8338 lines
231 KiB
C++
8338 lines
231 KiB
C++
/* Induction variable optimizations.
|
|
Copyright (C) 2003-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This pass tries to find the optimal set of induction variables for the loop.
|
|
It optimizes just the basic linear induction variables (although adding
|
|
support for other types should not be too hard). It includes the
|
|
optimizations commonly known as strength reduction, induction variable
|
|
coalescing and induction variable elimination. It does it in the
|
|
following steps:
|
|
|
|
1) The interesting uses of induction variables are found. This includes
|
|
|
|
-- uses of induction variables in non-linear expressions
|
|
-- addresses of arrays
|
|
-- comparisons of induction variables
|
|
|
|
Note the interesting uses are categorized and handled in group.
|
|
Generally, address type uses are grouped together if their iv bases
|
|
are different in constant offset.
|
|
|
|
2) Candidates for the induction variables are found. This includes
|
|
|
|
-- old induction variables
|
|
-- the variables defined by expressions derived from the "interesting
|
|
groups/uses" above
|
|
|
|
3) The optimal (w.r. to a cost function) set of variables is chosen. The
|
|
cost function assigns a cost to sets of induction variables and consists
|
|
of three parts:
|
|
|
|
-- The group/use costs. Each of the interesting groups/uses chooses
|
|
the best induction variable in the set and adds its cost to the sum.
|
|
The cost reflects the time spent on modifying the induction variables
|
|
value to be usable for the given purpose (adding base and offset for
|
|
arrays, etc.).
|
|
-- The variable costs. Each of the variables has a cost assigned that
|
|
reflects the costs associated with incrementing the value of the
|
|
variable. The original variables are somewhat preferred.
|
|
-- The set cost. Depending on the size of the set, extra cost may be
|
|
added to reflect register pressure.
|
|
|
|
All the costs are defined in a machine-specific way, using the target
|
|
hooks and machine descriptions to determine them.
|
|
|
|
4) The trees are transformed to use the new variables, the dead code is
|
|
removed.
|
|
|
|
All of this is done loop by loop. Doing it globally is theoretically
|
|
possible, it might give a better performance and it might enable us
|
|
to decide costs more precisely, but getting all the interactions right
|
|
would be complicated.
|
|
|
|
For the targets supporting low-overhead loops, IVOPTs has to take care of
|
|
the loops which will probably be transformed in RTL doloop optimization,
|
|
to try to make selected IV candidate set optimal. The process of doloop
|
|
support includes:
|
|
|
|
1) Analyze the current loop will be transformed to doloop or not, find and
|
|
mark its compare type IV use as doloop use (iv_group field doloop_p), and
|
|
set flag doloop_use_p of ivopts_data to notify subsequent processings on
|
|
doloop. See analyze_and_mark_doloop_use and its callees for the details.
|
|
The target hook predict_doloop_p can be used for target specific checks.
|
|
|
|
2) Add one doloop dedicated IV cand {(may_be_zero ? 1 : (niter + 1)), +, -1},
|
|
set flag doloop_p of iv_cand, step cost is set as zero and no extra cost
|
|
like biv. For cost determination between doloop IV cand and IV use, the
|
|
target hooks doloop_cost_for_generic and doloop_cost_for_address are
|
|
provided to add on extra costs for generic type and address type IV use.
|
|
Zero cost is assigned to the pair between doloop IV cand and doloop IV
|
|
use, and bound zero is set for IV elimination.
|
|
|
|
3) With the cost setting in step 2), the current cost model based IV
|
|
selection algorithm will process as usual, pick up doloop dedicated IV if
|
|
profitable. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "memmodel.h"
|
|
#include "tm_p.h"
|
|
#include "ssa.h"
|
|
#include "expmed.h"
|
|
#include "insn-config.h"
|
|
#include "emit-rtl.h"
|
|
#include "recog.h"
|
|
#include "cgraph.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "alias.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "explow.h"
|
|
#include "expr.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-affine.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "tree-ssa-address.h"
|
|
#include "builtins.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "dbgcnt.h"
|
|
|
|
/* For lang_hooks.types.type_for_mode. */
|
|
#include "langhooks.h"
|
|
|
|
/* FIXME: Expressions are expanded to RTL in this pass to determine the
|
|
cost of different addressing modes. This should be moved to a TBD
|
|
interface between the GIMPLE and RTL worlds. */
|
|
|
|
/* The infinite cost. */
|
|
#define INFTY 1000000000
|
|
|
|
/* Returns the expected number of loop iterations for LOOP.
|
|
The average trip count is computed from profile data if it
|
|
exists. */
|
|
|
|
static inline HOST_WIDE_INT
|
|
avg_loop_niter (class loop *loop)
|
|
{
|
|
HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
|
|
if (niter == -1)
|
|
{
|
|
niter = likely_max_stmt_executions_int (loop);
|
|
|
|
if (niter == -1 || niter > param_avg_loop_niter)
|
|
return param_avg_loop_niter;
|
|
}
|
|
|
|
return niter;
|
|
}
|
|
|
|
struct iv_use;
|
|
|
|
/* Representation of the induction variable. */
|
|
struct iv
|
|
{
|
|
tree base; /* Initial value of the iv. */
|
|
tree base_object; /* A memory object to that the induction variable points. */
|
|
tree step; /* Step of the iv (constant only). */
|
|
tree ssa_name; /* The ssa name with the value. */
|
|
struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */
|
|
bool biv_p; /* Is it a biv? */
|
|
bool no_overflow; /* True if the iv doesn't overflow. */
|
|
bool have_address_use;/* For biv, indicate if it's used in any address
|
|
type use. */
|
|
};
|
|
|
|
/* Per-ssa version information (induction variable descriptions, etc.). */
|
|
struct version_info
|
|
{
|
|
tree name; /* The ssa name. */
|
|
struct iv *iv; /* Induction variable description. */
|
|
bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
|
|
an expression that is not an induction variable. */
|
|
bool preserve_biv; /* For the original biv, whether to preserve it. */
|
|
unsigned inv_id; /* Id of an invariant. */
|
|
};
|
|
|
|
/* Types of uses. */
|
|
enum use_type
|
|
{
|
|
USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
|
|
USE_REF_ADDRESS, /* Use is an address for an explicit memory
|
|
reference. */
|
|
USE_PTR_ADDRESS, /* Use is a pointer argument to a function in
|
|
cases where the expansion of the function
|
|
will turn the argument into a normal address. */
|
|
USE_COMPARE /* Use is a compare. */
|
|
};
|
|
|
|
/* Cost of a computation. */
|
|
class comp_cost
|
|
{
|
|
public:
|
|
comp_cost (): cost (0), complexity (0), scratch (0)
|
|
{}
|
|
|
|
comp_cost (int64_t cost, unsigned complexity, int64_t scratch = 0)
|
|
: cost (cost), complexity (complexity), scratch (scratch)
|
|
{}
|
|
|
|
/* Returns true if COST is infinite. */
|
|
bool infinite_cost_p ();
|
|
|
|
/* Adds costs COST1 and COST2. */
|
|
friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
|
|
|
|
/* Adds COST to the comp_cost. */
|
|
comp_cost operator+= (comp_cost cost);
|
|
|
|
/* Adds constant C to this comp_cost. */
|
|
comp_cost operator+= (HOST_WIDE_INT c);
|
|
|
|
/* Subtracts constant C to this comp_cost. */
|
|
comp_cost operator-= (HOST_WIDE_INT c);
|
|
|
|
/* Divide the comp_cost by constant C. */
|
|
comp_cost operator/= (HOST_WIDE_INT c);
|
|
|
|
/* Multiply the comp_cost by constant C. */
|
|
comp_cost operator*= (HOST_WIDE_INT c);
|
|
|
|
/* Subtracts costs COST1 and COST2. */
|
|
friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
|
|
|
|
/* Subtracts COST from this comp_cost. */
|
|
comp_cost operator-= (comp_cost cost);
|
|
|
|
/* Returns true if COST1 is smaller than COST2. */
|
|
friend bool operator< (comp_cost cost1, comp_cost cost2);
|
|
|
|
/* Returns true if COST1 and COST2 are equal. */
|
|
friend bool operator== (comp_cost cost1, comp_cost cost2);
|
|
|
|
/* Returns true if COST1 is smaller or equal than COST2. */
|
|
friend bool operator<= (comp_cost cost1, comp_cost cost2);
|
|
|
|
int64_t cost; /* The runtime cost. */
|
|
unsigned complexity; /* The estimate of the complexity of the code for
|
|
the computation (in no concrete units --
|
|
complexity field should be larger for more
|
|
complex expressions and addressing modes). */
|
|
int64_t scratch; /* Scratch used during cost computation. */
|
|
};
|
|
|
|
static const comp_cost no_cost;
|
|
static const comp_cost infinite_cost (INFTY, 0, INFTY);
|
|
|
|
bool
|
|
comp_cost::infinite_cost_p ()
|
|
{
|
|
return cost == INFTY;
|
|
}
|
|
|
|
comp_cost
|
|
operator+ (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
|
|
return infinite_cost;
|
|
|
|
gcc_assert (cost1.cost + cost2.cost < infinite_cost.cost);
|
|
cost1.cost += cost2.cost;
|
|
cost1.complexity += cost2.complexity;
|
|
|
|
return cost1;
|
|
}
|
|
|
|
comp_cost
|
|
operator- (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
if (cost1.infinite_cost_p ())
|
|
return infinite_cost;
|
|
|
|
gcc_assert (!cost2.infinite_cost_p ());
|
|
gcc_assert (cost1.cost - cost2.cost < infinite_cost.cost);
|
|
|
|
cost1.cost -= cost2.cost;
|
|
cost1.complexity -= cost2.complexity;
|
|
|
|
return cost1;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator+= (comp_cost cost)
|
|
{
|
|
*this = *this + cost;
|
|
return *this;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator+= (HOST_WIDE_INT c)
|
|
{
|
|
if (c >= INFTY)
|
|
this->cost = INFTY;
|
|
|
|
if (infinite_cost_p ())
|
|
return *this;
|
|
|
|
gcc_assert (this->cost + c < infinite_cost.cost);
|
|
this->cost += c;
|
|
|
|
return *this;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator-= (HOST_WIDE_INT c)
|
|
{
|
|
if (infinite_cost_p ())
|
|
return *this;
|
|
|
|
gcc_assert (this->cost - c < infinite_cost.cost);
|
|
this->cost -= c;
|
|
|
|
return *this;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator/= (HOST_WIDE_INT c)
|
|
{
|
|
gcc_assert (c != 0);
|
|
if (infinite_cost_p ())
|
|
return *this;
|
|
|
|
this->cost /= c;
|
|
|
|
return *this;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator*= (HOST_WIDE_INT c)
|
|
{
|
|
if (infinite_cost_p ())
|
|
return *this;
|
|
|
|
gcc_assert (this->cost * c < infinite_cost.cost);
|
|
this->cost *= c;
|
|
|
|
return *this;
|
|
}
|
|
|
|
comp_cost
|
|
comp_cost::operator-= (comp_cost cost)
|
|
{
|
|
*this = *this - cost;
|
|
return *this;
|
|
}
|
|
|
|
bool
|
|
operator< (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
if (cost1.cost == cost2.cost)
|
|
return cost1.complexity < cost2.complexity;
|
|
|
|
return cost1.cost < cost2.cost;
|
|
}
|
|
|
|
bool
|
|
operator== (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
return cost1.cost == cost2.cost
|
|
&& cost1.complexity == cost2.complexity;
|
|
}
|
|
|
|
bool
|
|
operator<= (comp_cost cost1, comp_cost cost2)
|
|
{
|
|
return cost1 < cost2 || cost1 == cost2;
|
|
}
|
|
|
|
struct iv_inv_expr_ent;
|
|
|
|
/* The candidate - cost pair. */
|
|
class cost_pair
|
|
{
|
|
public:
|
|
struct iv_cand *cand; /* The candidate. */
|
|
comp_cost cost; /* The cost. */
|
|
enum tree_code comp; /* For iv elimination, the comparison. */
|
|
bitmap inv_vars; /* The list of invariant ssa_vars that have to be
|
|
preserved when representing iv_use with iv_cand. */
|
|
bitmap inv_exprs; /* The list of newly created invariant expressions
|
|
when representing iv_use with iv_cand. */
|
|
tree value; /* For final value elimination, the expression for
|
|
the final value of the iv. For iv elimination,
|
|
the new bound to compare with. */
|
|
};
|
|
|
|
/* Use. */
|
|
struct iv_use
|
|
{
|
|
unsigned id; /* The id of the use. */
|
|
unsigned group_id; /* The group id the use belongs to. */
|
|
enum use_type type; /* Type of the use. */
|
|
tree mem_type; /* The memory type to use when testing whether an
|
|
address is legitimate, and what the address's
|
|
cost is. */
|
|
struct iv *iv; /* The induction variable it is based on. */
|
|
gimple *stmt; /* Statement in that it occurs. */
|
|
tree *op_p; /* The place where it occurs. */
|
|
|
|
tree addr_base; /* Base address with const offset stripped. */
|
|
poly_uint64_pod addr_offset;
|
|
/* Const offset stripped from base address. */
|
|
};
|
|
|
|
/* Group of uses. */
|
|
struct iv_group
|
|
{
|
|
/* The id of the group. */
|
|
unsigned id;
|
|
/* Uses of the group are of the same type. */
|
|
enum use_type type;
|
|
/* The set of "related" IV candidates, plus the important ones. */
|
|
bitmap related_cands;
|
|
/* Number of IV candidates in the cost_map. */
|
|
unsigned n_map_members;
|
|
/* The costs wrto the iv candidates. */
|
|
class cost_pair *cost_map;
|
|
/* The selected candidate for the group. */
|
|
struct iv_cand *selected;
|
|
/* To indicate this is a doloop use group. */
|
|
bool doloop_p;
|
|
/* Uses in the group. */
|
|
vec<struct iv_use *> vuses;
|
|
};
|
|
|
|
/* The position where the iv is computed. */
|
|
enum iv_position
|
|
{
|
|
IP_NORMAL, /* At the end, just before the exit condition. */
|
|
IP_END, /* At the end of the latch block. */
|
|
IP_BEFORE_USE, /* Immediately before a specific use. */
|
|
IP_AFTER_USE, /* Immediately after a specific use. */
|
|
IP_ORIGINAL /* The original biv. */
|
|
};
|
|
|
|
/* The induction variable candidate. */
|
|
struct iv_cand
|
|
{
|
|
unsigned id; /* The number of the candidate. */
|
|
bool important; /* Whether this is an "important" candidate, i.e. such
|
|
that it should be considered by all uses. */
|
|
bool involves_undefs; /* Whether the IV involves undefined values. */
|
|
ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
|
|
gimple *incremented_at;/* For original biv, the statement where it is
|
|
incremented. */
|
|
tree var_before; /* The variable used for it before increment. */
|
|
tree var_after; /* The variable used for it after increment. */
|
|
struct iv *iv; /* The value of the candidate. NULL for
|
|
"pseudocandidate" used to indicate the possibility
|
|
to replace the final value of an iv by direct
|
|
computation of the value. */
|
|
unsigned cost; /* Cost of the candidate. */
|
|
unsigned cost_step; /* Cost of the candidate's increment operation. */
|
|
struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
|
|
where it is incremented. */
|
|
bitmap inv_vars; /* The list of invariant ssa_vars used in step of the
|
|
iv_cand. */
|
|
bitmap inv_exprs; /* If step is more complicated than a single ssa_var,
|
|
hanlde it as a new invariant expression which will
|
|
be hoisted out of loop. */
|
|
struct iv *orig_iv; /* The original iv if this cand is added from biv with
|
|
smaller type. */
|
|
bool doloop_p; /* Whether this is a doloop candidate. */
|
|
};
|
|
|
|
/* Hashtable entry for common candidate derived from iv uses. */
|
|
class iv_common_cand
|
|
{
|
|
public:
|
|
tree base;
|
|
tree step;
|
|
/* IV uses from which this common candidate is derived. */
|
|
auto_vec<struct iv_use *> uses;
|
|
hashval_t hash;
|
|
};
|
|
|
|
/* Hashtable helpers. */
|
|
|
|
struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand>
|
|
{
|
|
static inline hashval_t hash (const iv_common_cand *);
|
|
static inline bool equal (const iv_common_cand *, const iv_common_cand *);
|
|
};
|
|
|
|
/* Hash function for possible common candidates. */
|
|
|
|
inline hashval_t
|
|
iv_common_cand_hasher::hash (const iv_common_cand *ccand)
|
|
{
|
|
return ccand->hash;
|
|
}
|
|
|
|
/* Hash table equality function for common candidates. */
|
|
|
|
inline bool
|
|
iv_common_cand_hasher::equal (const iv_common_cand *ccand1,
|
|
const iv_common_cand *ccand2)
|
|
{
|
|
return (ccand1->hash == ccand2->hash
|
|
&& operand_equal_p (ccand1->base, ccand2->base, 0)
|
|
&& operand_equal_p (ccand1->step, ccand2->step, 0)
|
|
&& (TYPE_PRECISION (TREE_TYPE (ccand1->base))
|
|
== TYPE_PRECISION (TREE_TYPE (ccand2->base))));
|
|
}
|
|
|
|
/* Loop invariant expression hashtable entry. */
|
|
|
|
struct iv_inv_expr_ent
|
|
{
|
|
/* Tree expression of the entry. */
|
|
tree expr;
|
|
/* Unique indentifier. */
|
|
int id;
|
|
/* Hash value. */
|
|
hashval_t hash;
|
|
};
|
|
|
|
/* Sort iv_inv_expr_ent pair A and B by id field. */
|
|
|
|
static int
|
|
sort_iv_inv_expr_ent (const void *a, const void *b)
|
|
{
|
|
const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a);
|
|
const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b);
|
|
|
|
unsigned id1 = (*e1)->id;
|
|
unsigned id2 = (*e2)->id;
|
|
|
|
if (id1 < id2)
|
|
return -1;
|
|
else if (id1 > id2)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Hashtable helpers. */
|
|
|
|
struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent>
|
|
{
|
|
static inline hashval_t hash (const iv_inv_expr_ent *);
|
|
static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *);
|
|
};
|
|
|
|
/* Return true if uses of type TYPE represent some form of address. */
|
|
|
|
inline bool
|
|
address_p (use_type type)
