292 lines
9.7 KiB
C
292 lines
9.7 KiB
C
/* Compute x * y + z as ternary operation.
|
|
Copyright (C) 2010-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
/* This implementation uses rounding to odd to avoid problems with
|
|
double rounding. See a paper by Boldo and Melquiond:
|
|
http://www.lri.fr/~melquion/doc/08-tc.pdf */
|
|
|
|
__float128
|
|
fmaq (__float128 x, __float128 y, __float128 z)
|
|
{
|
|
ieee854_float128 u, v, w;
|
|
int adjust = 0;
|
|
u.value = x;
|
|
v.value = y;
|
|
w.value = z;
|
|
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
>= 0x7fff + IEEE854_FLOAT128_BIAS
|
|
- FLT128_MANT_DIG, 0)
|
|
|| __builtin_expect (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|
|
|| __builtin_expect (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|
|
|| __builtin_expect (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|
|
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG, 0))
|
|
{
|
|
/* If z is Inf, but x and y are finite, the result should be
|
|
z rather than NaN. */
|
|
if (w.ieee.exponent == 0x7fff
|
|
&& u.ieee.exponent != 0x7fff
|
|
&& v.ieee.exponent != 0x7fff)
|
|
return (z + x) + y;
|
|
/* If z is zero and x are y are nonzero, compute the result
|
|
as x * y to avoid the wrong sign of a zero result if x * y
|
|
underflows to 0. */
|
|
if (z == 0 && x != 0 && y != 0)
|
|
return x * y;
|
|
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as
|
|
x * y + z. */
|
|
if (u.ieee.exponent == 0x7fff
|
|
|| v.ieee.exponent == 0x7fff
|
|
|| w.ieee.exponent == 0x7fff
|
|
|| x == 0
|
|
|| y == 0)
|
|
return x * y + z;
|
|
/* If fma will certainly overflow, compute as x * y. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
> 0x7fff + IEEE854_FLOAT128_BIAS)
|
|
return x * y;
|
|
/* If x * y is less than 1/4 of FLT128_TRUE_MIN, neither the
|
|
result nor whether there is underflow depends on its exact
|
|
value, only on its sign. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
< IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG - 2)
|
|
{
|
|
int neg = u.ieee.negative ^ v.ieee.negative;
|
|
__float128 tiny = neg ? -0x1p-16494Q : 0x1p-16494Q;
|
|
if (w.ieee.exponent >= 3)
|
|
return tiny + z;
|
|
/* Scaling up, adding TINY and scaling down produces the
|
|
correct result, because in round-to-nearest mode adding
|
|
TINY has no effect and in other modes double rounding is
|
|
harmless. But it may not produce required underflow
|
|
exceptions. */
|
|
v.value = z * 0x1p114Q + tiny;
|
|
if (TININESS_AFTER_ROUNDING
|
|
? v.ieee.exponent < 115
|
|
: (w.ieee.exponent == 0
|
|
|| (w.ieee.exponent == 1
|
|
&& w.ieee.negative != neg
|
|
&& w.ieee.mantissa3 == 0
|
|
&& w.ieee.mantissa2 == 0
|
|
&& w.ieee.mantissa1 == 0
|
|
&& w.ieee.mantissa0 == 0)))
|
|
{
|
|
__float128 force_underflow = x * y;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
return v.value * 0x1p-114Q;
|
|
}
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
>= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG)
|
|
{
|
|
/* Compute 1p-113 times smaller result and multiply
|
|
at the end. */
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent -= FLT128_MANT_DIG;
|
|
else
|
|
v.ieee.exponent -= FLT128_MANT_DIG;
|
|
/* If x + y exponent is very large and z exponent is very small,
|
|
it doesn't matter if we don't adjust it. */
|
|
if (w.ieee.exponent > FLT128_MANT_DIG)
|
|
w.ieee.exponent -= FLT128_MANT_DIG;
|
|
adjust = 1;
|
|
}
|
|
else if (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
|
|
{
|
|
/* Similarly.
