It the message was large enough to require fragmentation (e.g., if a large
Session Ticket data is included), More Fragment flag was set, but no
more fragments were actually sent (i.e., Access-Accept was sent out).
(e.g., via driver_nl80211 when using mac80211) instead of using hostapd as
the source of the regulatory information (i.e., information from CRDA is
now used with mac80211); this allows 5 GHz channels to be used with hostapd
(if allowed in the current regulatory domain).
Updated OpenSSL code for EAP-FAST to use an updated version of the
session ticket overriding API that was included into the upstream
OpenSSL 0.9.9 tree on 2008-11-15 (no additional OpenSSL patch is
needed with that version anymore).
Added a new configuration option, wpa_ptk_rekey, that can be used to
enforce frequent PTK rekeying, e.g., to mitigate some attacks against TKIP
deficiencies. This can be set either by the Authenticator (to initiate
periodic 4-way handshake to rekey PTK) or by the Supplicant (to request
Authenticator to rekey PTK).
With both wpa_ptk_rekey and wpa_group_rekey (in hostapd) set to 600, TKIP
keys will not be used for more than 10 minutes which may make some attacks
against TKIP more difficult to implement.
Changed EAP-FAST configuration to use separate fields for A-ID and
A-ID-Info (eap_fast_a_id_info) to allow A-ID to be set to a fixed
16-octet len binary value for better interoperability with some peer
implementations; eap_fast_a_id is now configured as a hex string.
Previous version could have allowed a broken client to complete WPA (or
WPA2) authentication even if the selected proto was not enabled in hostapd
configuration.
IEEE 802.11w/D6.0 defines new AKMPs to indicate SHA256-based algorithms for
key derivation (and AES-CMAC for EAPOL-Key MIC). Add support for using new
AKMPs and clean up AKMP processing with helper functions in defs.h.
This updates management frame protection to use the assocition ping process
from the latest draft (D6.0) to protect against unauthenticated
authenticate or (re)associate frames dropping association.
This allows the accept_mac_file to be used as an alternative for RADIUS
server-based configuration. This is mainly to ease VLAN testing (i.e., no
need to set up RADIUS server for this anymore).
When the TLS handshake had been completed earlier by the server in case of
abbreviated handshake, the output buffer length was left uninitialized. It
must be initialized to zero in this case. This code is used by EAP-FAST
server and the uninitialized length could have caused it to try to send a
very large frame (though, this would be terminated by the 50 roundtrip EAP
limit). This broke EAP-FAST server code in some cases when PAC was used to
establish the tunnel.
Fragmentation is now done as a separate step to clean up the design and to
allow the same code to be used in both Phase 1 and Phase 2. This adds
support for fragmenting EAP-PEAP/TTLS/FAST Phase 2 (tunneled) data.
It looks like Microsoft implementation does not match with their
specification as far as PRF+ label usage is concerned.. IPMK|CMK is derived
without null termination on the label, but the label for CSK derivation
must be null terminated.
This allows cryptobinding to be used with PEAPv0 in a way that
interoperates with Windows XP SP3 (RC2) and as such, this functionality is
now enabled as an optional addition to PEAPv0.
Number of TLVs were processed in groups and these cases were now separated
into more flexible processing of one TLV at the time. wpabuf_concat()
function was added to make it easier to concatenate TLVs. EAP Sequences are
now supported in both server and peer code, but the server side is not
enabled by default.
This allows Phase 2 Identity Request to be skipped if the identity is
already known from PAC-Opaque received in TLS handshake in order to save
one roundtrip from normal authentication.