|
|
{
|
|
return type == USE_REF_ADDRESS || type == USE_PTR_ADDRESS;
|
|
}
|
|
|
|
/* Hash function for loop invariant expressions. */
|
|
|
|
inline hashval_t
|
|
iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr)
|
|
{
|
|
return expr->hash;
|
|
}
|
|
|
|
/* Hash table equality function for expressions. */
|
|
|
|
inline bool
|
|
iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1,
|
|
const iv_inv_expr_ent *expr2)
|
|
{
|
|
return expr1->hash == expr2->hash
|
|
&& operand_equal_p (expr1->expr, expr2->expr, 0);
|
|
}
|
|
|
|
struct ivopts_data
|
|
{
|
|
/* The currently optimized loop. */
|
|
class loop *current_loop;
|
|
location_t loop_loc;
|
|
|
|
/* Numbers of iterations for all exits of the current loop. */
|
|
hash_map<edge, tree_niter_desc *> *niters;
|
|
|
|
/* Number of registers used in it. */
|
|
unsigned regs_used;
|
|
|
|
/* The size of version_info array allocated. */
|
|
unsigned version_info_size;
|
|
|
|
/* The array of information for the ssa names. */
|
|
struct version_info *version_info;
|
|
|
|
/* The hashtable of loop invariant expressions created
|
|
by ivopt. */
|
|
hash_table<iv_inv_expr_hasher> *inv_expr_tab;
|
|
|
|
/* The bitmap of indices in version_info whose value was changed. */
|
|
bitmap relevant;
|
|
|
|
/* The uses of induction variables. */
|
|
vec<iv_group *> vgroups;
|
|
|
|
/* The candidates. */
|
|
vec<iv_cand *> vcands;
|
|
|
|
/* A bitmap of important candidates. */
|
|
bitmap important_candidates;
|
|
|
|
/* Cache used by tree_to_aff_combination_expand. */
|
|
hash_map<tree, name_expansion *> *name_expansion_cache;
|
|
|
|
/* The hashtable of common candidates derived from iv uses. */
|
|
hash_table<iv_common_cand_hasher> *iv_common_cand_tab;
|
|
|
|
/* The common candidates. */
|
|
vec<iv_common_cand *> iv_common_cands;
|
|
|
|
/* Hash map recording base object information of tree exp. */
|
|
hash_map<tree, tree> *base_object_map;
|
|
|
|
/* The maximum invariant variable id. */
|
|
unsigned max_inv_var_id;
|
|
|
|
/* The maximum invariant expression id. */
|
|
unsigned max_inv_expr_id;
|
|
|
|
/* Number of no_overflow BIVs which are not used in memory address. */
|
|
unsigned bivs_not_used_in_addr;
|
|
|
|
/* Obstack for iv structure. */
|
|
struct obstack iv_obstack;
|
|
|
|
/* Whether to consider just related and important candidates when replacing a
|
|
use. */
|
|
bool consider_all_candidates;
|
|
|
|
/* Are we optimizing for speed? */
|
|
bool speed;
|
|
|
|
/* Whether the loop body includes any function calls. */
|
|
bool body_includes_call;
|
|
|
|
/* Whether the loop body can only be exited via single exit. */
|
|
bool loop_single_exit_p;
|
|
|
|
/* Whether the loop has doloop comparison use. */
|
|
bool doloop_use_p;
|
|
};
|
|
|
|
/* An assignment of iv candidates to uses. */
|
|
|
|
class iv_ca
|
|
{
|
|
public:
|
|
/* The number of uses covered by the assignment. */
|
|
unsigned upto;
|
|
|
|
/* Number of uses that cannot be expressed by the candidates in the set. */
|
|
unsigned bad_groups;
|
|
|
|
/* Candidate assigned to a use, together with the related costs. */
|
|
class cost_pair **cand_for_group;
|
|
|
|
/* Number of times each candidate is used. */
|
|
unsigned *n_cand_uses;
|
|
|
|
/* The candidates used. */
|
|
bitmap cands;
|
|
|
|
/* The number of candidates in the set. */
|
|
unsigned n_cands;
|
|
|
|
/* The number of invariants needed, including both invariant variants and
|
|
invariant expressions. */
|
|
unsigned n_invs;
|
|
|
|
/* Total cost of expressing uses. */
|
|
comp_cost cand_use_cost;
|
|
|
|
/* Total cost of candidates. */
|
|
int64_t cand_cost;
|
|
|
|
/* Number of times each invariant variable is used. */
|
|
unsigned *n_inv_var_uses;
|
|
|
|
/* Number of times each invariant expression is used. */
|
|
unsigned *n_inv_expr_uses;
|
|
|
|
/* Total cost of the assignment. */
|
|
comp_cost cost;
|
|
};
|
|
|
|
/* Difference of two iv candidate assignments. */
|
|
|
|
struct iv_ca_delta
|
|
{
|
|
/* Changed group. */
|
|
struct iv_group *group;
|
|
|
|
/* An old assignment (for rollback purposes). */
|
|
class cost_pair *old_cp;
|
|
|
|
/* A new assignment. */
|
|
class cost_pair *new_cp;
|
|
|
|
/* Next change in the list. */
|
|
struct iv_ca_delta *next;
|
|
};
|
|
|
|
/* Bound on number of candidates below that all candidates are considered. */
|
|
|
|
#define CONSIDER_ALL_CANDIDATES_BOUND \
|
|
((unsigned) param_iv_consider_all_candidates_bound)
|
|
|
|
/* If there are more iv occurrences, we just give up (it is quite unlikely that
|
|
optimizing such a loop would help, and it would take ages). */
|
|
|
|
#define MAX_CONSIDERED_GROUPS \
|
|
((unsigned) param_iv_max_considered_uses)
|
|
|
|
/* If there are at most this number of ivs in the set, try removing unnecessary
|
|
ivs from the set always. */
|
|
|
|
#define ALWAYS_PRUNE_CAND_SET_BOUND \
|
|
((unsigned) param_iv_always_prune_cand_set_bound)
|
|
|
|
/* The list of trees for that the decl_rtl field must be reset is stored
|
|
here. */
|
|
|
|
static vec<tree> decl_rtl_to_reset;
|
|
|
|
static comp_cost force_expr_to_var_cost (tree, bool);
|
|
|
|
/* The single loop exit if it dominates the latch, NULL otherwise. */
|
|
|
|
edge
|
|
single_dom_exit (class loop *loop)
|
|
{
|
|
edge exit = single_exit (loop);
|
|
|
|
if (!exit)
|
|
return NULL;
|
|
|
|
if (!just_once_each_iteration_p (loop, exit->src))
|
|
return NULL;
|
|
|
|
return exit;
|
|
}
|
|
|
|
/* Dumps information about the induction variable IV to FILE. Don't dump
|
|
variable's name if DUMP_NAME is FALSE. The information is dumped with
|
|
preceding spaces indicated by INDENT_LEVEL. */
|
|
|
|
void
|
|
dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level)
|
|
{
|
|
const char *p;
|
|
const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
|
|
|
|
if (indent_level > 4)
|
|
indent_level = 4;
|
|
p = spaces + 8 - (indent_level << 1);
|
|
|
|
fprintf (file, "%sIV struct:\n", p);
|
|
if (iv->ssa_name && dump_name)
|
|
{
|
|
fprintf (file, "%s SSA_NAME:\t", p);
|
|
print_generic_expr (file, iv->ssa_name, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
fprintf (file, "%s Type:\t", p);
|
|
print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
fprintf (file, "%s Base:\t", p);
|
|
print_generic_expr (file, iv->base, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
fprintf (file, "%s Step:\t", p);
|
|
print_generic_expr (file, iv->step, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
|
|
if (iv->base_object)
|
|
{
|
|
fprintf (file, "%s Object:\t", p);
|
|
print_generic_expr (file, iv->base_object, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N');
|
|
|
|
fprintf (file, "%s Overflowness wrto loop niter:\t%s\n",
|
|
p, iv->no_overflow ? "No-overflow" : "Overflow");
|
|
}
|
|
|
|
/* Dumps information about the USE to FILE. */
|
|
|
|
void
|
|
dump_use (FILE *file, struct iv_use *use)
|
|
{
|
|
fprintf (file, " Use %d.%d:\n", use->group_id, use->id);
|
|
fprintf (file, " At stmt:\t");
|
|
print_gimple_stmt (file, use->stmt, 0);
|
|
fprintf (file, " At pos:\t");
|
|
if (use->op_p)
|
|
print_generic_expr (file, *use->op_p, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
dump_iv (file, use->iv, false, 2);
|
|
}
|
|
|
|
/* Dumps information about the uses to FILE. */
|
|
|
|
void
|
|
dump_groups (FILE *file, struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
struct iv_group *group;
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
fprintf (file, "Group %d:\n", group->id);
|
|
if (group->type == USE_NONLINEAR_EXPR)
|
|
fprintf (file, " Type:\tGENERIC\n");
|
|
else if (group->type == USE_REF_ADDRESS)
|
|
fprintf (file, " Type:\tREFERENCE ADDRESS\n");
|
|
else if (group->type == USE_PTR_ADDRESS)
|
|
fprintf (file, " Type:\tPOINTER ARGUMENT ADDRESS\n");
|
|
else
|
|
{
|
|
gcc_assert (group->type == USE_COMPARE);
|
|
fprintf (file, " Type:\tCOMPARE\n");
|
|
}
|
|
for (j = 0; j < group->vuses.length (); j++)
|
|
dump_use (file, group->vuses[j]);
|
|
}
|
|
}
|
|
|
|
/* Dumps information about induction variable candidate CAND to FILE. */
|
|
|
|
void
|
|
dump_cand (FILE *file, struct iv_cand *cand)
|
|
{
|
|
struct iv *iv = cand->iv;
|
|
|
|
fprintf (file, "Candidate %d:\n", cand->id);
|
|
if (cand->inv_vars)
|
|
{
|
|
fprintf (file, " Depend on inv.vars: ");
|
|
dump_bitmap (file, cand->inv_vars);
|
|
}
|
|
if (cand->inv_exprs)
|
|
{
|
|
fprintf (file, " Depend on inv.exprs: ");
|
|
dump_bitmap (file, cand->inv_exprs);
|
|
}
|
|
|
|
if (cand->var_before)
|
|
{
|
|
fprintf (file, " Var befor: ");
|
|
print_generic_expr (file, cand->var_before, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
if (cand->var_after)
|
|
{
|
|
fprintf (file, " Var after: ");
|
|
print_generic_expr (file, cand->var_after, TDF_SLIM);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
switch (cand->pos)
|
|
{
|
|
case IP_NORMAL:
|
|
fprintf (file, " Incr POS: before exit test\n");
|
|
break;
|
|
|
|
case IP_BEFORE_USE:
|
|
fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id);
|
|
break;
|
|
|
|
case IP_AFTER_USE:
|
|
fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id);
|
|
break;
|
|
|
|
case IP_END:
|
|
fprintf (file, " Incr POS: at end\n");
|
|
break;
|
|
|
|
case IP_ORIGINAL:
|
|
fprintf (file, " Incr POS: orig biv\n");
|
|
break;
|
|
}
|
|
|
|
dump_iv (file, iv, false, 1);
|
|
}
|
|
|
|
/* Returns the info for ssa version VER. */
|
|
|
|
static inline struct version_info *
|
|
ver_info (struct ivopts_data *data, unsigned ver)
|
|
{
|
|
return data->version_info + ver;
|
|
}
|
|
|
|
/* Returns the info for ssa name NAME. */
|
|
|
|
static inline struct version_info *
|
|
name_info (struct ivopts_data *data, tree name)
|
|
{
|
|
return ver_info (data, SSA_NAME_VERSION (name));
|
|
}
|
|
|
|
/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
|
|
emitted in LOOP. */
|
|
|
|
static bool
|
|
stmt_after_ip_normal_pos (class loop *loop, gimple *stmt)
|
|
{
|
|
basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
|
|
|
|
gcc_assert (bb);
|
|
|
|
if (sbb == loop->latch)
|
|
return true;
|
|
|
|
if (sbb != bb)
|
|
return false;
|
|
|
|
return stmt == last_stmt (bb);
|
|
}
|
|
|
|
/* Returns true if STMT if after the place where the original induction
|
|
variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
|
|
if the positions are identical. */
|
|
|
|
static bool
|
|
stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal)
|
|
{
|
|
basic_block cand_bb = gimple_bb (cand->incremented_at);
|
|
basic_block stmt_bb = gimple_bb (stmt);
|
|
|
|
if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
|
|
return false;
|
|
|
|
if (stmt_bb != cand_bb)
|
|
return true;
|
|
|
|
if (true_if_equal
|
|
&& gimple_uid (stmt) == gimple_uid (cand->incremented_at))
|
|
return true;
|
|
return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
|
|
}
|
|
|
|
/* Returns true if STMT if after the place where the induction variable
|
|
CAND is incremented in LOOP. */
|
|
|
|
static bool
|
|
stmt_after_increment (class loop *loop, struct iv_cand *cand, gimple *stmt)
|
|
{
|
|
switch (cand->pos)
|
|
{
|
|
case IP_END:
|
|
return false;
|
|
|
|
case IP_NORMAL:
|
|
return stmt_after_ip_normal_pos (loop, stmt);
|
|
|
|
case IP_ORIGINAL:
|
|
case IP_AFTER_USE:
|
|
return stmt_after_inc_pos (cand, stmt, false);
|
|
|
|
case IP_BEFORE_USE:
|
|
return stmt_after_inc_pos (cand, stmt, true);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* walk_tree callback for contains_abnormal_ssa_name_p. */
|
|
|
|
static tree
|
|
contains_abnormal_ssa_name_p_1 (tree *tp, int *walk_subtrees, void *)
|
|
{
|
|
if (TREE_CODE (*tp) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*tp))
|
|
return *tp;
|
|
|
|
if (!EXPR_P (*tp))
|
|
*walk_subtrees = 0;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Returns true if EXPR contains a ssa name that occurs in an
|
|
abnormal phi node. */
|
|
|
|
bool
|
|
contains_abnormal_ssa_name_p (tree expr)
|
|
{
|
|
return walk_tree_without_duplicates
|
|
(&expr, contains_abnormal_ssa_name_p_1, NULL) != NULL_TREE;
|
|
}
|
|
|
|
/* Returns the structure describing number of iterations determined from
|
|
EXIT of DATA->current_loop, or NULL if something goes wrong. */
|
|
|
|
static class tree_niter_desc *
|
|
niter_for_exit (struct ivopts_data *data, edge exit)
|
|
{
|
|
class tree_niter_desc *desc;
|
|
tree_niter_desc **slot;
|
|
|
|
if (!data->niters)
|
|
{
|
|
data->niters = new hash_map<edge, tree_niter_desc *>;
|
|
slot = NULL;
|
|
}
|
|
else
|
|
slot = data->niters->get (exit);
|
|
|
|
if (!slot)
|
|
{
|
|
/* Try to determine number of iterations. We cannot safely work with ssa
|
|
names that appear in phi nodes on abnormal edges, so that we do not
|
|
create overlapping life ranges for them (PR 27283). */
|
|
desc = XNEW (class tree_niter_desc);
|
|
if (!number_of_iterations_exit (data->current_loop,
|
|
exit, desc, true)
|
|
|| contains_abnormal_ssa_name_p (desc->niter))
|
|
{
|
|
XDELETE (desc);
|
|
desc = NULL;
|
|
}
|
|
data->niters->put (exit, desc);
|
|
}
|
|
else
|
|
desc = *slot;
|
|
|
|
return desc;
|
|
}
|
|
|
|
/* Returns the structure describing number of iterations determined from
|
|
single dominating exit of DATA->current_loop, or NULL if something
|
|
goes wrong. */
|
|
|
|
static class tree_niter_desc *
|
|
niter_for_single_dom_exit (struct ivopts_data *data)
|
|
{
|
|
edge exit = single_dom_exit (data->current_loop);
|
|
|
|
if (!exit)
|
|
return NULL;
|
|
|
|
return niter_for_exit (data, exit);
|
|
}
|
|
|
|
/* Initializes data structures used by the iv optimization pass, stored
|
|
in DATA. */
|
|
|
|
static void
|
|
tree_ssa_iv_optimize_init (struct ivopts_data *data)
|
|
{
|
|
data->version_info_size = 2 * num_ssa_names;
|
|
data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
|
|
data->relevant = BITMAP_ALLOC (NULL);
|
|
data->important_candidates = BITMAP_ALLOC (NULL);
|
|
data->max_inv_var_id = 0;
|
|
data->max_inv_expr_id = 0;
|
|
data->niters = NULL;
|
|
data->vgroups.create (20);
|
|
data->vcands.create (20);
|
|
data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
|
|
data->name_expansion_cache = NULL;
|
|
data->base_object_map = NULL;
|
|
data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10);
|
|
data->iv_common_cands.create (20);
|
|
decl_rtl_to_reset.create (20);
|
|
gcc_obstack_init (&data->iv_obstack);
|
|
}
|
|
|
|
/* walk_tree callback for determine_base_object. */
|
|
|
|
static tree
|
|
determine_base_object_1 (tree *tp, int *walk_subtrees, void *wdata)
|
|
{
|
|
tree_code code = TREE_CODE (*tp);
|
|
tree obj = NULL_TREE;
|
|
if (code == ADDR_EXPR)
|
|
{
|
|
tree base = get_base_address (TREE_OPERAND (*tp, 0));
|
|
if (!base)
|
|
obj = *tp;
|
|
else if (TREE_CODE (base) != MEM_REF)
|
|
obj = fold_convert (ptr_type_node, build_fold_addr_expr (base));
|
|
}
|
|
else if (code == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*tp)))
|
|
obj = fold_convert (ptr_type_node, *tp);
|
|
|
|
if (!obj)
|
|
{
|
|
if (!EXPR_P (*tp))
|
|
*walk_subtrees = 0;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
/* Record special node for multiple base objects and stop. */
|
|
if (*static_cast<tree *> (wdata))
|
|
{
|
|
*static_cast<tree *> (wdata) = integer_zero_node;
|
|
return integer_zero_node;
|
|
}
|
|
/* Record the base object and continue looking. */
|
|
*static_cast<tree *> (wdata) = obj;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Returns a memory object to that EXPR points with caching. Return NULL if we
|
|
are able to determine that it does not point to any such object; specially
|
|
return integer_zero_node if EXPR contains multiple base objects. */
|
|
|
|
static tree
|
|
determine_base_object (struct ivopts_data *data, tree expr)
|
|
{
|
|
tree *slot, obj = NULL_TREE;
|
|
if (data->base_object_map)
|
|
{
|
|
if ((slot = data->base_object_map->get(expr)) != NULL)
|
|
return *slot;
|
|
}
|
|
else
|
|
data->base_object_map = new hash_map<tree, tree>;
|
|
|
|
(void) walk_tree_without_duplicates (&expr, determine_base_object_1, &obj);
|
|
data->base_object_map->put (expr, obj);
|
|
return obj;
|
|
}
|
|
|
|
/* Return true if address expression with non-DECL_P operand appears
|
|
in EXPR. */
|
|
|
|
static bool
|
|
contain_complex_addr_expr (tree expr)
|
|
{
|
|
bool res = false;
|
|
|
|
STRIP_NOPS (expr);
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
|
|
res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
|
|
break;
|
|
|
|
case ADDR_EXPR:
|
|
return (!DECL_P (TREE_OPERAND (expr, 0)));
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Allocates an induction variable with given initial value BASE and step STEP
|
|
for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
|
|
|
|
static struct iv *
|
|
alloc_iv (struct ivopts_data *data, tree base, tree step,
|
|
bool no_overflow = false)
|
|
{
|
|
tree expr = base;
|
|
struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack,
|
|
sizeof (struct iv));
|
|
gcc_assert (step != NULL_TREE);
|
|
|
|
/* Lower address expression in base except ones with DECL_P as operand.
