You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
higepi d9da97d330 branchement 1 year ago
Doc Start 1 year ago
Rapport branchement 1 year ago
bandwidth_test memory 1 year ago
branchement branchement 1 year ago
fibonacci riscv O3 1 year ago
neorv32 memory 1 year ago
proj_quartus branchement 1 year ago
riscv-gnu-toolchain projet 1 year ago
12_El_Ouardi.pdf Start 1 year ago
readme.md fibonacci 1 year ago

readme.md

Implémentation et évaluation dun processeur RISC-V sur une architecture SoC

Lien utiles

https://hedgedoc.auro.re/x2PBnMb4Q3CQg-DRtt6Kkg#

Contexte

Les architectures récentes associent, dans la même puce, des FPGA et des processeurs pour constituer des SoC (System on Chip). Elles sont composées dunités optimisées et précâblées pour laccélération matérielle de certains traitements de données et permettent dinterfacer plusieurs périphériques selon différentes modalités : utilisation dun processeur matériel intégré ou dun processeur logiciel (Soft-Core).

RISC-V

On utilise pour ce projet, l'implémentation RISC-V neorv32

Hardware

<< NEORV32 Processor Configuration >>

====== Core ====== Is simulation: no Clock speed: 50000000 Hz On-chip debugger: no Custom ID: 0x00000000 Hart ID: 0x00000000 Vendor ID: 0x00000000 Architecture ID: 0x00000013 Implementation ID: 0x01080106 (v1.8.1.6) Architecture: rv32-little ISA extensions: C I M X Zicsr Zicntr Tuning options:
Phys. Mem. Prot.: not implemented HPM Counters: not implemented

====== Memory ====== Boot configuration: Boot via Bootloader Instr. base address: 0x00000000 Internal IMEM: yes, 16384 bytes Data base address: 0x80000000 Internal DMEM: yes, 8192 bytes Internal i-cache: no Ext. bus interface: no Ext. bus endianness: little

====== Peripherals ====== [x] GPIO [x] MTIME [x] UART0 [ ] UART1 [ ] SPI [ ] TWI [ ] PWM [ ] WDT [ ] TRNG [ ] CFS [ ] SLINK [ ] NEOLED [ ] XIRQ [ ] GPTMR [ ] XIP [ ] ONEWIRE

Clock

On peut augmenter la fréquence du processeur à l'aide de l'outil PLL Intel FPGA IP que l'on vient monter à 100 MHz. Monter à 200 Mhz indique un timing fail et une Fmax à 130 Mhz. Il faut ensuite modifier l'input de clock vers le signal de pll.

library pll;

pll_100: entity pll.pll(rtl) 
port map(
	refclk  => clk_i, --  refclk.clk
	--rst      : in  std_logic := '0'; --   reset.reset
	outclk_0 => clk_100,        -- outclk0.clk
	locked   => open        --  locked.export
);

Software

Print sur le série :

neorv32_uart0_puts("Hello world! :)\n");

Mesures :

Begin_Time = (long)neorv32_mtime_get_time();
End_Time = (long)neorv32_mtime_get_time();
User_Time = End_Time - Begin_Time;
uint32_t dhry_per_sec = (uint32_t)(NEORV32_SYSINFO.CLK / (User_Time / Number_Of_Runs));

neorv32_uart0_printf("NEORV32: Total cycles:      %u\n", (uint32_t)User_Time);
neorv32_uart0_printf("NEORV32: Cycles per second: %u\n", (uint32_t)NEORV32_SYSINFO.CLK);
neorv32_uart0_printf("NEORV32: DMIPS/s:           %u\n", (uint32_t)dhry_per_sec);