Projet_SETI_RISC-V/riscv-gnu-toolchain/gcc/libgo/go/strconv/ftoaryu.go
2023-03-06 14:48:14 +01:00

567 lines
16 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
import (
"math/bits"
)
// binary to decimal conversion using the Ryū algorithm.
//
// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
//
// Fixed precision formatting is a variant of the original paper's
// algorithm, where a single multiplication by 10^k is required,
// sharing the same rounding guarantees.
// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
if prec < 0 {
panic("ryuFtoaFixed32 called with negative prec")
}
if prec > 9 {
panic("ryuFtoaFixed32 called with prec > 9")
}
// Zero input.
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// Renormalize to a 25-bit mantissa.
e2 := exp
if b := bits.Len32(mant); b < 25 {
mant <<= uint(25 - b)
e2 += int(b) - 25
}
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
// at least prec decimal digits, i.e
// mant*(2^e2)*(10^q) >= 10^(prec-1)
// Because mant >= 2^24, it is enough to choose:
// 2^(e2+24) >= 10^(-q+prec-1)
// or q = -mulByLog2Log10(e2+24) + prec - 1
q := -mulByLog2Log10(e2+24) + prec - 1
// Now compute mant*(2^e2)*(10^q).
// Is it an exact computation?
// Only small positive powers of 10 are exact (5^28 has 66 bits).
exact := q <= 27 && q >= 0
di, dexp2, d0 := mult64bitPow10(mant, e2, q)
if dexp2 >= 0 {
panic("not enough significant bits after mult64bitPow10")
}
// As a special case, computation might still be exact, if exponent
// was negative and if it amounts to computing an exact division.
// In that case, we ignore all lower bits.
// Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
exact = true
d0 = true
}
// Remove extra lower bits and keep rounding info.
extra := uint(-dexp2)
extraMask := uint32(1<<extra - 1)
di, dfrac := di>>extra, di&extraMask
roundUp := false
if exact {
// If we computed an exact product, d + 1/2
// should round to d+1 if 'd' is odd.
roundUp = dfrac > 1<<(extra-1) ||
(dfrac == 1<<(extra-1) && !d0) ||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
} else {
// otherwise, d+1/2 always rounds up because
// we truncated below.
roundUp = dfrac>>(extra-1) == 1
}
if dfrac != 0 {
d0 = false
}
// Proceed to the requested number of digits
formatDecimal(d, uint64(di), !d0, roundUp, prec)
// Adjust exponent
d.dp -= q
}
// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
if prec > 18 {
panic("ryuFtoaFixed64 called with prec > 18")
}
// Zero input.
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// Renormalize to a 55-bit mantissa.
e2 := exp
if b := bits.Len64(mant); b < 55 {
mant = mant << uint(55-b)
e2 += int(b) - 55
}
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
// at least prec decimal digits, i.e
// mant*(2^e2)*(10^q) >= 10^(prec-1)
// Because mant >= 2^54, it is enough to choose:
// 2^(e2+54) >= 10^(-q+prec-1)
// or q = -mulByLog2Log10(e2+54) + prec - 1
//
// The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
// The maximal required exponent is mulByLog2Log10(1074)+18 = 342
q := -mulByLog2Log10(e2+54) + prec - 1
// Now compute mant*(2^e2)*(10^q).
// Is it an exact computation?
// Only small positive powers of 10 are exact (5^55 has 128 bits).
exact := q <= 55 && q >= 0
di, dexp2, d0 := mult128bitPow10(mant, e2, q)
if dexp2 >= 0 {
panic("not enough significant bits after mult128bitPow10")
}
// As a special case, computation might still be exact, if exponent
// was negative and if it amounts to computing an exact division.
// In that case, we ignore all lower bits.
// Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
exact = true
d0 = true
}
// Remove extra lower bits and keep rounding info.
extra := uint(-dexp2)
extraMask := uint64(1<<extra - 1)
di, dfrac := di>>extra, di&extraMask
roundUp := false
if exact {
// If we computed an exact product, d + 1/2
// should round to d+1 if 'd' is odd.
roundUp = dfrac > 1<<(extra-1) ||
(dfrac == 1<<(extra-1) && !d0) ||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
} else {
// otherwise, d+1/2 always rounds up because
// we truncated below.
roundUp = dfrac>>(extra-1) == 1
}
if dfrac != 0 {
d0 = false
}
// Proceed to the requested number of digits
formatDecimal(d, di, !d0, roundUp, prec)
// Adjust exponent
d.dp -= q
}
var uint64pow10 = [...]uint64{
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}
// formatDecimal fills d with at most prec decimal digits
// of mantissa m. The boolean trunc indicates whether m
// is truncated compared to the original number being formatted.