|
|
By doing this:
|
|
1) More accurate cost can be computed for address expressions;
|
|
2) Duplicate candidates won't be created for bases in different
|
|
forms, like &a[0] and &a. */
|
|
STRIP_NOPS (expr);
|
|
if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
|
|
|| contain_complex_addr_expr (expr))
|
|
{
|
|
aff_tree comb;
|
|
tree_to_aff_combination (expr, TREE_TYPE (expr), &comb);
|
|
base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
|
|
}
|
|
|
|
iv->base = base;
|
|
iv->base_object = determine_base_object (data, base);
|
|
iv->step = step;
|
|
iv->biv_p = false;
|
|
iv->nonlin_use = NULL;
|
|
iv->ssa_name = NULL_TREE;
|
|
if (!no_overflow
|
|
&& !iv_can_overflow_p (data->current_loop, TREE_TYPE (base),
|
|
base, step))
|
|
no_overflow = true;
|
|
iv->no_overflow = no_overflow;
|
|
iv->have_address_use = false;
|
|
|
|
return iv;
|
|
}
|
|
|
|
/* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
|
|
doesn't overflow. */
|
|
|
|
static void
|
|
set_iv (struct ivopts_data *data, tree iv, tree base, tree step,
|
|
bool no_overflow)
|
|
{
|
|
struct version_info *info = name_info (data, iv);
|
|
|
|
gcc_assert (!info->iv);
|
|
|
|
bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
|
|
info->iv = alloc_iv (data, base, step, no_overflow);
|
|
info->iv->ssa_name = iv;
|
|
}
|
|
|
|
/* Finds induction variable declaration for VAR. */
|
|
|
|
static struct iv *
|
|
get_iv (struct ivopts_data *data, tree var)
|
|
{
|
|
basic_block bb;
|
|
tree type = TREE_TYPE (var);
|
|
|
|
if (!POINTER_TYPE_P (type)
|
|
&& !INTEGRAL_TYPE_P (type))
|
|
return NULL;
|
|
|
|
if (!name_info (data, var)->iv)
|
|
{
|
|
bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
|
|
|
if (!bb
|
|
|| !flow_bb_inside_loop_p (data->current_loop, bb))
|
|
{
|
|
if (POINTER_TYPE_P (type))
|
|
type = sizetype;
|
|
set_iv (data, var, var, build_int_cst (type, 0), true);
|
|
}
|
|
}
|
|
|
|
return name_info (data, var)->iv;
|
|
}
|
|
|
|
/* Return the first non-invariant ssa var found in EXPR. */
|
|
|
|
static tree
|
|
extract_single_var_from_expr (tree expr)
|
|
{
|
|
int i, n;
|
|
tree tmp;
|
|
enum tree_code code;
|
|
|
|
if (!expr || is_gimple_min_invariant (expr))
|
|
return NULL;
|
|
|
|
code = TREE_CODE (expr);
|
|
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
|
{
|
|
n = TREE_OPERAND_LENGTH (expr);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i));
|
|
|
|
if (tmp)
|
|
return tmp;
|
|
}
|
|
}
|
|
return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL;
|
|
}
|
|
|
|
/* Finds basic ivs. */
|
|
|
|
static bool
|
|
find_bivs (struct ivopts_data *data)
|
|
{
|
|
gphi *phi;
|
|
affine_iv iv;
|
|
tree step, type, base, stop;
|
|
bool found = false;
|
|
class loop *loop = data->current_loop;
|
|
gphi_iterator psi;
|
|
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = psi.phi ();
|
|
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
|
|
continue;
|
|
|
|
if (virtual_operand_p (PHI_RESULT (phi)))
|
|
continue;
|
|
|
|
if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true))
|
|
continue;
|
|
|
|
if (integer_zerop (iv.step))
|
|
continue;
|
|
|
|
step = iv.step;
|
|
base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
|
/* Stop expanding iv base at the first ssa var referred by iv step.
|
|
Ideally we should stop at any ssa var, because that's expensive
|
|
and unusual to happen, we just do it on the first one.
|
|
|
|
See PR64705 for the rationale. */
|
|
stop = extract_single_var_from_expr (step);
|
|
base = expand_simple_operations (base, stop);
|
|
if (contains_abnormal_ssa_name_p (base)
|
|
|| contains_abnormal_ssa_name_p (step))
|
|
continue;
|
|
|
|
type = TREE_TYPE (PHI_RESULT (phi));
|
|
base = fold_convert (type, base);
|
|
if (step)
|
|
{
|
|
if (POINTER_TYPE_P (type))
|
|
step = convert_to_ptrofftype (step);
|
|
else
|
|
step = fold_convert (type, step);
|
|
}
|
|
|
|
set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow);
|
|
found = true;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/* Marks basic ivs. */
|
|
|
|
static void
|
|
mark_bivs (struct ivopts_data *data)
|
|
{
|
|
gphi *phi;
|
|
gimple *def;
|
|
tree var;
|
|
struct iv *iv, *incr_iv;
|
|
class loop *loop = data->current_loop;
|
|
basic_block incr_bb;
|
|
gphi_iterator psi;
|
|
|
|
data->bivs_not_used_in_addr = 0;
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = psi.phi ();
|
|
|
|
iv = get_iv (data, PHI_RESULT (phi));
|
|
if (!iv)
|
|
continue;
|
|
|
|
var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
|
def = SSA_NAME_DEF_STMT (var);
|
|
/* Don't mark iv peeled from other one as biv. */
|
|
if (def
|
|
&& gimple_code (def) == GIMPLE_PHI
|
|
&& gimple_bb (def) == loop->header)
|
|
continue;
|
|
|
|
incr_iv = get_iv (data, var);
|
|
if (!incr_iv)
|
|
continue;
|
|
|
|
/* If the increment is in the subloop, ignore it. */
|
|
incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
|
if (incr_bb->loop_father != data->current_loop
|
|
|| (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
|
|
continue;
|
|
|
|
iv->biv_p = true;
|
|
incr_iv->biv_p = true;
|
|
if (iv->no_overflow)
|
|
data->bivs_not_used_in_addr++;
|
|
if (incr_iv->no_overflow)
|
|
data->bivs_not_used_in_addr++;
|
|
}
|
|
}
|
|
|
|
/* Checks whether STMT defines a linear induction variable and stores its
|
|
parameters to IV. */
|
|
|
|
static bool
|
|
find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv)
|
|
{
|
|
tree lhs, stop;
|
|
class loop *loop = data->current_loop;
|
|
|
|
iv->base = NULL_TREE;
|
|
iv->step = NULL_TREE;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
return false;
|
|
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
|
|
return false;
|
|
|
|
/* Stop expanding iv base at the first ssa var referred by iv step.
|
|
Ideally we should stop at any ssa var, because that's expensive
|
|
and unusual to happen, we just do it on the first one.
|
|
|
|
See PR64705 for the rationale. */
|
|
stop = extract_single_var_from_expr (iv->step);
|
|
iv->base = expand_simple_operations (iv->base, stop);
|
|
if (contains_abnormal_ssa_name_p (iv->base)
|
|
|| contains_abnormal_ssa_name_p (iv->step))
|
|
return false;
|
|
|
|
/* If STMT could throw, then do not consider STMT as defining a GIV.
|
|
While this will suppress optimizations, we cannot safely delete this
|
|
GIV and associated statements, even if it appears it is not used. */
|
|
if (stmt_could_throw_p (cfun, stmt))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finds general ivs in statement STMT. */
|
|
|
|
static void
|
|
find_givs_in_stmt (struct ivopts_data *data, gimple *stmt)
|
|
{
|
|
affine_iv iv;
|
|
|
|
if (!find_givs_in_stmt_scev (data, stmt, &iv))
|
|
return;
|
|
|
|
set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow);
|
|
}
|
|
|
|
/* Finds general ivs in basic block BB. */
|
|
|
|
static void
|
|
find_givs_in_bb (struct ivopts_data *data, basic_block bb)
|
|
{
|
|
gimple_stmt_iterator bsi;
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
find_givs_in_stmt (data, gsi_stmt (bsi));
|
|
}
|
|
|
|
/* Finds general ivs. */
|
|
|
|
static void
|
|
find_givs (struct ivopts_data *data, basic_block *body)
|
|
{
|
|
class loop *loop = data->current_loop;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
find_givs_in_bb (data, body[i]);
|
|
}
|
|
|
|
/* For each ssa name defined in LOOP determines whether it is an induction
|
|
variable and if so, its initial value and step. */
|
|
|
|
static bool
|
|
find_induction_variables (struct ivopts_data *data, basic_block *body)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
if (!find_bivs (data))
|
|
return false;
|
|
|
|
find_givs (data, body);
|
|
mark_bivs (data);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
class tree_niter_desc *niter = niter_for_single_dom_exit (data);
|
|
|
|
if (niter)
|
|
{
|
|
fprintf (dump_file, " number of iterations ");
|
|
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
|
|
if (!integer_zerop (niter->may_be_zero))
|
|
{
|
|
fprintf (dump_file, "; zero if ");
|
|
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
};
|
|
|
|
fprintf (dump_file, "\n<Induction Vars>:\n");
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
struct version_info *info = ver_info (data, i);
|
|
if (info->iv && info->iv->step && !integer_zerop (info->iv->step))
|
|
dump_iv (dump_file, ver_info (data, i)->iv, true, 0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
|
|
For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
|
|
is the const offset stripped from IV base and MEM_TYPE is the type
|
|
of the memory being addressed. For uses of other types, ADDR_BASE
|
|
and ADDR_OFFSET are zero by default and MEM_TYPE is NULL_TREE. */
|
|
|
|
static struct iv_use *
|
|
record_use (struct iv_group *group, tree *use_p, struct iv *iv,
|
|
gimple *stmt, enum use_type type, tree mem_type,
|
|
tree addr_base, poly_uint64 addr_offset)
|
|
{
|
|
struct iv_use *use = XCNEW (struct iv_use);
|
|
|
|
use->id = group->vuses.length ();
|
|
use->group_id = group->id;
|
|
use->type = type;
|
|
use->mem_type = mem_type;
|
|
use->iv = iv;
|
|
use->stmt = stmt;
|
|
use->op_p = use_p;
|
|
use->addr_base = addr_base;
|
|
use->addr_offset = addr_offset;
|
|
|
|
group->vuses.safe_push (use);
|
|
return use;
|
|
}
|
|
|
|
/* Checks whether OP is a loop-level invariant and if so, records it.
|
|
NONLINEAR_USE is true if the invariant is used in a way we do not
|
|
handle specially. */
|
|
|
|
static void
|
|
record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
|
|
{
|
|
basic_block bb;
|
|
struct version_info *info;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME
|
|
|| virtual_operand_p (op))
|
|
return;
|
|
|
|
bb = gimple_bb (SSA_NAME_DEF_STMT (op));
|
|
if (bb
|
|
&& flow_bb_inside_loop_p (data->current_loop, bb))
|
|
return;
|
|
|
|
info = name_info (data, op);
|
|
info->name = op;
|
|
info->has_nonlin_use |= nonlinear_use;
|
|
if (!info->inv_id)
|
|
info->inv_id = ++data->max_inv_var_id;
|
|
bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
|
|
}
|
|
|
|
/* Record a group of TYPE. */
|
|
|
|
static struct iv_group *
|
|
record_group (struct ivopts_data *data, enum use_type type)
|
|
{
|
|
struct iv_group *group = XCNEW (struct iv_group);
|
|
|
|
group->id = data->vgroups.length ();
|
|
group->type = type;
|
|
group->related_cands = BITMAP_ALLOC (NULL);
|
|
group->vuses.create (1);
|
|
group->doloop_p = false;
|
|
|
|
data->vgroups.safe_push (group);
|
|
return group;
|
|
}
|
|
|
|
/* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
|
|
New group will be created if there is no existing group for the use.