|
|
If z exponent is very large and x and y exponents are
|
|
very small, adjust them up to avoid spurious underflows,
|
|
rather than down. */
|
|
if (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_FLOAT128_BIAS + 2 * FLT128_MANT_DIG)
|
|
{
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
|
else
|
|
v.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
|
}
|
|
else if (u.ieee.exponent > v.ieee.exponent)
|
|
{
|
|
if (u.ieee.exponent > FLT128_MANT_DIG)
|
|
u.ieee.exponent -= FLT128_MANT_DIG;
|
|
}
|
|
else if (v.ieee.exponent > FLT128_MANT_DIG)
|
|
v.ieee.exponent -= FLT128_MANT_DIG;
|
|
w.ieee.exponent -= FLT128_MANT_DIG;
|
|
adjust = 1;
|
|
}
|
|
else if (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
|
|
{
|
|
u.ieee.exponent -= FLT128_MANT_DIG;
|
|
if (v.ieee.exponent)
|
|
v.ieee.exponent += FLT128_MANT_DIG;
|
|
else
|
|
v.value *= 0x1p113Q;
|
|
}
|
|
else if (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
|
|
{
|
|
v.ieee.exponent -= FLT128_MANT_DIG;
|
|
if (u.ieee.exponent)
|
|
u.ieee.exponent += FLT128_MANT_DIG;
|
|
else
|
|
u.value *= 0x1p113Q;
|
|
}
|
|
else /* if (u.ieee.exponent + v.ieee.exponent
|
|
<= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */
|
|
{
|
|
if (u.ieee.exponent > v.ieee.exponent)
|
|
u.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
|
else
|
|
v.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
|
if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 6)
|
|
{
|
|
if (w.ieee.exponent)
|
|
w.ieee.exponent += 2 * FLT128_MANT_DIG + 2;
|
|
else
|
|
w.value *= 0x1p228Q;
|
|
adjust = -1;
|
|
}
|
|
/* Otherwise x * y should just affect inexact
|
|
and nothing else. */
|
|
}
|
|
x = u.value;
|
|
y = v.value;
|
|
z = w.value;
|
|
}
|
|
|
|
/* Ensure correct sign of exact 0 + 0. */
|
|
if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
|
|
{
|
|
x = math_opt_barrier (x);
|
|
return x * y + z;
|
|
}
|
|
|
|
fenv_t env;
|
|
feholdexcept (&env);
|
|
fesetround (FE_TONEAREST);
|
|
|
|
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
|
|
#define C ((1LL << (FLT128_MANT_DIG + 1) / 2) + 1)
|
|
__float128 x1 = x * C;
|
|
__float128 y1 = y * C;
|
|
__float128 m1 = x * y;
|
|
x1 = (x - x1) + x1;
|
|
y1 = (y - y1) + y1;
|
|
__float128 x2 = x - x1;
|
|
__float128 y2 = y - y1;
|
|
__float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
|
|
|
|
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
|
|
__float128 a1 = z + m1;
|
|
__float128 t1 = a1 - z;
|
|
__float128 t2 = a1 - t1;
|
|
t1 = m1 - t1;
|
|
t2 = z - t2;
|
|
__float128 a2 = t1 + t2;
|
|
/* Ensure the arithmetic is not scheduled after feclearexcept call. */
|
|
math_force_eval (m2);
|
|
math_force_eval (a2);
|
|
feclearexcept (FE_INEXACT);
|
|
|
|
/* If the result is an exact zero, ensure it has the correct sign. */
|
|
if (a1 == 0 && m2 == 0)
|
|
{
|
|
feupdateenv (&env);
|
|
/* Ensure that round-to-nearest value of z + m1 is not reused. */
|
|
z = math_opt_barrier (z);
|
|
return z + m1;
|
|
}
|
|
|
|
fesetround (FE_TOWARDZERO);
|
|
/* Perform m2 + a2 addition with round to odd. */
|
|
u.value = a2 + m2;
|
|
|
|
if (__glibc_likely (adjust == 0))
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Result is a1 + u.value. */
|
|
return a1 + u.value;
|
|
}
|
|
else if (__glibc_likely (adjust > 0))
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Result is a1 + u.value, scaled up. */
|
|
return (a1 + u.value) * 0x1p113Q;
|
|
}
|
|
else
|
|
{
|
|
if ((u.ieee.mantissa3 & 1) == 0)
|
|
u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0;
|
|
v.value = a1 + u.value;
|
|
/* Ensure the addition is not scheduled after fetestexcept call. */
|
|
math_force_eval (v.value);
|
|
int j = fetestexcept (FE_INEXACT) != 0;
|
|
feupdateenv (&env);
|
|
/* Ensure the following computations are performed in default rounding
|
|
mode instead of just reusing the round to zero computation. */
|
|
asm volatile ("" : "=m" (u) : "m" (u));
|
|
/* If a1 + u.value is exact, the only rounding happens during
|
|
scaling down. */
|
|
if (j == 0)
|
|
return v.value * 0x1p-228Q;
|
|
/* If result rounded to zero is not subnormal, no double
|
|
rounding will occur. */
|
|
if (v.ieee.exponent > 228)
|
|
return (a1 + u.value) * 0x1p-228Q;
|
|
/* If v.value * 0x1p-228L with round to zero is a subnormal above
|
|
or equal to FLT128_MIN / 2, then v.value * 0x1p-228L shifts mantissa
|
|
down just by 1 bit, which means v.ieee.mantissa3 |= j would
|
|
change the round bit, not sticky or guard bit.
|
|
v.value * 0x1p-228L never normalizes by shifting up,
|
|
so round bit plus sticky bit should be already enough
|
|
for proper rounding. */
|
|
if (v.ieee.exponent == 228)
|
|
{
|
|
/* If the exponent would be in the normal range when
|
|
rounding to normal precision with unbounded exponent
|
|
range, the exact result is known and spurious underflows
|
|
must be avoided on systems detecting tininess after
|
|
rounding. */
|
|
if (TININESS_AFTER_ROUNDING)
|
|
{
|
|
w.value = a1 + u.value;
|
|
if (w.ieee.exponent == 229)
|
|
return w.value * 0x1p-228Q;
|
|
}
|
|
/* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding,
|
|
v.ieee.mantissa3 & 1 is the round bit and j is our sticky
|
|
bit. */
|
|
w.value = 0;
|
|
w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j;
|
|
w.ieee.negative = v.ieee.negative;
|
|
v.ieee.mantissa3 &= ~3U;
|
|
v.value *= 0x1p-228Q;
|
|
w.value *= 0x1p-2Q;
|
|
return v.value + w.value;
|
|
}
|
|
v.ieee.mantissa3 |= j;
|
|
return v.value * 0x1p-228Q;
|
|
}
|
|
}
|