func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
max := uint64pow10[prec]
trimmed := 0
for m >= max {
a, b := m/10, m%10
m = a
trimmed++
if b > 5 {
roundUp = true
} else if b < 5 {
roundUp = false
} else { // b == 5
// round up if there are trailing digits,
// or if the new value of m is odd (round-to-even convention)
roundUp = trunc || m&1 == 1
}
if b != 0 {
trunc = true
}
}
if roundUp {
m++
}
if m >= max {
// Happens if di was originally 99999....xx
m /= 10
trimmed++
}
// render digits (similar to formatBits)
n := uint(prec)
d.nd = int(prec)
v := m
for v >= 100 {
var v1, v2 uint64
if v>>32 == 0 {
v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
} else {
v1, v2 = v/100, v%100
}
n -= 2
d.d[n+1] = smallsString[2*v2+1]
d.d[n+0] = smallsString[2*v2+0]
v = v1
}
if v > 0 {
n--
d.d[n] = smallsString[2*v+1]
}
if v >= 10 {
n--
d.d[n] = smallsString[2*v]
}
for d.d[d.nd-1] == '0' {
d.nd--
trimmed++
}
d.dp = d.nd + trimmed
}
// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// If input is an exact integer with fewer bits than the mantissa,
// the previous and next integer are not admissible representations.
if exp <= 0 && bits.TrailingZeros64(mant) >= -exp {
mant >>= uint(-exp)
ryuDigits(d, mant, mant, mant, true, false)
return
}
ml, mc, mu, e2 := computeBounds(mant, exp, flt)
if e2 == 0 {
ryuDigits(d, ml, mc, mu, true, false)
return
}
// Find 10^q *larger* than 2^-e2
q := mulByLog2Log10(-e2) + 1
// We are going to multiply by 10^q using 128-bit arithmetic.
// The exponent is the same for all 3 numbers.
var dl, dc, du uint64
var dl0, dc0, du0 bool
if flt == &float32info {
var dl32, dc32, du32 uint32
dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q)
dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q)
du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q)
dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32)
} else {
dl, _, dl0 = mult128bitPow10(ml, e2, q)
dc, _, dc0 = mult128bitPow10(mc, e2, q)
du, e2, du0 = mult128bitPow10(mu, e2, q)
}
if e2 >= 0 {
panic("not enough significant bits after mult128bitPow10")
}
// Is it an exact computation?
if q > 55 {
// Large positive powers of ten are not exact
dl0, dc0, du0 = false, false, false
}
if q < 0 && q >= -24 {
// Division by a power of ten may be exact.
// (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
if divisibleByPower5(ml, -q) {
dl0 = true
}
if divisibleByPower5(mc, -q) {
dc0 = true
}
if divisibleByPower5(mu, -q) {
du0 = true
}
}
// Express the results (dl, dc, du)*2^e2 as integers.
// Extra bits must be removed and rounding hints computed.
extra := uint(-e2)
extraMask := uint64(1<<extra - 1)
// Now compute the floored, integral base 10 mantissas.
dl, fracl := dl>>extra, dl&extraMask
dc, fracc := dc>>extra, dc&extraMask
du, fracu := du>>extra, du&extraMask
// Is it allowed to use 'du' as a result?
// It is always allowed when it is truncated, but also
// if it is exact and the original binary mantissa is even
// When disallowed, we can subtract 1.
uok := !du0 || fracu > 0
if du0 && fracu == 0 {
uok = mant&1 == 0
}
if !uok {
du--
}
// Is 'dc' the correctly rounded base 10 mantissa?
// The correct rounding might be dc+1
cup := false // don't round up.
if dc0 {
// If we computed an exact product, the half integer
// should round to next (even) integer if 'dc' is odd.
cup = fracc > 1<<(extra-1) ||
(fracc == 1<<(extra-1) && dc&1 == 1)
} else {
// otherwise, the result is a lower truncation of the ideal
// result.
cup = fracc>>(extra-1) == 1
}
// Is 'dl' an allowed representation?
// Only if it is an exact value, and if the original binary mantissa
// was even.
lok := dl0 && fracl == 0 && (mant&1 == 0)
if !lok {
dl++
}
// We need to remember whether the trimmed digits of 'dc' are zero.
c0 := dc0 && fracc == 0
// render digits
ryuDigits(d, dl, dc, du, c0, cup)
d.dp -= q
}
// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
// the range -1600 <= x && x <= +1600.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog2Log10(x int) int {
// log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
return (x * 78913) >> 18
}
// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
// the range -500 <= x && x <= +500.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog10Log2(x int) int {
// log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
return (x * 108853) >> 15
}
// computeBounds returns a floating-point vector (l, c, u)×2^e2
// where the mantissas are 55-bit (or 26-bit) integers, describing the interval
// represented by the input float64 or float32.
func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) {
if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) {
// regular case (or denormals)
lower, central, upper = 2*mant-1, 2*mant, 2*mant+1
e2 = exp - 1
return
} else {
// border of an exponent
lower, central, upper = 4*mant-1, 4*mant, 4*mant+2
e2 = exp - 2
return
}
}
func ryuDigits(d *decimalSlice, lower, central, upper uint64,
c0, cup bool) {
lhi, llo := divmod1e9(lower)
chi, clo := divmod1e9(central)
uhi, ulo := divmod1e9(upper)
if uhi == 0 {
// only low digits (for denormals)
ryuDigits32(d, llo, clo, ulo, c0, cup, 8)
} else if lhi < uhi {
// truncate 9 digits at once.