|
|
MEM_TYPE is the type of memory being addressed, or NULL if this
|
|
isn't an address reference. */
|
|
|
|
static struct iv_use *
|
|
record_group_use (struct ivopts_data *data, tree *use_p,
|
|
struct iv *iv, gimple *stmt, enum use_type type,
|
|
tree mem_type)
|
|
{
|
|
tree addr_base = NULL;
|
|
struct iv_group *group = NULL;
|
|
poly_uint64 addr_offset = 0;
|
|
|
|
/* Record non address type use in a new group. */
|
|
if (address_p (type))
|
|
{
|
|
unsigned int i;
|
|
|
|
addr_base = strip_offset (iv->base, &addr_offset);
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_use *use;
|
|
|
|
group = data->vgroups[i];
|
|
use = group->vuses[0];
|
|
if (!address_p (use->type))
|
|
continue;
|
|
|
|
/* Check if it has the same stripped base and step. */
|
|
if (operand_equal_p (iv->base_object, use->iv->base_object, 0)
|
|
&& operand_equal_p (iv->step, use->iv->step, 0)
|
|
&& operand_equal_p (addr_base, use->addr_base, 0))
|
|
break;
|
|
}
|
|
if (i == data->vgroups.length ())
|
|
group = NULL;
|
|
}
|
|
|
|
if (!group)
|
|
group = record_group (data, type);
|
|
|
|
return record_use (group, use_p, iv, stmt, type, mem_type,
|
|
addr_base, addr_offset);
|
|
}
|
|
|
|
/* Checks whether the use OP is interesting and if so, records it. */
|
|
|
|
static struct iv_use *
|
|
find_interesting_uses_op (struct ivopts_data *data, tree op)
|
|
{
|
|
struct iv *iv;
|
|
gimple *stmt;
|
|
struct iv_use *use;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return NULL;
|
|
|
|
iv = get_iv (data, op);
|
|
if (!iv)
|
|
return NULL;
|
|
|
|
if (iv->nonlin_use)
|
|
{
|
|
gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR);
|
|
return iv->nonlin_use;
|
|
}
|
|
|
|
if (integer_zerop (iv->step))
|
|
{
|
|
record_invariant (data, op, true);
|
|
return NULL;
|
|
}
|
|
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
|
gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt));
|
|
|
|
use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR, NULL_TREE);
|
|
iv->nonlin_use = use;
|
|
return use;
|
|
}
|
|
|
|
/* Indicate how compare type iv_use can be handled. */
|
|
enum comp_iv_rewrite
|
|
{
|
|
COMP_IV_NA,
|
|
/* We may rewrite compare type iv_use by expressing value of the iv_use. */
|
|
COMP_IV_EXPR,
|
|
/* We may rewrite compare type iv_uses on both sides of comparison by
|
|
expressing value of each iv_use. */
|
|
COMP_IV_EXPR_2,
|
|
/* We may rewrite compare type iv_use by expressing value of the iv_use
|
|
or by eliminating it with other iv_cand. */
|
|
COMP_IV_ELIM
|
|
};
|
|
|
|
/* Given a condition in statement STMT, checks whether it is a compare
|
|
of an induction variable and an invariant. If this is the case,
|
|
CONTROL_VAR is set to location of the iv, BOUND to the location of
|
|
the invariant, IV_VAR and IV_BOUND are set to the corresponding
|
|
induction variable descriptions, and true is returned. If this is not
|
|
the case, CONTROL_VAR and BOUND are set to the arguments of the
|
|
condition and false is returned. */
|
|
|
|
static enum comp_iv_rewrite
|
|
extract_cond_operands (struct ivopts_data *data, gimple *stmt,
|
|
tree **control_var, tree **bound,
|
|
struct iv **iv_var, struct iv **iv_bound)
|
|
{
|
|
/* The objects returned when COND has constant operands. */
|
|
static struct iv const_iv;
|
|
static tree zero;
|
|
tree *op0 = &zero, *op1 = &zero;
|
|
struct iv *iv0 = &const_iv, *iv1 = &const_iv;
|
|
enum comp_iv_rewrite rewrite_type = COMP_IV_NA;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
gcond *cond_stmt = as_a <gcond *> (stmt);
|
|
op0 = gimple_cond_lhs_ptr (cond_stmt);
|
|
op1 = gimple_cond_rhs_ptr (cond_stmt);
|
|
}
|
|
else
|
|
{
|
|
op0 = gimple_assign_rhs1_ptr (stmt);
|
|
op1 = gimple_assign_rhs2_ptr (stmt);
|
|
}
|
|
|
|
zero = integer_zero_node;
|
|
const_iv.step = integer_zero_node;
|
|
|
|
if (TREE_CODE (*op0) == SSA_NAME)
|
|
iv0 = get_iv (data, *op0);
|
|
if (TREE_CODE (*op1) == SSA_NAME)
|
|
iv1 = get_iv (data, *op1);
|
|
|
|
/* If both sides of comparison are IVs. We can express ivs on both end. */
|
|
if (iv0 && iv1 && !integer_zerop (iv0->step) && !integer_zerop (iv1->step))
|
|
{
|
|
rewrite_type = COMP_IV_EXPR_2;
|
|
goto end;
|
|
}
|
|
|
|
/* If none side of comparison is IV. */
|
|
if ((!iv0 || integer_zerop (iv0->step))
|
|
&& (!iv1 || integer_zerop (iv1->step)))
|
|
goto end;
|
|
|
|
/* Control variable may be on the other side. */
|
|
if (!iv0 || integer_zerop (iv0->step))
|
|
{
|
|
std::swap (op0, op1);
|
|
std::swap (iv0, iv1);
|
|
}
|
|
/* If one side is IV and the other side isn't loop invariant. */
|
|
if (!iv1)
|
|
rewrite_type = COMP_IV_EXPR;
|
|
/* If one side is IV and the other side is loop invariant. */
|
|
else if (!integer_zerop (iv0->step) && integer_zerop (iv1->step))
|
|
rewrite_type = COMP_IV_ELIM;
|
|
|
|
end:
|
|
if (control_var)
|
|
*control_var = op0;
|
|
if (iv_var)
|
|
*iv_var = iv0;
|
|
if (bound)
|
|
*bound = op1;
|
|
if (iv_bound)
|
|
*iv_bound = iv1;
|
|
|
|
return rewrite_type;
|
|
}
|
|
|
|
/* Checks whether the condition in STMT is interesting and if so,
|
|
records it. */
|
|
|
|
static void
|
|
find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt)
|
|
{
|
|
tree *var_p, *bound_p;
|
|
struct iv *var_iv, *bound_iv;
|
|
enum comp_iv_rewrite ret;
|
|
|
|
ret = extract_cond_operands (data, stmt,
|
|
&var_p, &bound_p, &var_iv, &bound_iv);
|
|
if (ret == COMP_IV_NA)
|
|
{
|
|
find_interesting_uses_op (data, *var_p);
|
|
find_interesting_uses_op (data, *bound_p);
|
|
return;
|
|
}
|
|
|
|
record_group_use (data, var_p, var_iv, stmt, USE_COMPARE, NULL_TREE);
|
|
/* Record compare type iv_use for iv on the other side of comparison. */
|
|
if (ret == COMP_IV_EXPR_2)
|
|
record_group_use (data, bound_p, bound_iv, stmt, USE_COMPARE, NULL_TREE);
|
|
}
|
|
|
|
/* Returns the outermost loop EXPR is obviously invariant in
|
|
relative to the loop LOOP, i.e. if all its operands are defined
|
|
outside of the returned loop. Returns NULL if EXPR is not
|
|
even obviously invariant in LOOP. */
|
|
|
|
class loop *
|
|
outermost_invariant_loop_for_expr (class loop *loop, tree expr)
|
|
{
|
|
basic_block def_bb;
|
|
unsigned i, len;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return current_loops->tree_root;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
|
if (def_bb)
|
|
{
|
|
if (flow_bb_inside_loop_p (loop, def_bb))
|
|
return NULL;
|
|
return superloop_at_depth (loop,
|
|
loop_depth (def_bb->loop_father) + 1);
|
|
}
|
|
|
|
return current_loops->tree_root;
|
|
}
|
|
|
|
if (!EXPR_P (expr))
|
|
return NULL;
|
|
|
|
unsigned maxdepth = 0;
|
|
len = TREE_OPERAND_LENGTH (expr);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
class loop *ivloop;
|
|
if (!TREE_OPERAND (expr, i))
|
|
continue;
|
|
|
|
ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
|
|
if (!ivloop)
|
|
return NULL;
|
|
maxdepth = MAX (maxdepth, loop_depth (ivloop));
|
|
}
|
|
|
|
return superloop_at_depth (loop, maxdepth);
|
|
}
|
|
|
|
/* Returns true if expression EXPR is obviously invariant in LOOP,
|
|
i.e. if all its operands are defined outside of the LOOP. LOOP
|
|
should not be the function body. */
|
|
|
|
bool
|
|
expr_invariant_in_loop_p (class loop *loop, tree expr)
|
|
{
|
|
basic_block def_bb;
|
|
unsigned i, len;
|
|
|
|
gcc_assert (loop_depth (loop) > 0);
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return true;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
|
if (def_bb
|
|
&& flow_bb_inside_loop_p (loop, def_bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (!EXPR_P (expr))
|
|
return false;
|
|
|
|
len = TREE_OPERAND_LENGTH (expr);
|
|
for (i = 0; i < len; i++)
|
|
if (TREE_OPERAND (expr, i)
|
|
&& !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Given expression EXPR which computes inductive values with respect
|
|
to loop recorded in DATA, this function returns biv from which EXPR
|
|
is derived by tracing definition chains of ssa variables in EXPR. */
|
|
|
|
static struct iv*
|
|
find_deriving_biv_for_expr (struct ivopts_data *data, tree expr)
|
|
{
|
|
struct iv *iv;
|
|
unsigned i, n;
|
|
tree e2, e1;
|
|
enum tree_code code;
|
|
gimple *stmt;
|
|
|
|
if (expr == NULL_TREE)
|
|
return NULL;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return NULL;
|
|
|
|
code = TREE_CODE (expr);
|
|
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
|
{
|
|
n = TREE_OPERAND_LENGTH (expr);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i));
|
|
if (iv)
|
|
return iv;
|
|
}
|
|
}
|
|
|
|
/* Stop if it's not ssa name. */
|
|
if (code != SSA_NAME)
|
|
return NULL;
|
|
|
|
iv = get_iv (data, expr);
|
|
if (!iv || integer_zerop (iv->step))
|
|
return NULL;
|
|
else if (iv->biv_p)
|
|
return iv;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (expr);
|
|
if (gphi *phi = dyn_cast <gphi *> (stmt))
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
basic_block phi_bb = gimple_bb (phi);
|
|
|
|
/* Skip loop header PHI that doesn't define biv. */
|
|
if (phi_bb->loop_father == data->current_loop)
|
|
return NULL;
|
|
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
return NULL;
|
|
|
|
FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
|
|
{
|
|
tree use = USE_FROM_PTR (use_p);
|
|
iv = find_deriving_biv_for_expr (data, use);
|
|
if (iv)
|
|
return iv;
|
|
}
|
|
return NULL;
|
|
}
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return NULL;
|
|
|
|
e1 = gimple_assign_rhs1 (stmt);
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
|
return find_deriving_biv_for_expr (data, e1);
|
|
|
|
switch (code)
|
|
{
|
|
case MULT_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
/* Increments, decrements and multiplications by a constant
|
|
are simple. */
|
|
e2 = gimple_assign_rhs2 (stmt);
|
|
iv = find_deriving_biv_for_expr (data, e2);
|
|
if (iv)
|
|
return iv;
|
|
gcc_fallthrough ();
|
|
|
|
CASE_CONVERT:
|
|
/* Casts are simple. */
|
|
return find_deriving_biv_for_expr (data, e1);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Record BIV, its predecessor and successor that they are used in
|
|
address type uses. */
|
|
|
|
static void
|
|
record_biv_for_address_use (struct ivopts_data *data, struct iv *biv)
|
|
{
|
|
unsigned i;
|
|
tree type, base_1, base_2;
|
|
bitmap_iterator bi;
|
|
|
|
if (!biv || !biv->biv_p || integer_zerop (biv->step)
|
|
|| biv->have_address_use || !biv->no_overflow)
|
|
return;
|
|
|
|
type = TREE_TYPE (biv->base);
|
|
if (!INTEGRAL_TYPE_P (type))
|
|
return;
|
|
|
|
biv->have_address_use = true;
|
|
data->bivs_not_used_in_addr--;
|
|
base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step);
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
struct iv *iv = ver_info (data, i)->iv;
|
|
|
|
if (!iv || !iv->biv_p || integer_zerop (iv->step)
|
|
|| iv->have_address_use || !iv->no_overflow)
|
|
continue;
|
|
|
|
if (type != TREE_TYPE (iv->base)
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (iv->base)))
|
|
continue;
|
|
|
|
if (!operand_equal_p (biv->step, iv->step, 0))
|
|
continue;
|
|
|
|
base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step);
|
|
if (operand_equal_p (base_1, iv->base, 0)
|
|
|| operand_equal_p (base_2, biv->base, 0))
|
|
{
|
|
iv->have_address_use = true;
|
|
data->bivs_not_used_in_addr--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Cumulates the steps of indices into DATA and replaces their values with the
|
|
initial ones. Returns false when the value of the index cannot be determined.
|
|
Callback for for_each_index. */
|
|
|
|
struct ifs_ivopts_data
|
|
{
|
|
struct ivopts_data *ivopts_data;
|
|
gimple *stmt;
|
|
tree step;
|
|
};
|
|
|
|
static bool
|
|
idx_find_step (tree base, tree *idx, void *data)
|
|
{
|
|
struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
|
|
struct iv *iv;
|
|
bool use_overflow_semantics = false;
|
|
tree step, iv_base, iv_step, lbound, off;
|
|
class loop *loop = dta->ivopts_data->current_loop;
|
|
|
|
/* If base is a component ref, require that the offset of the reference
|
|
be invariant. */
|
|
if (TREE_CODE (base) == COMPONENT_REF)
|
|
{
|
|
off = component_ref_field_offset (base);
|
|
return expr_invariant_in_loop_p (loop, off);
|
|
}
|
|
|
|
/* If base is array, first check whether we will be able to move the
|
|
reference out of the loop (in order to take its address in strength
|
|
reduction). In order for this to work we need both lower bound
|
|
and step to be loop invariants. */
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
/* Moreover, for a range, the size needs to be invariant as well. */
|
|
if (TREE_CODE (base) == ARRAY_RANGE_REF
|
|
&& !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
|
|
return false;
|
|
|
|
step = array_ref_element_size (base);
|
|
lbound = array_ref_low_bound (base);
|
|
|
|
if (!expr_invariant_in_loop_p (loop, step)
|
|
|| !expr_invariant_in_loop_p (loop, lbound))
|
|
return false;
|
|
}
|
|
|
|
if (TREE_CODE (*idx) != SSA_NAME)
|
|
return true;
|
|
|
|
iv = get_iv (dta->ivopts_data, *idx);
|
|
if (!iv)
|
|
return false;
|
|
|
|
/* XXX We produce for a base of *D42 with iv->base being &x[0]
|
|
*&x[0], which is not folded and does not trigger the
|
|
ARRAY_REF path below. */
|
|
*idx = iv->base;
|
|
|
|
if (integer_zerop (iv->step))
|
|
return true;
|
|
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
step = array_ref_element_size (base);
|
|
|
|
/* We only handle addresses whose step is an integer constant. */
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
|
return false;
|
|
}
|
|
else
|
|
/* The step for pointer arithmetics already is 1 byte. */
|
|
step = size_one_node;
|
|
|
|
iv_base = iv->base;
|
|
iv_step = iv->step;
|
|
if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step)))
|
|
use_overflow_semantics = true;
|
|
|
|
if (!convert_affine_scev (dta->ivopts_data->current_loop,
|
|
sizetype, &iv_base, &iv_step, dta->stmt,
|
|
use_overflow_semantics))
|
|
{
|
|
/* The index might wrap. */
|
|
return false;
|
|
}
|
|
|
|
step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
|
|
dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
|
|
|
|
if (dta->ivopts_data->bivs_not_used_in_addr)
|
|
{
|
|
if (!iv->biv_p)
|
|
iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name);
|
|
|
|
record_biv_for_address_use (dta->ivopts_data, iv);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Records use in index IDX. Callback for for_each_index. Ivopts data
|
|
object is passed to it in DATA. */
|
|
|
|
static bool
|
|
idx_record_use (tree base, tree *idx,
|
|
void *vdata)
|
|
{
|
|
struct ivopts_data *data = (struct ivopts_data *) vdata;
|
|
find_interesting_uses_op (data, *idx);
|
|
if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
|
|
{
|
|
if (TREE_OPERAND (base, 2))
|
|
find_interesting_uses_op (data, TREE_OPERAND (base, 2));
|
|
if (TREE_OPERAND (base, 3))
|
|
find_interesting_uses_op (data, TREE_OPERAND (base, 3));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* If we can prove that TOP = cst * BOT for some constant cst,
|
|
store cst to MUL and return true. Otherwise return false.
