2_Pin */
GPIO_InitStruct.Pin = TP3_Pin|NC2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : LED13_Pin LED17_Pin LED11_Pin LED12_Pin
LED2_Pin LED18_Pin */
GPIO_InitStruct.Pin = LED13_Pin|LED17_Pin|LED11_Pin|LED12_Pin
|LED2_Pin|LED18_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pin : LCD_INT_Pin */
GPIO_InitStruct.Pin = LCD_INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(LCD_INT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : ULPI_NXT_Pin */
GPIO_InitStruct.Pin = ULPI_NXT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(ULPI_NXT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : BP_JOYSTICK_Pin RMII_RXER_Pin */
GPIO_InitStruct.Pin = BP_JOYSTICK_Pin|RMII_RXER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_STP_Pin ULPI_DIR_Pin */
GPIO_InitStruct.Pin = ULPI_STP_Pin|ULPI_DIR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : EXT_RST_Pin */
GPIO_InitStruct.Pin = EXT_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(EXT_RST_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ULPI_CLK_Pin ULPI_D0_Pin */
GPIO_InitStruct.Pin = ULPI_CLK_Pin|ULPI_D0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
int envoie_score( int score){
/*
socket = udp_new;
*/
return 0;
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_f_GameMaster */
/**
* @brief Function implementing the GameMaster thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_GameMaster */
void f_GameMaster(void const * argument)
{
/* init code for LWIP */
MX_LWIP_Init();
/* USER CODE BEGIN 5 */
TickType_t xLastWakeTime;
const TickType_t xPeriodeTache = 10;
/* Infinite loop */
for (;;)
{
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_f_Joueur_1 */
/**
* @brief Function implementing the Joueur_1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_Joueur_1 */
void f_Joueur_1(void const * argument)
{
/* USER CODE BEGIN f_Joueur_1 */
TickType_t xLastWakeTime;
const TickType_t xPeriodeTache = 10;
uint16_t Width = 20;
uint16_t Height = 20;
uint32_t joystick_h, joystick_v;
uint8_t stop = 1;
struct Missile missile;
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.Channel = ADC_CHANNEL_8;
HAL_ADC_ConfigChannel(&hadc3, &sConfig);
HAL_ADC_Start(&hadc3);
HAL_ADC_Start(&hadc1);
// Paramètre de l'écran pour la reprouductibilité
uint32_t LCD_HEIGHT = BSP_LCD_GetXSize();
uint32_t LCD_WIDTH = BSP_LCD_GetYSize();
/* Infinite loop */
for (;;)
{
BSP_LCD_SetTextColor(LCD_COLOR_BACKGROUND);
BSP_LCD_FillRect(joueur.x, joueur.y, Width, Height);
//BSP_LCD_DrawBitmap(uint32_t Xpos, uint32_t Ypos, uint8_t *pbmp)
// while (HAL_ADC_PollForConversion(&hadc3, 100) != HAL_OK);
// joystick_v = HAL_ADC_GetValue(&hadc3);
// while (HAL_ADC_PollForConversion(&hadc1, 100) != HAL_OK);
// joystick_h = HAL_ADC_GetValue(&hadc1);
if ((joueur.y < LCD_HEIGHT- Width - joueur.dy)&&(joystick_h < 1900)) joueur.y += joueur.dy;
if ((joueur.y > Width + joueur.dy)&&(joystick_h > 2100)) joueur.y -= joueur.dy;
if ((joueur.x > LCD_WIDTH + joueur.dx)&&(joystick_v < 1900)) joueur.x += joueur.dx;
if ((joueur.x < 480-Height - joueur.dx)&&(joystick_v > 2100)) joueur.x -= joueur.dx;
BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
BSP_LCD_FillRect(joueur.x, joueur.y, Width, Height);
if (xQueueReceive(Queue_JHandle, &missile, 0) == pdPASS)
joueur.health = joueur.health - missile.damage;
// On envoie 1 si le joueur est mort et on envoie 0 si les enemis sont tous morts
if (joueur.health == 0)xQueueSend(Queue_FHandle,&stop,0);
// TODO La condition sur une entrée analogique pour envoyer un missile
// struct Missile missile = {joueur.x, joueur.y,joueur.missile.dx, joueur.missile.dy, 1, joueur.missile.color, joueur.missile.damage};
// xQueueSend(Queue_NHandle,&missile,0);
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_Joueur_1 */
}
/* USER CODE BEGIN Header_f_block_enemie */
/**
* @brief Function implementing the Block_Enemie thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_block_enemie */
void f_block_enemie(void const * argument)
{
/* USER CODE BEGIN f_block_enemie */
TickType_t xLastWakeTime;
const TickType_t xPeriodeTache = 10;
/* Infinite loop */
for (;;)
{
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_block_enemie */
}
/* USER CODE BEGIN Header_f_projectile */
/**
* @brief Function implementing the Projectile thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_f_projectile */
void f_projectile(void const * argument)
{
/* USER CODE BEGIN f_projectile */
TickType_t xLastWakeTime;
const TickType_t xPeriodeTache = 5000;
/* Infinite loop */
struct Missile liste_missile[20];
struct Missile missile = {70, 70, 0, 1, 0, LCD_COLOR_WHITE, 1,1};
uint8_t indice = 1;
liste_missile[0] = missile;
// Paramètre de l'écran pour la reprouductibilité
uint32_t LCD_HEIGHT = 200; //BSP_LCD_GetXSize();
uint32_t LCD_WIDTH = 200; //BSP_LCD_GetYSize();
for (;;)
{
//xQueueReceive(Queue_NHandle, &missile, 0);
//liste_missile[indice++] = missile;
for (int i=0;i< indice;i++)
{
// Si le missile n'est pas sur un bord
if (liste_missile[i].valide == 1)
{
// Si le missile appartient au joueur :
if (liste_missile[i].equipe == 0)
{
if ((liste_missile[i].x > 1)&&(liste_missile[i].x < LCD_HEIGHT-1)&&(liste_missile[i].y < LCD_WIDTH-1)&&(liste_missile[i].y > 1))
{
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, LCD_COLOR_BACKGROUND);
liste_missile[i].x = liste_missile[i].x - liste_missile[i].dx ;
liste_missile[i].y = liste_missile[i].y - liste_missile[i].dy;
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, liste_missile[i].color);
}
//TODO test sur tous les ennemis
else
{
liste_missile[i].valide = 0;
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, LCD_COLOR_BACKGROUND);
}
}
// Si le missile appartient aux ennemis
else if (liste_missile[i].equipe == 1)
{
if ((liste_missile[i].x == joueur.x)&&(liste_missile[i].y == joueur.y))
{
xQueueSend(Queue_JHandle, &liste_missile+indice,0);
liste_missile[i].valide = 0;
// TODO Une petite animation d'explosion ?
}
if ((liste_missile[i].x > 1)&&(liste_missile[i].x < LCD_HEIGHT-1)&&(liste_missile[i].y < LCD_WIDTH-1)&&(liste_missile[i].y > 1))
{
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, LCD_COLOR_BACKGROUND);
liste_missile[i].x = liste_missile[i].x + liste_missile[i].dx ;
liste_missile[i].y = liste_missile[i].y + liste_missile[i].dy;
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, liste_missile[i].color);
}
else
{
liste_missile[i].valide = 0;
BSP_LCD_DrawPixel(liste_missile[i].x, liste_missile[i].y, LCD_COLOR_BACKGROUND);
}
}
}
}
vTaskDelayUntil(&xLastWakeTime, xPeriodeTache);
}
/* USER CODE END f_projectile */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/