if llo != 0 {
lhi++
}
c0 = c0 && clo == 0
cup = (clo > 5e8) || (clo == 5e8 && cup)
ryuDigits32(d, lhi, chi, uhi, c0, cup, 8)
d.dp += 9
} else {
d.nd = 0
// emit high part
n := uint(9)
for v := chi; v > 0; {
v1, v2 := v/10, v%10
v = v1
n--
d.d[n] = byte(v2 + '0')
}
d.d = d.d[n:]
d.nd = int(9 - n)
// emit low part
ryuDigits32(d, llo, clo, ulo,
c0, cup, d.nd+8)
}
// trim trailing zeros
for d.nd > 0 && d.d[d.nd-1] == '0' {
d.nd--
}
// trim initial zeros
for d.nd > 0 && d.d[0] == '0' {
d.nd--
d.dp--
d.d = d.d[1:]
}
}
// ryuDigits32 emits decimal digits for a number less than 1e9.
func ryuDigits32(d *decimalSlice, lower, central, upper uint32,
c0, cup bool, endindex int) {
if upper == 0 {
d.dp = endindex + 1
return
}
trimmed := 0
// Remember last trimmed digit to check for round-up.
// c0 will be used to remember zeroness of following digits.
cNextDigit := 0
for upper > 0 {
// Repeatedly compute:
// l = Ceil(lower / 10^k)
// c = Round(central / 10^k)
// u = Floor(upper / 10^k)
// and stop when c goes out of the (l, u) interval.
l := (lower + 9) / 10
c, cdigit := central/10, central%10
u := upper / 10
if l > u {
// don't trim the last digit as it is forbidden to go below l
// other, trim and exit now.
break
}
// Check that we didn't cross the lower boundary.
// The case where l < u but c == l-1 is essentially impossible,
// but may happen if:
// lower = ..11
// central = ..19
// upper = ..31
// and means that 'central' is very close but less than
// an integer ending with many zeros, and usually
// the "round-up" logic hides the problem.
if l == c+1 && c < u {
c++
cdigit = 0
cup = false
}
trimmed++
// Remember trimmed digits of c
c0 = c0 && cNextDigit == 0
cNextDigit = int(cdigit)
lower, central, upper = l, c, u
}
// should we round up?
if trimmed > 0 {
cup = cNextDigit > 5 ||
(cNextDigit == 5 && !c0) ||
(cNextDigit == 5 && c0 && central&1 == 1)
}
if central < upper && cup {
central++
}
// We know where the number ends, fill directly
endindex -= trimmed
v := central
n := endindex
for n > d.nd {
v1, v2 := v/100, v%100
d.d[n] = smallsString[2*v2+1]
d.d[n-1] = smallsString[2*v2+0]
n -= 2
v = v1
}
if n == d.nd {
d.d[n] = byte(v + '0')
}
d.nd = endindex + 1
d.dp = d.nd + trimmed
}
// mult64bitPow10 takes a floating-point input with a 25-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
// It is typically 31 or 32-bit wide.
// The returned boolean is true if all trimmed bits were zero.
//
// That is:
// m*2^e2 * round(10^q) = resM * 2^resE + ε
// exact = ε == 0
func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
if q == 0 {
// P == 1<<63
return m << 6, e2 - 6, true
}
if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
// This never happens due to the range of float32/float64 exponent
panic("mult64bitPow10: power of 10 is out of range")
}
pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
if q < 0 {
// Inverse powers of ten must be rounded up.
pow += 1
}
hi, lo := bits.Mul64(uint64(m), pow)
e2 += mulByLog10Log2(q) - 63 + 57
return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
}
// mult128bitPow10 takes a floating-point input with a 55-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
// It is typically 63 or 64-bit wide.
// The returned boolean is true is all trimmed bits were zero.
//
// That is:
// m*2^e2 * round(10^q) = resM * 2^resE + ε
// exact = ε == 0
func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
if q == 0 {
// P == 1<<127
return m << 8, e2 - 8, true
}
if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
// This never happens due to the range of float32/float64 exponent
panic("mult128bitPow10: power of 10 is out of range")
}
pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
if q < 0 {
// Inverse powers of ten must be rounded up.
pow[0] += 1
}
e2 += mulByLog10Log2(q) - 127 + 119
// long multiplication
l1, l0 := bits.Mul64(m, pow[0])
h1, h0 := bits.Mul64(m, pow[1])
mid, carry := bits.Add64(l1, h0, 0)
h1 += carry
return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
}
func divisibleByPower5(m uint64, k int) bool {
if m == 0 {
return true
}
for i := 0; i < k; i++ {
if m%5 != 0 {
return false
}
m /= 5
}
return true
}
// divmod1e9 computes quotient and remainder of division by 1e9,
// avoiding runtime uint64 division on 32-bit platforms.
func divmod1e9(x uint64) (uint32, uint32) {
if !host32bit {
return uint32(x / 1e9), uint32(x % 1e9)
}
// Use the same sequence of operations as the amd64 compiler.
hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9
q := hi >> 28
return uint32(q), uint32(x - q*1e9)
}