|
|
The returned value is always sign-extended, regardless of the
|
|
signedness of TOP and BOT. */
|
|
|
|
static bool
|
|
constant_multiple_of (tree top, tree bot, widest_int *mul)
|
|
{
|
|
tree mby;
|
|
enum tree_code code;
|
|
unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
|
|
widest_int res, p0, p1;
|
|
|
|
STRIP_NOPS (top);
|
|
STRIP_NOPS (bot);
|
|
|
|
if (operand_equal_p (top, bot, 0))
|
|
{
|
|
*mul = 1;
|
|
return true;
|
|
}
|
|
|
|
code = TREE_CODE (top);
|
|
switch (code)
|
|
{
|
|
case MULT_EXPR:
|
|
mby = TREE_OPERAND (top, 1);
|
|
if (TREE_CODE (mby) != INTEGER_CST)
|
|
return false;
|
|
|
|
if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
|
|
return false;
|
|
|
|
*mul = wi::sext (res * wi::to_widest (mby), precision);
|
|
return true;
|
|
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
|
|
|| !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
|
|
return false;
|
|
|
|
if (code == MINUS_EXPR)
|
|
p1 = -p1;
|
|
*mul = wi::sext (p0 + p1, precision);
|
|
return true;
|
|
|
|
case INTEGER_CST:
|
|
if (TREE_CODE (bot) != INTEGER_CST)
|
|
return false;
|
|
|
|
p0 = widest_int::from (wi::to_wide (top), SIGNED);
|
|
p1 = widest_int::from (wi::to_wide (bot), SIGNED);
|
|
if (p1 == 0)
|
|
return false;
|
|
*mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
|
|
return res == 0;
|
|
|
|
default:
|
|
if (POLY_INT_CST_P (top)
|
|
&& POLY_INT_CST_P (bot)
|
|
&& constant_multiple_p (wi::to_poly_widest (top),
|
|
wi::to_poly_widest (bot), mul))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if memory reference REF with step STEP may be unaligned. */
|
|
|
|
static bool
|
|
may_be_unaligned_p (tree ref, tree step)
|
|
{
|
|
/* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
|
|
thus they are not misaligned. */
|
|
if (TREE_CODE (ref) == TARGET_MEM_REF)
|
|
return false;
|
|
|
|
unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
|
|
if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
|
|
align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
|
|
|
|
unsigned HOST_WIDE_INT bitpos;
|
|
unsigned int ref_align;
|
|
get_object_alignment_1 (ref, &ref_align, &bitpos);
|
|
if (ref_align < align
|
|
|| (bitpos % align) != 0
|
|
|| (bitpos % BITS_PER_UNIT) != 0)
|
|
return true;
|
|
|
|
unsigned int trailing_zeros = tree_ctz (step);
|
|
if (trailing_zeros < HOST_BITS_PER_INT
|
|
&& (1U << trailing_zeros) * BITS_PER_UNIT < align)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if EXPR may be non-addressable. */
|
|
|
|
bool
|
|
may_be_nonaddressable_p (tree expr)
|
|
{
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case VAR_DECL:
|
|
/* Check if it's a register variable. */
|
|
return DECL_HARD_REGISTER (expr);
|
|
|
|
case TARGET_MEM_REF:
|
|
/* TARGET_MEM_REFs are translated directly to valid MEMs on the
|
|
target, thus they are always addressable. */
|
|
return false;
|
|
|
|
case MEM_REF:
|
|
/* Likewise for MEM_REFs, modulo the storage order. */
|
|
return REF_REVERSE_STORAGE_ORDER (expr);
|
|
|
|
case BIT_FIELD_REF:
|
|
if (REF_REVERSE_STORAGE_ORDER (expr))
|
|
return true;
|
|
return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
case COMPONENT_REF:
|
|
if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
|
return true;
|
|
return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
|
|
|| may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
|
return true;
|
|
return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
case VIEW_CONVERT_EXPR:
|
|
/* This kind of view-conversions may wrap non-addressable objects
|
|
and make them look addressable. After some processing the
|
|
non-addressability may be uncovered again, causing ADDR_EXPRs
|
|
of inappropriate objects to be built. */
|
|
if (is_gimple_reg (TREE_OPERAND (expr, 0))
|
|
|| !is_gimple_addressable (TREE_OPERAND (expr, 0)))
|
|
return true;
|
|
return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
|
|
|
|
CASE_CONVERT:
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Finds addresses in *OP_P inside STMT. */
|
|
|
|
static void
|
|
find_interesting_uses_address (struct ivopts_data *data, gimple *stmt,
|
|
tree *op_p)
|
|
{
|
|
tree base = *op_p, step = size_zero_node;
|
|
struct iv *civ;
|
|
struct ifs_ivopts_data ifs_ivopts_data;
|
|
|
|
/* Do not play with volatile memory references. A bit too conservative,
|
|
perhaps, but safe. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
goto fail;
|
|
|
|
/* Ignore bitfields for now. Not really something terribly complicated
|
|
to handle. TODO. */
|
|
if (TREE_CODE (base) == BIT_FIELD_REF)
|
|
goto fail;
|
|
|
|
base = unshare_expr (base);
|
|
|
|
if (TREE_CODE (base) == TARGET_MEM_REF)
|
|
{
|
|
tree type = build_pointer_type (TREE_TYPE (base));
|
|
tree astep;
|
|
|
|
if (TMR_BASE (base)
|
|
&& TREE_CODE (TMR_BASE (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_BASE (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_BASE (base) = civ->base;
|
|
step = civ->step;
|
|
}
|
|
if (TMR_INDEX2 (base)
|
|
&& TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_INDEX2 (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_INDEX2 (base) = civ->base;
|
|
step = civ->step;
|
|
}
|
|
if (TMR_INDEX (base)
|
|
&& TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
|
|
{
|
|
civ = get_iv (data, TMR_INDEX (base));
|
|
if (!civ)
|
|
goto fail;
|
|
|
|
TMR_INDEX (base) = civ->base;
|
|
astep = civ->step;
|
|
|
|
if (astep)
|
|
{
|
|
if (TMR_STEP (base))
|
|
astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
|
|
|
|
step = fold_build2 (PLUS_EXPR, type, step, astep);
|
|
}
|
|
}
|
|
|
|
if (integer_zerop (step))
|
|
goto fail;
|
|
base = tree_mem_ref_addr (type, base);
|
|
}
|
|
else
|
|
{
|
|
ifs_ivopts_data.ivopts_data = data;
|
|
ifs_ivopts_data.stmt = stmt;
|
|
ifs_ivopts_data.step = size_zero_node;
|
|
if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
|
|
|| integer_zerop (ifs_ivopts_data.step))
|
|
goto fail;
|
|
step = ifs_ivopts_data.step;
|
|
|
|
/* Check that the base expression is addressable. This needs
|
|
to be done after substituting bases of IVs into it. */
|
|
if (may_be_nonaddressable_p (base))
|
|
goto fail;
|
|
|
|
/* Moreover, on strict alignment platforms, check that it is
|
|
sufficiently aligned. */
|
|
if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
|
|
goto fail;
|
|
|
|
base = build_fold_addr_expr (base);
|
|
|
|
/* Substituting bases of IVs into the base expression might
|
|
have caused folding opportunities. */
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
{
|
|
tree *ref = &TREE_OPERAND (base, 0);
|
|
while (handled_component_p (*ref))
|
|
ref = &TREE_OPERAND (*ref, 0);
|
|
if (TREE_CODE (*ref) == MEM_REF)
|
|
{
|
|
tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
|
|
TREE_OPERAND (*ref, 0),
|
|
TREE_OPERAND (*ref, 1));
|
|
if (tem)
|
|
*ref = tem;
|
|
}
|
|
}
|
|
}
|
|
|
|
civ = alloc_iv (data, base, step);
|
|
/* Fail if base object of this memory reference is unknown. */
|
|
if (civ->base_object == NULL_TREE)
|
|
goto fail;
|
|
|
|
record_group_use (data, op_p, civ, stmt, USE_REF_ADDRESS, TREE_TYPE (*op_p));
|
|
return;
|
|
|
|
fail:
|
|
for_each_index (op_p, idx_record_use, data);
|
|
}
|
|
|
|
/* Finds and records invariants used in STMT. */
|
|
|
|
static void
|
|
find_invariants_stmt (struct ivopts_data *data, gimple *stmt)
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
tree op;
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
op = USE_FROM_PTR (use_p);
|
|
record_invariant (data, op, false);
|
|
}
|
|
}
|
|
|
|
/* CALL calls an internal function. If operand *OP_P will become an
|
|
address when the call is expanded, return the type of the memory
|
|
being addressed, otherwise return null. */
|
|
|
|
static tree
|
|
get_mem_type_for_internal_fn (gcall *call, tree *op_p)
|
|
{
|
|
switch (gimple_call_internal_fn (call))
|
|
{
|
|
case IFN_MASK_LOAD:
|
|
case IFN_MASK_LOAD_LANES:
|
|
case IFN_LEN_LOAD:
|
|
if (op_p == gimple_call_arg_ptr (call, 0))
|
|
return TREE_TYPE (gimple_call_lhs (call));
|
|
return NULL_TREE;
|
|
|
|
case IFN_MASK_STORE:
|
|
case IFN_MASK_STORE_LANES:
|
|
case IFN_LEN_STORE:
|
|
if (op_p == gimple_call_arg_ptr (call, 0))
|
|
return TREE_TYPE (gimple_call_arg (call, 3));
|
|
return NULL_TREE;
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* IV is a (non-address) iv that describes operand *OP_P of STMT.
|
|
Return true if the operand will become an address when STMT
|
|
is expanded and record the associated address use if so. */
|
|
|
|
static bool
|
|
find_address_like_use (struct ivopts_data *data, gimple *stmt, tree *op_p,
|
|
struct iv *iv)
|
|
{
|
|
/* Fail if base object of this memory reference is unknown. */
|
|
if (iv->base_object == NULL_TREE)
|
|
return false;
|
|
|
|
tree mem_type = NULL_TREE;
|
|
if (gcall *call = dyn_cast <gcall *> (stmt))
|
|
if (gimple_call_internal_p (call))
|
|
mem_type = get_mem_type_for_internal_fn (call, op_p);
|
|
if (mem_type)
|
|
{
|
|
iv = alloc_iv (data, iv->base, iv->step);
|
|
record_group_use (data, op_p, iv, stmt, USE_PTR_ADDRESS, mem_type);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Finds interesting uses of induction variables in the statement STMT. */
|
|
|
|
static void
|
|
find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt)
|
|
{
|
|
struct iv *iv;
|
|
tree op, *lhs, *rhs;
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
enum tree_code code;
|
|
|
|
find_invariants_stmt (data, stmt);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
find_interesting_uses_cond (data, stmt);
|
|
return;
|
|
}
|
|
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
lhs = gimple_assign_lhs_ptr (stmt);
|
|
rhs = gimple_assign_rhs1_ptr (stmt);
|
|
|
|
if (TREE_CODE (*lhs) == SSA_NAME)
|
|
{
|
|
/* If the statement defines an induction variable, the uses are not
|
|
interesting by themselves. */
|
|
|
|
iv = get_iv (data, *lhs);
|
|
|
|
if (iv && !integer_zerop (iv->step))
|
|
return;
|
|
}
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
|
&& (REFERENCE_CLASS_P (*rhs)
|
|
|| is_gimple_val (*rhs)))
|
|
{
|
|
if (REFERENCE_CLASS_P (*rhs))
|
|
find_interesting_uses_address (data, stmt, rhs);
|
|
else
|
|
find_interesting_uses_op (data, *rhs);
|
|
|
|
if (REFERENCE_CLASS_P (*lhs))
|
|
find_interesting_uses_address (data, stmt, lhs);
|
|
return;
|
|
}
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
|
{
|
|
find_interesting_uses_cond (data, stmt);
|
|
return;
|
|
}
|
|
|
|
/* TODO -- we should also handle address uses of type
|
|
|
|
memory = call (whatever);
|
|
|
|
and
|
|
|
|
call (memory). */
|
|
}
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
|
&& gimple_bb (stmt) == data->current_loop->header)
|
|
{
|
|
iv = get_iv (data, PHI_RESULT (stmt));
|
|
|
|
if (iv && !integer_zerop (iv->step))
|
|
return;
|
|
}
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
op = USE_FROM_PTR (use_p);
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
|
|
iv = get_iv (data, op);
|
|
if (!iv)
|
|
continue;
|
|
|
|
if (!find_address_like_use (data, stmt, use_p->use, iv))
|
|
find_interesting_uses_op (data, op);
|
|
}
|
|
}
|
|
|
|
/* Finds interesting uses of induction variables outside of loops
|
|
on loop exit edge EXIT. */
|
|
|
|
static void
|
|
find_interesting_uses_outside (struct ivopts_data *data, edge exit)
|
|
{
|
|
gphi *phi;
|
|
gphi_iterator psi;
|
|
tree def;
|
|
|
|
for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = psi.phi ();
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
|
if (!virtual_operand_p (def))
|
|
find_interesting_uses_op (data, def);
|
|
}
|
|
}
|
|
|
|
/* Return TRUE if OFFSET is within the range of [base + offset] addressing
|
|
mode for memory reference represented by USE. */
|
|
|
|
static GTY (()) vec<rtx, va_gc> *addr_list;
|
|
|
|
static bool
|
|
addr_offset_valid_p (struct iv_use *use, poly_int64 offset)
|
|
{
|
|
rtx reg, addr;
|
|
unsigned list_index;
|
|
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
|
|
machine_mode addr_mode, mem_mode = TYPE_MODE (use->mem_type);
|
|
|
|
list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
|
|
if (list_index >= vec_safe_length (addr_list))
|
|
vec_safe_grow_cleared (addr_list, list_index + MAX_MACHINE_MODE, true);
|
|
|
|
addr = (*addr_list)[list_index];
|
|
if (!addr)
|
|
{
|
|
addr_mode = targetm.addr_space.address_mode (as);
|
|
reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
|
|
addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX);
|
|
(*addr_list)[list_index] = addr;
|
|
}
|
|
else
|
|
addr_mode = GET_MODE (addr);
|
|
|
|
XEXP (addr, 1) = gen_int_mode (offset, addr_mode);
|
|
return (memory_address_addr_space_p (mem_mode, addr, as));
|
|
}
|
|
|
|
/* Comparison function to sort group in ascending order of addr_offset. */
|
|
|
|
static int
|
|
group_compare_offset (const void *a, const void *b)
|
|
{
|
|
const struct iv_use *const *u1 = (const struct iv_use *const *) a;
|
|
const struct iv_use *const *u2 = (const struct iv_use *const *) b;
|
|
|
|
return compare_sizes_for_sort ((*u1)->addr_offset, (*u2)->addr_offset);
|
|
}
|
|
|
|
/* Check if small groups should be split. Return true if no group
|
|
contains more than two uses with distinct addr_offsets. Return
|
|
false otherwise. We want to split such groups because:
|
|
|
|
1) Small groups don't have much benefit and may interfer with
|
|
general candidate selection.
|
|
2) Size for problem with only small groups is usually small and
|
|
general algorithm can handle it well.
|
|
|
|
TODO -- Above claim may not hold when we want to merge memory
|
|
accesses with conseuctive addresses. */
|
|
|
|
static bool
|
|
split_small_address_groups_p (struct ivopts_data *data)
|
|
{
|
|
unsigned int i, j, distinct = 1;
|
|
struct iv_use *pre;
|
|
struct iv_group *group;
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
if (group->vuses.length () == 1)
|
|
continue;
|
|
|
|
gcc_assert (address_p (group->type));
|
|
if (group->vuses.length () == 2)
|
|
{
|
|
if (compare_sizes_for_sort (group->vuses[0]->addr_offset,
|
|
group->vuses[1]->addr_offset) > 0)
|
|
std::swap (group->vuses[0], group->vuses[1]);
|
|
}
|
|
else
|
|
group->vuses.qsort (group_compare_offset);
|
|
|
|
if (distinct > 2)
|
|
continue;
|
|
|
|
distinct = 1;
|
|
for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++)
|
|
{
|
|
if (maybe_ne (group->vuses[j]->addr_offset, pre->addr_offset))
|
|
{
|
|
pre = group->vuses[j];
|
|
distinct++;
|
|
}
|
|
|
|
if (distinct > 2)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (distinct <= 2);
|
|
}
|
|
|
|
/* For each group of address type uses, this function further groups
|
|
these uses according to the maximum offset supported by target's
|
|
[base + offset] addressing mode. */
|
|
|
|
static void
|
|
split_address_groups (struct ivopts_data *data)
|
|
{
|
|
unsigned int i, j;
|
|
/* Always split group. */
|
|
bool split_p = split_small_address_groups_p (data);
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *new_group = NULL;
|
|
struct iv_group *group = data->vgroups[i];
|
|
struct iv_use *use = group->vuses[0];
|
|
|
|
use->id = 0;
|
|
use->group_id = group->id;
|
|
if (group->vuses.length () == 1)
|
|
continue;
|
|
|
|
gcc_assert (address_p (use->type));
|
|
|
|
for (j = 1; j < group->vuses.length ();)
|
|
{
|
|
struct iv_use *next = group->vuses[j];
|
|
poly_int64 offset = next->addr_offset - use->addr_offset;
|
|
|
|
/* Split group if aksed to, or the offset against the first
|
|
use can't fit in offset part of addressing mode. IV uses
|
|
having the same offset are still kept in one group. */
|
|
if (maybe_ne (offset, 0)
|
|
&& (split_p || !addr_offset_valid_p (use, offset)))
|
|
{
|
|
if (!new_group)
|
|
new_group = record_group (data, group->type);
|
|
group->vuses.ordered_remove (j);
|
|
new_group->vuses.safe_push (next);
|
|
continue;
|
|
}
|
|
|
|
next->id = j;
|
|
next->group_id = group->id;
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Finds uses of the induction variables that are interesting. */
|
|
|
|
static void
|
|
find_interesting_uses (struct ivopts_data *data, basic_block *body)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator bsi;
|
|
unsigned i;
|
|
edge e;
|
|
|
|
for (i = 0; i < data->current_loop->num_nodes; i++)
|
|
{
|
|
edge_iterator ei;
|
|
bb = body[i];
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
|
&& !flow_bb_inside_loop_p (data->current_loop, e->dest))
|
|
find_interesting_uses_outside (data, e);
|
|
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
find_interesting_uses_stmt (data, gsi_stmt (bsi));
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
if (!is_gimple_debug (gsi_stmt (bsi)))
|
|
find_interesting_uses_stmt (data, gsi_stmt (bsi));
|
|
}
|
|
|
|
split_address_groups (data);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n<IV Groups>:\n");
|
|
dump_groups (dump_file, data);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
|
|
is true, assume we are inside an address. If TOP_COMPREF is true, assume
|
|
we are at the top-level of the processed address. */
|
|
|
|
static tree
|
|
strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
|
|
poly_int64 *offset)
|
|
{
|
|
tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
|
|
enum tree_code code;
|
|
tree type, orig_type = TREE_TYPE (expr);
|
|
poly_int64 off0, off1;
|
|
HOST_WIDE_INT st;
|
|
tree orig_expr = expr;
|
|
|
|
STRIP_NOPS (expr);
|
|
|
|
type = TREE_TYPE (expr);
|
|
code = TREE_CODE (expr);
|
|
*offset = 0;
|
|
|
|
switch (code)
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
|
|
op0 = strip_offset_1 (op0, false, false, &off0);
|
|
op1 = strip_offset_1 (op1, false, false, &off1);
|
|
|
|
*offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
|
|
if (op0 == TREE_OPERAND (expr, 0)
|
|
&& op1 == TREE_OPERAND (expr, 1))
|
|
return orig_expr;
|
|
|
|
if (integer_zerop (op1))
|
|
expr = op0;
|
|
else if (integer_zerop (op0))
|
|
{
|
|
if (code == MINUS_EXPR)
|
|
expr = fold_build1 (NEGATE_EXPR, type, op1);
|
|
else
|
|
expr = op1;
|
|
}
|
|
else
|
|
expr = fold_build2 (code, type, op0, op1);
|
|
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case MULT_EXPR:
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
if (!cst_and_fits_in_hwi (op1))
|
|
return orig_expr;
|
|
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, false, false, &off0);
|
|
if (op0 == TREE_OPERAND (expr, 0))
|
|
return orig_expr;
|
|
|
|
*offset = off0 * int_cst_value (op1);
|
|
if (integer_zerop (op0))
|
|
expr = op0;
|
|
else
|
|
expr = fold_build2 (MULT_EXPR, type, op0, op1);
|
|
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
if (!inside_addr)
|
|
return orig_expr;
|
|
|
|
step = array_ref_element_size (expr);
|
|
if (!cst_and_fits_in_hwi (step))
|
|
break;
|
|
|
|
st = int_cst_value (step);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
op1 = strip_offset_1 (op1, false, false, &off1);
|
|
*offset = off1 * st;
|
|
|
|
if (top_compref
|
|
&& integer_zerop (op1))
|
|
{
|
|
/* Strip the component reference completely. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
|
|
*offset += off0;
|
|
return op0;
|
|
}
|
|
break;
|
|
|
|
case COMPONENT_REF:
|
|
{
|
|
tree field;
|
|
|
|
if (!inside_addr)
|
|
return orig_expr;
|
|
|
|
tmp = component_ref_field_offset (expr);
|
|
field = TREE_OPERAND (expr, 1);
|
|
if (top_compref
|
|
&& cst_and_fits_in_hwi (tmp)
|
|
&& cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
|
|
{
|
|
HOST_WIDE_INT boffset, abs_off;
|
|
|
|
/* Strip the component reference completely. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
|
|
boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
|
|
abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
|
|
if (boffset < 0)
|
|
abs_off = -abs_off;
|
|
|
|
*offset = off0 + int_cst_value (tmp) + abs_off;
|
|
return op0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ADDR_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, true, true, &off0);
|
|
*offset += off0;
|
|
|
|
if (op0 == TREE_OPERAND (expr, 0))
|
|
return orig_expr;
|
|
|
|
expr = build_fold_addr_expr (op0);
|
|
return fold_convert (orig_type, expr);
|
|
|
|
case MEM_REF:
|
|
/* ??? Offset operand? */
|
|
inside_addr = false;
|
|
break;
|
|
|
|
default:
|
|
if (ptrdiff_tree_p (expr, offset) && maybe_ne (*offset, 0))
|
|
return build_int_cst (orig_type, 0);
|
|
return orig_expr;
|
|
}
|
|
|
|
/* Default handling of expressions for that we want to recurse into
|
|
the first operand. */
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op0 = strip_offset_1 (op0, inside_addr, false, &off0);
|
|
*offset += off0;
|
|
|
|
if (op0 == TREE_OPERAND (expr, 0)
|
|
&& (!op1 || op1 == TREE_OPERAND (expr, 1)))
|
|
return orig_expr;
|
|
|
|
expr = copy_node (expr);
|
|
TREE_OPERAND (expr, 0) = op0;
|
|
if (op1)
|
|
TREE_OPERAND (expr, 1) = op1;
|
|
|
|
/* Inside address, we might strip the top level component references,
|
|
thus changing type of the expression. Handling of ADDR_EXPR
|
|
will fix that. */
|
|
expr = fold_convert (orig_type, expr);
|
|
|
|
return expr;
|
|
}
|
|
|
|
/* Strips constant offsets from EXPR and stores them to OFFSET. */
|
|
|
|
tree
|
|
strip_offset (tree expr, poly_uint64_pod *offset)
|
|
{
|
|
poly_int64 off;
|
|
tree core = strip_offset_1 (expr, false, false, &off);
|
|
*offset = off;
|
|
return core;
|
|
}
|
|
|
|
/* Returns variant of TYPE that can be used as base for different uses.
|
|
We return unsigned type with the same precision, which avoids problems
|
|
with overflows. */
|
|
|
|
static tree
|
|
generic_type_for (tree type)
|
|
{
|
|
if (POINTER_TYPE_P (type))
|
|
return unsigned_type_for (type);
|
|
|
|
if (TYPE_UNSIGNED (type))
|
|
return type;
|
|
|
|
return unsigned_type_for (type);
|
|
}
|
|
|
|
/* Private data for walk_tree. */
|
|
|
|
struct walk_tree_data
|
|
{
|
|
bitmap *inv_vars;
|
|
struct ivopts_data *idata;
|
|
};
|
|
|
|
/* Callback function for walk_tree, it records invariants and symbol
|
|
reference in *EXPR_P. DATA is the structure storing result info. */
|
|
|
|
static tree
|
|
find_inv_vars_cb (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
|
|
{
|
|
tree op = *expr_p;
|
|
struct version_info *info;
|
|
struct walk_tree_data *wdata = (struct walk_tree_data*) data;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return NULL_TREE;
|
|
|
|
info = name_info (wdata->idata, op);
|
|
/* Because we expand simple operations when finding IVs, loop invariant
|
|
variable that isn't referred by the original loop could be used now.
|
|
Record such invariant variables here. */
|
|
if (!info->iv)
|
|
{
|
|
struct ivopts_data *idata = wdata->idata;
|
|
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (op));
|
|
|
|
if (!bb || !flow_bb_inside_loop_p (idata->current_loop, bb))
|
|
{
|
|
tree steptype = TREE_TYPE (op);
|
|
if (POINTER_TYPE_P (steptype))
|
|
steptype = sizetype;
|
|
set_iv (idata, op, op, build_int_cst (steptype, 0), true);
|
|
record_invariant (idata, op, false);
|
|
}
|
|
}
|
|
if (!info->inv_id || info->has_nonlin_use)
|
|
return NULL_TREE;
|
|
|
|
if (!*wdata->inv_vars)
|
|
*wdata->inv_vars = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (*wdata->inv_vars, info->inv_id);
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Records invariants in *EXPR_P. INV_VARS is the bitmap to that we should
|
|
store it. */
|
|
|
|
static inline void
|
|
find_inv_vars (struct ivopts_data *data, tree *expr_p, bitmap *inv_vars)
|
|
{
|
|
struct walk_tree_data wdata;
|
|
|
|
if (!inv_vars)
|
|
return;
|
|
|
|
wdata.idata = data;
|
|
wdata.inv_vars = inv_vars;
|
|
walk_tree (expr_p, find_inv_vars_cb, &wdata, NULL);
|
|
}
|
|
|
|
/* Get entry from invariant expr hash table for INV_EXPR. New entry
|
|
will be recorded if it doesn't exist yet. Given below two exprs:
|
|
inv_expr + cst1, inv_expr + cst2
|
|
It's hard to make decision whether constant part should be stripped
|
|
or not. We choose to not strip based on below facts:
|
|
1) We need to count ADD cost for constant part if it's stripped,
|
|
which isn't always trivial where this functions is called.
|
|
2) Stripping constant away may be conflict with following loop
|
|
invariant hoisting pass.
|
|
3) Not stripping constant away results in more invariant exprs,
|
|
which usually leads to decision preferring lower reg pressure. */
|
|
|
|
static iv_inv_expr_ent *
|
|
get_loop_invariant_expr (struct ivopts_data *data, tree inv_expr)
|
|
{
|
|
STRIP_NOPS (inv_expr);
|
|
|
|
if (poly_int_tree_p (inv_expr)
|
|
|| TREE_CODE (inv_expr) == SSA_NAME)
|
|
return NULL;
|
|
|
|
/* Don't strip constant part away as we used to. */
|
|
|
|
/* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
|
|
struct iv_inv_expr_ent ent;
|
|
ent.expr = inv_expr;
|
|
ent.hash = iterative_hash_expr (inv_expr, 0);
|
|
struct iv_inv_expr_ent **slot = data->inv_expr_tab->find_slot (&ent, INSERT);
|
|
|
|
if (!*slot)
|
|
{
|
|
*slot = XNEW (struct iv_inv_expr_ent);
|
|
(*slot)->expr = inv_expr;
|
|
(*slot)->hash = ent.hash;
|
|
(*slot)->id = ++data->max_inv_expr_id;
|
|
}
|
|
|
|
return *slot;
|
|
}
|
|
|
|
/* Return TRUE iff VAR is marked as maybe-undefined. See
|
|
mark_ssa_maybe_undefs. */
|
|
|
|
static inline bool
|
|
ssa_name_maybe_undef_p (tree var)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (var) == SSA_NAME);
|
|
return TREE_VISITED (var);
|
|
}
|
|
|
|
/* Set (or clear, depending on VALUE) VAR's maybe-undefined mark. */
|
|
|
|
static inline void
|
|
ssa_name_set_maybe_undef (tree var, bool value = true)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (var) == SSA_NAME);
|
|
TREE_VISITED (var) = value;
|
|
}
|
|
|
|
/* Return TRUE iff there are any non-PHI uses of VAR that dominate the
|
|
end of BB. If we return TRUE and BB is a loop header, then VAR we
|
|
be assumed to be defined within the loop, even if it is marked as
|
|
maybe-undefined. */
|
|
|
|
static inline bool
|
|
ssa_name_any_use_dominates_bb_p (tree var, basic_block bb)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
if (is_a <gphi *> (USE_STMT (use_p))
|
|
|| is_gimple_debug (USE_STMT (use_p)))
|
|
continue;
|
|
basic_block dombb = gimple_bb (USE_STMT (use_p));
|
|
if (dominated_by_p (CDI_DOMINATORS, bb, dombb))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Mark as maybe_undef any SSA_NAMEs that are unsuitable as ivopts
|
|
candidates for potentially involving undefined behavior. */
|
|
|
|
static void
|
|
mark_ssa_maybe_undefs (void)
|
|
{
|
|
auto_vec<tree> queue;
|
|
|
|
/* Scan all SSA_NAMEs, marking the definitely-undefined ones as
|
|
maybe-undefined and queuing them for propagation, while clearing
|
|
the mark on others. */
|
|
unsigned int i;
|
|
tree var;
|
|
FOR_EACH_SSA_NAME (i, var, cfun)
|
|
{
|
|
if (SSA_NAME_IS_VIRTUAL_OPERAND (var)
|
|
|| !ssa_undefined_value_p (var, false))
|
|
ssa_name_set_maybe_undef (var, false);
|
|
else
|
|
{
|
|
ssa_name_set_maybe_undef (var);
|
|
queue.safe_push (var);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "marking _%i as maybe-undef\n",
|
|
SSA_NAME_VERSION (var));
|
|
}
|
|
}
|
|
|
|
/* Now propagate maybe-undefined from a DEF to any other PHI that
|
|
uses it, as long as there isn't any intervening use of DEF. */
|
|
while (!queue.is_empty ())
|
|
{
|
|
var = queue.pop ();
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
/* Any uses of VAR that aren't PHI args imply VAR must be
|
|
defined, otherwise undefined behavior would have been
|
|
definitely invoked. Only PHI args may hold
|
|
maybe-undefined values without invoking undefined
|
|
behavior for that reason alone. */
|
|
if (!is_a <gphi *> (USE_STMT (use_p)))
|
|
continue;
|
|
gphi *phi = as_a <gphi *> (USE_STMT (use_p));
|
|
|
|
tree def = gimple_phi_result (phi);
|
|
if (ssa_name_maybe_undef_p (def))
|
|
continue;
|
|
|
|
/* Look for any uses of the maybe-unused SSA_NAME that
|
|
dominates the block that reaches the incoming block
|
|
corresponding to the PHI arg in which it is mentioned.
|
|
That means we can assume the SSA_NAME is defined in that
|
|
path, so we only mark a PHI result as maybe-undef if we
|
|
find an unused reaching SSA_NAME. */
|
|
int idx = phi_arg_index_from_use (use_p);
|
|
basic_block bb = gimple_phi_arg_edge (phi, idx)->src;
|
|
if (ssa_name_any_use_dominates_bb_p (var, bb))
|
|
continue;
|
|
|
|
ssa_name_set_maybe_undef (def);
|
|
queue.safe_push (def);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "marking _%i as maybe-undef because of _%i\n",
|
|
SSA_NAME_VERSION (def), SSA_NAME_VERSION (var));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return *TP if it is an SSA_NAME marked with TREE_VISITED, i.e., as
|
|
unsuitable as ivopts candidates for potentially involving undefined
|
|
behavior. */
|
|
|
|
static tree
|
|
find_ssa_undef (tree *tp, int *walk_subtrees, void *bb_)
|
|
{
|
|
basic_block bb = (basic_block) bb_;
|
|
if (TREE_CODE (*tp) == SSA_NAME
|
|
&& ssa_name_maybe_undef_p (*tp)
|
|
&& !ssa_name_any_use_dominates_bb_p (*tp, bb))
|
|
return *tp;
|
|
if (!EXPR_P (*tp))
|
|
*walk_subtrees = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
|
|
position to POS. If USE is not NULL, the candidate is set as related to
|
|
it. If both BASE and STEP are NULL, we add a pseudocandidate for the
|
|
replacement of the final value of the iv by a direct computation. */
|
|
|
|
static struct iv_cand *
|
|
add_candidate_1 (struct ivopts_data *data, tree base, tree step, bool important,
|
|
enum iv_position pos, struct iv_use *use,
|
|
gimple *incremented_at, struct iv *orig_iv = NULL,
|
|
bool doloop = false)
|
|
{
|
|
unsigned i;
|
|
struct iv_cand *cand = NULL;
|
|
tree type, orig_type;
|
|
|
|
gcc_assert (base && step);
|
|
|
|
/* -fkeep-gc-roots-live means that we have to keep a real pointer
|
|
live, but the ivopts code may replace a real pointer with one
|
|
pointing before or after the memory block that is then adjusted
|
|
into the memory block during the loop. FIXME: It would likely be
|
|
better to actually force the pointer live and still use ivopts;
|
|
for example, it would be enough to write the pointer into memory
|
|
and keep it there until after the loop. */
|
|
if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base)))
|
|
return NULL;
|
|
|
|
/* If BASE contains undefined SSA names make sure we only record
|
|
the original IV. */
|
|
bool involves_undefs = false;
|
|
if (walk_tree (&base, find_ssa_undef, data->current_loop->header, NULL))
|
|
{
|
|
if (pos != IP_ORIGINAL)
|
|
return NULL;
|
|
important = false;
|
|
involves_undefs = true;
|
|
}
|
|
|
|
/* For non-original variables, make sure their values are computed in a type
|
|
that does not invoke undefined behavior on overflows (since in general,
|
|
we cannot prove that these induction variables are non-wrapping). */
|
|
if (pos != IP_ORIGINAL)
|
|
{
|
|
orig_type = TREE_TYPE (base);
|
|
type = generic_type_for (orig_type);
|
|
if (type != orig_type)
|
|
{
|
|
base = fold_convert (type, base);
|
|
step = fold_convert (type, step);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
cand = data->vcands[i];
|
|
|
|
if (cand->pos != pos)
|
|
continue;
|
|
|
|
if (cand->incremented_at != incremented_at
|
|
|| ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
|
|
&& cand->ainc_use != use))
|
|
continue;
|
|
|
|
if (operand_equal_p (base, cand->iv->base, 0)
|
|
&& operand_equal_p (step, cand->iv->step, 0)
|
|
&& (TYPE_PRECISION (TREE_TYPE (base))
|
|
== TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
|
|
break;
|
|
}
|
|
|
|
if (i == data->vcands.length ())
|
|
{
|
|
cand = XCNEW (struct iv_cand);
|
|
cand->id = i;
|
|
cand->iv = alloc_iv (data, base, step);
|
|
cand->pos = pos;
|
|
if (pos != IP_ORIGINAL)
|
|
{
|
|
if (doloop)
|
|
cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "doloop");
|
|
else
|
|
cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
|
|
cand->var_after = cand->var_before;
|
|
}
|
|
cand->important = important;
|
|
cand->involves_undefs = involves_undefs;
|
|
cand->incremented_at = incremented_at;
|
|
cand->doloop_p = doloop;
|
|
data->vcands.safe_push (cand);
|
|
|
|
if (!poly_int_tree_p (step))
|
|
{
|
|
find_inv_vars (data, &step, &cand->inv_vars);
|
|
|
|
iv_inv_expr_ent *inv_expr = get_loop_invariant_expr (data, step);
|
|
/* Share bitmap between inv_vars and inv_exprs for cand. */
|
|
if (inv_expr != NULL)
|
|
{
|
|
cand->inv_exprs = cand->inv_vars;
|
|
cand->inv_vars = NULL;
|
|
if (cand->inv_exprs)
|
|
bitmap_clear (cand->inv_exprs);
|
|
else
|
|
cand->inv_exprs = BITMAP_ALLOC (NULL);
|
|
|
|
bitmap_set_bit (cand->inv_exprs, inv_expr->id);
|
|
}
|
|
}
|
|
|
|
if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
|
|
cand->ainc_use = use;
|
|
else
|
|
cand->ainc_use = NULL;
|
|
|
|
cand->orig_iv = orig_iv;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_cand (dump_file, cand);
|
|
}
|
|
|
|
cand->important |= important;
|
|
cand->doloop_p |= doloop;
|
|
|
|
/* Relate candidate to the group for which it is added. */
|
|
if (use)
|
|
bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i);
|
|
|
|
return cand;
|
|
}
|
|
|
|
/* Returns true if incrementing the induction variable at the end of the LOOP
|
|
is allowed.
|
|
|
|
The purpose is to avoid splitting latch edge with a biv increment, thus
|
|
creating a jump, possibly confusing other optimization passes and leaving
|
|
less freedom to scheduler. So we allow IP_END only if IP_NORMAL is not
|
|
available (so we do not have a better alternative), or if the latch edge
|
|
is already nonempty. */
|
|
|
|
static bool
|
|
allow_ip_end_pos_p (class loop *loop)
|
|
{
|
|
if (!ip_normal_pos (loop))
|
|
return true;
|
|
|
|
if (!empty_block_p (ip_end_pos (loop)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
|
|
Important field is set to IMPORTANT. */
|
|
|
|
static void
|
|
add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
|
|
bool important, struct iv_use *use)
|
|
{
|
|
basic_block use_bb = gimple_bb (use->stmt);
|
|
machine_mode mem_mode;
|
|
unsigned HOST_WIDE_INT cstepi;
|
|
|
|
/* If we insert the increment in any position other than the standard
|
|
ones, we must ensure that it is incremented once per iteration.
|
|
It must not be in an inner nested loop, or one side of an if
|
|
statement. */
|
|
if (use_bb->loop_father != data->current_loop
|
|
|| !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
|
|
|| stmt_can_throw_internal (cfun, use->stmt)
|
|
|| !cst_and_fits_in_hwi (step))
|
|
return;
|
|
|
|
cstepi = int_cst_value (step);
|
|
|
|
mem_mode = TYPE_MODE (use->mem_type);
|
|
if (((USE_LOAD_PRE_INCREMENT (mem_mode)
|
|
|| USE_STORE_PRE_INCREMENT (mem_mode))
|
|
&& known_eq (GET_MODE_SIZE (mem_mode), cstepi))
|
|
|| ((USE_LOAD_PRE_DECREMENT (mem_mode)
|
|
|| USE_STORE_PRE_DECREMENT (mem_mode))
|
|
&& known_eq (GET_MODE_SIZE (mem_mode), -cstepi)))
|
|
{
|
|
enum tree_code code = MINUS_EXPR;
|
|
tree new_base;
|
|
tree new_step = step;
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
|
{
|
|
new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
|
code = POINTER_PLUS_EXPR;
|
|
}
|
|
else
|
|
new_step = fold_convert (TREE_TYPE (base), new_step);
|
|
new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
|
|
add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
|
|
use->stmt);
|
|
}
|
|
if (((USE_LOAD_POST_INCREMENT (mem_mode)
|
|
|| USE_STORE_POST_INCREMENT (mem_mode))
|
|
&& known_eq (GET_MODE_SIZE (mem_mode), cstepi))
|
|
|| ((USE_LOAD_POST_DECREMENT (mem_mode)
|
|
|| USE_STORE_POST_DECREMENT (mem_mode))
|
|
&& known_eq (GET_MODE_SIZE (mem_mode), -cstepi)))
|
|
{
|
|
add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
|
|
use->stmt);
|
|
}
|
|
}
|
|
|
|
/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
|
|
position to POS. If USE is not NULL, the candidate is set as related to
|
|
it. The candidate computation is scheduled before exit condition and at
|
|
the end of loop. */
|
|
|
|
static void
|
|
add_candidate (struct ivopts_data *data, tree base, tree step, bool important,
|
|
struct iv_use *use, struct iv *orig_iv = NULL,
|
|
bool doloop = false)
|
|
{
|
|
if (ip_normal_pos (data->current_loop))
|
|
add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL, orig_iv,
|
|
doloop);
|
|
/* Exclude doloop candidate here since it requires decrement then comparison
|
|
and jump, the IP_END position doesn't match. */
|
|
if (!doloop && ip_end_pos (data->current_loop)
|
|
&& allow_ip_end_pos_p (data->current_loop))
|
|
add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv);
|
|
}
|
|
|
|
/* Adds standard iv candidates. */
|
|
|
|
static void
|
|
add_standard_iv_candidates (struct ivopts_data *data)
|
|
{
|
|
add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
|
|
|
|
/* The same for a double-integer type if it is still fast enough. */
|
|
if (TYPE_PRECISION
|
|
(long_integer_type_node) > TYPE_PRECISION (integer_type_node)
|
|
&& TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
|
|
add_candidate (data, build_int_cst (long_integer_type_node, 0),
|
|
build_int_cst (long_integer_type_node, 1), true, NULL);
|
|
|
|
/* The same for a double-integer type if it is still fast enough. */
|
|
if (TYPE_PRECISION
|
|
(long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
|
|
&& TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
|
|
add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
|
|
build_int_cst (long_long_integer_type_node, 1), true, NULL);
|
|
}
|
|
|
|
|
|
/* Adds candidates bases on the old induction variable IV. */
|
|
|
|
static void
|
|
add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv)
|
|
{
|
|
gimple *phi;
|
|
tree def;
|
|
struct iv_cand *cand;
|
|
|
|
/* Check if this biv is used in address type use. */
|
|
if (iv->no_overflow && iv->have_address_use
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (iv->base))
|
|
&& TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype))
|
|
{
|
|
tree base = fold_convert (sizetype, iv->base);
|
|
tree step = fold_convert (sizetype, iv->step);
|
|
|
|
/* Add iv cand of same precision as index part in TARGET_MEM_REF. */
|
|
add_candidate (data, base, step, true, NULL, iv);
|
|
/* Add iv cand of the original type only if it has nonlinear use. */
|
|
if (iv->nonlin_use)
|
|
add_candidate (data, iv->base, iv->step, true, NULL);
|
|
}
|
|
else
|
|
add_candidate (data, iv->base, iv->step, true, NULL);
|
|
|
|
/* The same, but with initial value zero. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
|
|
add_candidate (data, size_int (0), iv->step, true, NULL);
|
|
else
|
|
add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
|
|
iv->step, true, NULL);
|
|
|
|
phi = SSA_NAME_DEF_STMT (iv->ssa_name);
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
|
{
|
|
/* Additionally record the possibility of leaving the original iv
|
|
untouched. */
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
|
|
/* Don't add candidate if it's from another PHI node because
|
|
it's an affine iv appearing in the form of PEELED_CHREC. */
|
|
phi = SSA_NAME_DEF_STMT (def);
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
|
{
|
|
cand = add_candidate_1 (data,
|
|
iv->base, iv->step, true, IP_ORIGINAL, NULL,
|
|
SSA_NAME_DEF_STMT (def));
|
|
if (cand)
|
|
{
|
|
cand->var_before = iv->ssa_name;
|
|
cand->var_after = def;
|
|
}
|
|
}
|
|
else
|
|
gcc_assert (gimple_bb (phi) == data->current_loop->header);
|
|
}
|
|
}
|
|
|
|
/* Adds candidates based on the old induction variables. */
|
|
|
|
static void
|
|
add_iv_candidate_for_bivs (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv *iv;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
iv = ver_info (data, i)->iv;
|
|
if (iv && iv->biv_p && !integer_zerop (iv->step))
|
|
add_iv_candidate_for_biv (data, iv);
|
|
}
|
|
}
|
|
|
|
/* Record common candidate {BASE, STEP} derived from USE in hashtable. */
|
|
|
|
static void
|
|
record_common_cand (struct ivopts_data *data, tree base,
|
|
tree step, struct iv_use *use)
|
|
{
|
|
class iv_common_cand ent;
|
|
class iv_common_cand **slot;
|
|
|
|
ent.base = base;
|
|
ent.step = step;
|
|
ent.hash = iterative_hash_expr (base, 0);
|
|
ent.hash = iterative_hash_expr (step, ent.hash);
|
|
|
|
slot = data->iv_common_cand_tab->find_slot (&ent, INSERT);
|
|
if (*slot == NULL)
|
|
{
|
|
*slot = new iv_common_cand ();
|
|
(*slot)->base = base;
|
|
(*slot)->step = step;
|
|
(*slot)->uses.create (8);
|
|
(*slot)->hash = ent.hash;
|
|
data->iv_common_cands.safe_push ((*slot));
|
|
}
|
|
|
|
gcc_assert (use != NULL);
|
|
(*slot)->uses.safe_push (use);
|
|
return;
|
|
}
|
|
|
|
/* Comparison function used to sort common candidates. */
|
|
|
|
static int
|
|
common_cand_cmp (const void *p1, const void *p2)
|
|
{
|
|
unsigned n1, n2;
|
|
const class iv_common_cand *const *const ccand1
|
|
= (const class iv_common_cand *const *)p1;
|
|
const class iv_common_cand *const *const ccand2
|
|
= (const class iv_common_cand *const *)p2;
|
|
|
|
n1 = (*ccand1)->uses.length ();
|
|
n2 = (*ccand2)->uses.length ();
|
|
return n2 - n1;
|
|
}
|
|
|
|
/* Adds IV candidates based on common candidated recorded. */
|
|
|
|
static void
|
|
add_iv_candidate_derived_from_uses (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
struct iv_cand *cand_1, *cand_2;
|
|
|
|
data->iv_common_cands.qsort (common_cand_cmp);
|
|
for (i = 0; i < data->iv_common_cands.length (); i++)
|
|
{
|
|
class iv_common_cand *ptr = data->iv_common_cands[i];
|
|
|
|
/* Only add IV candidate if it's derived from multiple uses. */
|
|
if (ptr->uses.length () <= 1)
|
|
break;
|
|
|
|
cand_1 = NULL;
|
|
cand_2 = NULL;
|
|
if (ip_normal_pos (data->current_loop))
|
|
cand_1 = add_candidate_1 (data, ptr->base, ptr->step,
|
|
false, IP_NORMAL, NULL, NULL);
|
|
|
|
if (ip_end_pos (data->current_loop)
|
|
&& allow_ip_end_pos_p (data->current_loop))
|
|
cand_2 = add_candidate_1 (data, ptr->base, ptr->step,
|
|
false, IP_END, NULL, NULL);
|
|
|
|
/* Bind deriving uses and the new candidates. */
|
|
for (j = 0; j < ptr->uses.length (); j++)
|
|
{
|
|
struct iv_group *group = data->vgroups[ptr->uses[j]->group_id];
|
|
if (cand_1)
|
|
bitmap_set_bit (group->related_cands, cand_1->id);
|
|
if (cand_2)
|
|
bitmap_set_bit (group->related_cands, cand_2->id);
|
|
}
|
|
}
|
|
|
|
/* Release data since it is useless from this point. */
|
|
data->iv_common_cand_tab->empty ();
|
|
data->iv_common_cands.truncate (0);
|
|
}
|
|
|
|
/* Adds candidates based on the value of USE's iv. */
|
|
|
|
static void
|
|
add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use)
|
|
{
|
|
poly_uint64 offset;
|
|
tree base;
|
|
struct iv *iv = use->iv;
|
|
tree basetype = TREE_TYPE (iv->base);
|
|
|
|
/* Don't add candidate for iv_use with non integer, pointer or non-mode
|
|
precision types, instead, add candidate for the corresponding scev in
|
|
unsigned type with the same precision. See PR93674 for more info. */
|
|
if ((TREE_CODE (basetype) != INTEGER_TYPE && !POINTER_TYPE_P (basetype))
|
|
|| !type_has_mode_precision_p (basetype))
|
|
{
|
|
basetype = lang_hooks.types.type_for_mode (TYPE_MODE (basetype),
|
|
TYPE_UNSIGNED (basetype));
|
|
add_candidate (data, fold_convert (basetype, iv->base),
|
|
fold_convert (basetype, iv->step), false, NULL);
|
|
return;
|
|
}
|
|
|
|
add_candidate (data, iv->base, iv->step, false, use);
|
|
|
|
/* Record common candidate for use in case it can be shared by others. */
|
|
record_common_cand (data, iv->base, iv->step, use);
|
|
|
|
/* Record common candidate with initial value zero. */
|
|
basetype = TREE_TYPE (iv->base);
|
|
if (POINTER_TYPE_P (basetype))
|
|
basetype = sizetype;
|
|
record_common_cand (data, build_int_cst (basetype, 0), iv->step, use);
|
|
|
|
/* Compare the cost of an address with an unscaled index with the cost of
|
|
an address with a scaled index and add candidate if useful. */
|
|
poly_int64 step;
|
|
if (use != NULL
|
|
&& poly_int_tree_p (iv->step, &step)
|
|
&& address_p (use->type))
|
|
{
|
|
poly_int64 new_step;
|
|
unsigned int fact = preferred_mem_scale_factor
|
|
(use->iv->base,
|
|
TYPE_MODE (use->mem_type),
|
|
optimize_loop_for_speed_p (data->current_loop));
|
|
|
|
if (fact != 1
|
|
&& multiple_p (step, fact, &new_step))
|
|
add_candidate (data, size_int (0),
|
|
wide_int_to_tree (sizetype, new_step),
|
|
true, NULL);
|
|
}
|
|
|
|
/* Record common candidate with constant offset stripped in base.
|
|
Like the use itself, we also add candidate directly for it. */
|
|
base = strip_offset (iv->base, &offset);
|
|
if (maybe_ne (offset, 0U) || base != iv->base)
|
|
{
|
|
record_common_cand (data, base, iv->step, use);
|
|
add_candidate (data, base, iv->step, false, use);
|
|
}
|
|
|
|
/* Record common candidate with base_object removed in base. */
|
|
base = iv->base;
|
|
STRIP_NOPS (base);
|
|
if (iv->base_object != NULL && TREE_CODE (base) == POINTER_PLUS_EXPR)
|
|
{
|
|
tree step = iv->step;
|
|
|
|
STRIP_NOPS (step);
|
|
base = TREE_OPERAND (base, 1);
|
|
step = fold_convert (sizetype, step);
|
|
record_common_cand (data, base, step, use);
|
|
/* Also record common candidate with offset stripped. */
|
|
base = strip_offset (base, &offset);
|
|
if (maybe_ne (offset, 0U))
|
|
record_common_cand (data, base, step, use);
|
|
}
|
|
|
|
/* At last, add auto-incremental candidates. Make such variables
|
|
important since other iv uses with same base object may be based
|
|
on it. */
|
|
if (use != NULL && address_p (use->type))
|
|
add_autoinc_candidates (data, iv->base, iv->step, true, use);
|
|
}
|
|
|
|
/* Adds candidates based on the uses. */
|
|
|
|
static void
|
|
add_iv_candidate_for_groups (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Only add candidate for the first use in group. */
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
|
|
gcc_assert (group->vuses[0] != NULL);
|
|
add_iv_candidate_for_use (data, group->vuses[0]);
|
|
}
|
|
add_iv_candidate_derived_from_uses (data);
|
|
}
|
|
|
|
/* Record important candidates and add them to related_cands bitmaps. */
|
|
|
|
static void
|
|
record_important_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
struct iv_group *group;
|
|
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
struct iv_cand *cand = data->vcands[i];
|
|
|
|
if (cand->important)
|
|
bitmap_set_bit (data->important_candidates, i);
|
|
}
|
|
|
|
data->consider_all_candidates = (data->vcands.length ()
|
|
<= CONSIDER_ALL_CANDIDATES_BOUND);
|
|
|
|
/* Add important candidates to groups' related_cands bitmaps. */
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
bitmap_ior_into (group->related_cands, data->important_candidates);
|
|
}
|
|
}
|
|
|
|
/* Allocates the data structure mapping the (use, candidate) pairs to costs.
|
|
If consider_all_candidates is true, we use a two-dimensional array, otherwise
|
|
we allocate a simple list to every use. */
|
|
|
|
static void
|
|
alloc_use_cost_map (struct ivopts_data *data)
|
|
{
|
|
unsigned i, size, s;
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
|
|
if (data->consider_all_candidates)
|
|
size = data->vcands.length ();
|
|
else
|
|
{
|
|
s = bitmap_count_bits (group->related_cands);
|
|
|
|
/* Round up to the power of two, so that moduling by it is fast. */
|
|
size = s ? (1 << ceil_log2 (s)) : 1;
|
|
}
|
|
|
|
group->n_map_members = size;
|
|
group->cost_map = XCNEWVEC (class cost_pair, size);
|
|
}
|
|
}
|
|
|
|
/* Sets cost of (GROUP, CAND) pair to COST and record that it depends
|
|
on invariants INV_VARS and that the value used in expressing it is
|
|
VALUE, and in case of iv elimination the comparison operator is COMP. */
|
|
|
|
static void
|
|
set_group_iv_cost (struct ivopts_data *data,
|
|
struct iv_group *group, struct iv_cand *cand,
|
|
comp_cost cost, bitmap inv_vars, tree value,
|
|
enum tree_code comp, bitmap inv_exprs)
|
|
{
|
|
unsigned i, s;
|
|
|
|
if (cost.infinite_cost_p ())
|
|
{
|
|
BITMAP_FREE (inv_vars);
|
|
BITMAP_FREE (inv_exprs);
|
|
return;
|
|
}
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
group->cost_map[cand->id].cand = cand;
|
|
group->cost_map[cand->id].cost = cost;
|
|
group->cost_map[cand->id].inv_vars = inv_vars;
|
|
group->cost_map[cand->id].inv_exprs = inv_exprs;
|
|
group->cost_map[cand->id].value = value;
|
|
group->cost_map[cand->id].comp = comp;
|
|
return;
|
|
}
|
|
|
|
/* n_map_members is a power of two, so this computes modulo. */
|
|
s = cand->id & (group->n_map_members - 1);
|
|
for (i = s; i < group->n_map_members; i++)
|
|
if (!group->cost_map[i].cand)
|
|
goto found;
|
|
for (i = 0; i < s; i++)
|
|
if (!group->cost_map[i].cand)
|
|
goto found;
|
|
|
|
gcc_unreachable ();
|
|
|
|
found:
|
|
group->cost_map[i].cand = cand;
|
|
group->cost_map[i].cost = cost;
|
|
group->cost_map[i].inv_vars = inv_vars;
|
|
group->cost_map[i].inv_exprs = inv_exprs;
|
|
group->cost_map[i].value = value;
|
|
group->cost_map[i].comp = comp;
|
|
}
|
|
|
|
/* Gets cost of (GROUP, CAND) pair. */
|
|
|
|
static class cost_pair *
|
|
get_group_iv_cost (struct ivopts_data *data, struct iv_group *group,
|
|
struct iv_cand *cand)
|
|
{
|
|
unsigned i, s;
|
|
class cost_pair *ret;
|
|
|
|
if (!cand)
|
|
return NULL;
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
ret = group->cost_map + cand->id;
|
|
if (!ret->cand)
|
|
return NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* n_map_members is a power of two, so this computes modulo. */
|
|
s = cand->id & (group->n_map_members - 1);
|
|
for (i = s; i < group->n_map_members; i++)
|
|
if (group->cost_map[i].cand == cand)
|
|
return group->cost_map + i;
|
|
else if (group->cost_map[i].cand == NULL)
|
|
return NULL;
|
|
for (i = 0; i < s; i++)
|
|
if (group->cost_map[i].cand == cand)
|
|
return group->cost_map + i;
|
|
else if (group->cost_map[i].cand == NULL)
|
|
return NULL;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
|
|
static rtx
|
|
produce_memory_decl_rtl (tree obj, int *regno)
|
|
{
|
|
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
|
|
machine_mode address_mode = targetm.addr_space.address_mode (as);
|
|
rtx x;
|
|
|
|
gcc_assert (obj);
|
|
if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
|
|
{
|
|
const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
|
|
x = gen_rtx_SYMBOL_REF (address_mode, name);
|
|
SET_SYMBOL_REF_DECL (x, obj);
|
|
x = gen_rtx_MEM (DECL_MODE (obj), x);
|
|
set_mem_addr_space (x, as);
|
|
targetm.encode_section_info (obj, x, true);
|
|
}
|
|
else
|
|
{
|
|
x = gen_raw_REG (address_mode, (*regno)++);
|
|
x = gen_rtx_MEM (DECL_MODE (obj), x);
|
|
set_mem_addr_space (x, as);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
|
|
walk_tree. DATA contains the actual fake register number. */
|
|
|
|
static tree
|
|
prepare_decl_rtl (tree *expr_p, int *ws, void *data)
|
|
{
|
|
tree obj = NULL_TREE;
|
|
rtx x = NULL_RTX;
|
|
int *regno = (int *) data;
|
|
|
|
switch (TREE_CODE (*expr_p))
|
|
{
|
|
case ADDR_EXPR:
|
|
for (expr_p = &TREE_OPERAND (*expr_p, 0);
|
|
handled_component_p (*expr_p);
|
|
expr_p = &TREE_OPERAND (*expr_p, 0))
|
|
continue;
|
|
obj = *expr_p;
|
|
if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
|
|
x = produce_memory_decl_rtl (obj, regno);
|
|
break;
|
|
|
|
case SSA_NAME:
|
|
*ws = 0;
|
|
obj = SSA_NAME_VAR (*expr_p);
|
|
/* Defer handling of anonymous SSA_NAMEs to the expander. */
|
|
if (!obj)
|
|
return NULL_TREE;
|
|
if (!DECL_RTL_SET_P (obj))
|
|
x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
|
|
break;
|
|
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case RESULT_DECL:
|
|
*ws = 0;
|
|
obj = *expr_p;
|
|
|
|
if (DECL_RTL_SET_P (obj))
|
|
break;
|
|
|
|
if (DECL_MODE (obj) == BLKmode)
|
|
x = produce_memory_decl_rtl (obj, regno);
|
|
else
|
|
x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (x)
|
|
{
|
|
decl_rtl_to_reset.safe_push (obj);
|
|
SET_DECL_RTL (obj, x);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Predict whether the given loop will be transformed in the RTL
|
|
doloop_optimize pass. Attempt to duplicate some doloop_optimize checks.
|
|
This is only for target independent checks, see targetm.predict_doloop_p
|
|
for the target dependent ones.
|
|
|
|
Note that according to some initial investigation, some checks like costly
|
|
niter check and invalid stmt scanning don't have much gains among general
|
|
cases, so keep this as simple as possible first.
|
|
|
|
Some RTL specific checks seems unable to be checked in gimple, if any new
|
|
checks or easy checks _are_ missing here, please add them. */
|
|
|
|
static bool
|
|
generic_predict_doloop_p (struct ivopts_data *data)
|
|
{
|
|
class loop *loop = data->current_loop;
|
|
|
|
/* Call target hook for target dependent checks. */
|
|
if (!targetm.predict_doloop_p (loop))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Predict doloop failure due to"
|
|
" target specific checks.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Similar to doloop_optimize, check iteration description to know it's
|
|
suitable or not. Keep it as simple as possible, feel free to extend it
|
|
if you find any multiple exits cases matter. */
|
|
edge exit = single_dom_exit (loop);
|
|
class tree_niter_desc *niter_desc;
|
|
if (!exit || !(niter_desc = niter_for_exit (data, exit)))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Predict doloop failure due to"
|
|
" unexpected niters.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Similar to doloop_optimize, check whether iteration count too small
|
|
and not profitable. */
|
|
HOST_WIDE_INT est_niter = get_estimated_loop_iterations_int (loop);
|
|
if (est_niter == -1)
|
|
est_niter = get_likely_max_loop_iterations_int (loop);
|
|
if (est_niter >= 0 && est_niter < 3)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"Predict doloop failure due to"
|
|
" too few iterations (%u).\n",
|
|
(unsigned int) est_niter);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determines cost of the computation of EXPR. */
|
|
|
|
static unsigned
|
|
computation_cost (tree expr, bool speed)
|
|
{
|
|
rtx_insn *seq;
|
|
rtx rslt;
|
|
tree type = TREE_TYPE (expr);
|
|
unsigned cost;
|
|
/* Avoid using hard regs in ways which may be unsupported. */
|
|
int regno = LAST_VIRTUAL_REGISTER + 1;
|
|
struct cgraph_node *node = cgraph_node::get (current_function_decl);
|
|
enum node_frequency real_frequency = node->frequency;
|
|
|
|
node->frequency = NODE_FREQUENCY_NORMAL;
|
|
crtl->maybe_hot_insn_p = speed;
|
|
walk_tree (&expr, prepare_decl_rtl, ®no, NULL);
|
|
start_sequence ();
|
|
rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
default_rtl_profile ();
|
|
node->frequency = real_frequency;
|
|
|
|
cost = seq_cost (seq, speed);
|
|
if (MEM_P (rslt))
|
|
cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
|
|
TYPE_ADDR_SPACE (type), speed);
|
|
else if (!REG_P (rslt))
|
|
cost += set_src_cost (rslt, TYPE_MODE (type), speed);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Returns variable containing the value of candidate CAND at statement AT. */
|
|
|
|
static tree
|
|
var_at_stmt (class loop *loop, struct iv_cand *cand, gimple *stmt)
|
|
{
|
|
if (stmt_after_increment (loop, cand, stmt))
|
|
return cand->var_after;
|
|
else
|
|
return cand->var_before;
|
|
}
|
|
|
|
/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
|
|
same precision that is at least as wide as the precision of TYPE, stores
|
|
BA to A and BB to B, and returns the type of BA. Otherwise, returns the
|
|
type of A and B. */
|
|
|
|
static tree
|
|
determine_common_wider_type (tree *a, tree *b)
|
|
{
|
|
tree wider_type = NULL;
|
|
tree suba, subb;
|
|
tree atype = TREE_TYPE (*a);
|
|
|
|
if (CONVERT_EXPR_P (*a))
|
|
{
|
|
suba = TREE_OPERAND (*a, 0);
|
|
wider_type = TREE_TYPE (suba);
|
|
if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
|
|
return atype;
|
|
}
|
|
else
|
|
return atype;
|
|
|
|
if (CONVERT_EXPR_P (*b))
|
|
{
|
|
subb = TREE_OPERAND (*b, 0);
|
|
if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
|
|
return atype;
|
|
}
|
|
else
|
|
return atype;
|
|
|
|
*a = suba;
|
|
*b = subb;
|
|
return wider_type;
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND at statement AT in LOOP. The expression is stored in two parts in a
|
|
decomposed form. The invariant part is stored in AFF_INV; while variant
|
|
part in AFF_VAR. Store ratio of CAND.step over USE.step in PRAT if it's
|
|
non-null. Returns false if USE cannot be expressed using CAND. */
|
|
|
|
static bool
|
|
get_computation_aff_1 (class loop *loop, gimple *at, struct iv_use *use,
|
|
struct iv_cand *cand, class aff_tree *aff_inv,
|
|
class aff_tree *aff_var, widest_int *prat = NULL)
|
|
{
|
|
tree ubase = use->iv->base, ustep = use->iv->step;
|
|
tree cbase = cand->iv->base, cstep = cand->iv->step;
|
|
tree common_type, uutype, var, cstep_common;
|
|
tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
|
|
aff_tree aff_cbase;
|
|
widest_int rat;
|
|
|
|
/* We must have a precision to express the values of use. */
|
|
if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
|
|
return false;
|
|
|
|
var = var_at_stmt (loop, cand, at);
|
|
uutype = unsigned_type_for (utype);
|
|
|
|
/* If the conversion is not noop, perform it. */
|
|
if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
|
|
{
|
|
if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase)
|
|
&& (CONVERT_EXPR_P (cstep) || poly_int_tree_p (cstep)))
|
|
{
|
|
tree inner_base, inner_step, inner_type;
|
|
inner_base = TREE_OPERAND (cbase, 0);
|
|
if (CONVERT_EXPR_P (cstep))
|
|
inner_step = TREE_OPERAND (cstep, 0);
|
|
else
|
|
inner_step = cstep;
|
|
|
|
inner_type = TREE_TYPE (inner_base);
|
|
/* If candidate is added from a biv whose type is smaller than
|
|
ctype, we know both candidate and the biv won't overflow.
|
|
In this case, it's safe to skip the convertion in candidate.
|
|
As an example, (unsigned short)((unsigned long)A) equals to
|
|
(unsigned short)A, if A has a type no larger than short. */
|
|
if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype))
|
|
{
|
|
cbase = inner_base;
|
|
cstep = inner_step;
|
|
}
|
|
}
|
|
cbase = fold_convert (uutype, cbase);
|
|
cstep = fold_convert (uutype, cstep);
|
|
var = fold_convert (uutype, var);
|
|
}
|
|
|
|
/* Ratio is 1 when computing the value of biv cand by itself.
|
|
We can't rely on constant_multiple_of in this case because the
|
|
use is created after the original biv is selected. The call
|
|
could fail because of inconsistent fold behavior. See PR68021
|
|
for more information. */
|
|
if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
|
|
{
|
|
gcc_assert (is_gimple_assign (use->stmt));
|
|
gcc_assert (use->iv->ssa_name == cand->var_after);
|
|
gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
|
|
rat = 1;
|
|
}
|
|
else if (!constant_multiple_of (ustep, cstep, &rat))
|
|
return false;
|
|
|
|
if (prat)
|
|
*prat = rat;
|
|
|
|
/* In case both UBASE and CBASE are shortened to UUTYPE from some common
|
|
type, we achieve better folding by computing their difference in this
|
|
wider type, and cast the result to UUTYPE. We do not need to worry about
|
|
overflows, as all the arithmetics will in the end be performed in UUTYPE
|
|
anyway. */
|
|
common_type = determine_common_wider_type (&ubase, &cbase);
|
|
|
|
/* use = ubase - ratio * cbase + ratio * var. */
|
|
tree_to_aff_combination (ubase, common_type, aff_inv);
|
|
tree_to_aff_combination (cbase, common_type, &aff_cbase);
|
|
tree_to_aff_combination (var, uutype, aff_var);
|
|
|
|
/* We need to shift the value if we are after the increment. */
|
|
if (stmt_after_increment (loop, cand, at))
|
|
{
|
|
aff_tree cstep_aff;
|
|
|
|
if (common_type != uutype)
|
|
cstep_common = fold_convert (common_type, cstep);
|
|
else
|
|
cstep_common = cstep;
|
|
|
|
tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
|
|
aff_combination_add (&aff_cbase, &cstep_aff);
|
|
}
|
|
|
|
aff_combination_scale (&aff_cbase, -rat);
|
|
aff_combination_add (aff_inv, &aff_cbase);
|
|
if (common_type != uutype)
|
|
aff_combination_convert (aff_inv, uutype);
|
|
|
|
aff_combination_scale (aff_var, rat);
|
|
return true;
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND at statement AT in LOOP. The expression is stored in a decomposed
|
|
form into AFF. Returns false if USE cannot be expressed using CAND. */
|
|
|
|
static bool
|
|
get_computation_aff (class loop *loop, gimple *at, struct iv_use *use,
|
|
struct iv_cand *cand, class aff_tree *aff)
|
|
{
|
|
aff_tree aff_var;
|
|
|
|
if (!get_computation_aff_1 (loop, at, use, cand, aff, &aff_var))
|
|
return false;
|
|
|
|
aff_combination_add (aff, &aff_var);
|
|
return true;
|
|
}
|
|
|
|
/* Return the type of USE. */
|
|
|
|
static tree
|
|
get_use_type (struct iv_use *use)
|
|
{
|
|
tree base_type = TREE_TYPE (use->iv->base);
|
|
tree type;
|
|
|
|
if (use->type == USE_REF_ADDRESS)
|
|
{
|
|
/* The base_type may be a void pointer. Create a pointer type based on
|
|
the mem_ref instead. */
|
|
type = build_pointer_type (TREE_TYPE (*use->op_p));
|
|
gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
|
|
== TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
|
|
}
|
|
else
|
|
type = base_type;
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Determines the expression by that USE is expressed from induction variable
|
|
CAND at statement AT in LOOP. The computation is unshared. */
|
|
|
|
static tree
|
|
get_computation_at (class loop *loop, gimple *at,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
aff_tree aff;
|
|
tree type = get_use_type (use);
|
|
|
|
if (!get_computation_aff (loop, at, use, cand, &aff))
|
|
return NULL_TREE;
|
|
unshare_aff_combination (&aff);
|
|
return fold_convert (type, aff_combination_to_tree (&aff));
|
|
}
|
|
|
|
/* Like get_computation_at, but try harder, even if the computation
|
|
is more expensive. Intended for debug stmts. */
|
|
|
|
static tree
|
|
get_debug_computation_at (class loop *loop, gimple *at,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
if (tree ret = get_computation_at (loop, at, use, cand))
|
|
return ret;
|
|
|
|
tree ubase = use->iv->base, ustep = use->iv->step;
|
|
tree cbase = cand->iv->base, cstep = cand->iv->step;
|
|
tree var;
|
|
tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
|
|
widest_int rat;
|
|
|
|
/* We must have a precision to express the values of use. */
|
|
if (TYPE_PRECISION (utype) >= TYPE_PRECISION (ctype))
|
|
return NULL_TREE;
|
|
|
|
/* Try to handle the case that get_computation_at doesn't,
|
|
try to express
|
|
use = ubase + (var - cbase) / ratio. */
|
|
if (!constant_multiple_of (cstep, fold_convert (TREE_TYPE (cstep), ustep),
|
|
&rat))
|
|
return NULL_TREE;
|
|
|
|
bool neg_p = false;
|
|
if (wi::neg_p (rat))
|
|
{
|
|
if (TYPE_UNSIGNED (ctype))
|
|
return NULL_TREE;
|
|
neg_p = true;
|
|
rat = wi::neg (rat);
|
|
}
|
|
|
|
/* If both IVs can wrap around and CAND doesn't have a power of two step,
|
|
it is unsafe. Consider uint16_t CAND with step 9, when wrapping around,
|
|
the values will be ... 0xfff0, 0xfff9, 2, 11 ... and when use is say
|
|
uint8_t with step 3, those values divided by 3 cast to uint8_t will be
|
|
... 0x50, 0x53, 0, 3 ... rather than expected 0x50, 0x53, 0x56, 0x59. */
|
|
if (!use->iv->no_overflow
|
|
&& !cand->iv->no_overflow
|
|
&& !integer_pow2p (cstep))
|
|
return NULL_TREE;
|
|
|
|
int bits = wi::exact_log2 (rat);
|
|
if (bits == -1)
|
|
bits = wi::floor_log2 (rat) + 1;
|
|
if (!cand->iv->no_overflow
|
|
&& TYPE_PRECISION (utype) + bits > TYPE_PRECISION (ctype))
|
|
return NULL_TREE;
|
|
|
|
var = var_at_stmt (loop, cand, at);
|
|
|
|
if (POINTER_TYPE_P (ctype))
|
|
{
|
|
ctype = unsigned_type_for (ctype);
|
|
cbase = fold_convert (ctype, cbase);
|
|
cstep = fold_convert (ctype, cstep);
|
|
var = fold_convert (ctype, var);
|
|
}
|
|
|
|
if (stmt_after_increment (loop, cand, at))
|
|
var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var,
|
|
unshare_expr (cstep));
|
|
|
|
var = fold_build2 (MINUS_EXPR, TREE_TYPE (var), var, cbase);
|
|
var = fold_build2 (EXACT_DIV_EXPR, TREE_TYPE (var), var,
|
|
wide_int_to_tree (TREE_TYPE (var), rat));
|
|
if (POINTER_TYPE_P (utype))
|
|
{
|
|
var = fold_convert (sizetype, var);
|
|
if (neg_p)
|
|
var = fold_build1 (NEGATE_EXPR, sizetype, var);
|
|
var = fold_build2 (POINTER_PLUS_EXPR, utype, ubase, var);
|
|
}
|
|
else
|
|
{
|
|
var = fold_convert (utype, var);
|
|
var = fold_build2 (neg_p ? MINUS_EXPR : PLUS_EXPR, utype,
|
|
ubase, var);
|
|
}
|
|
return var;
|
|
}
|
|
|
|
/* Adjust the cost COST for being in loop setup rather than loop body.
|
|
If we're optimizing for space, the loop setup overhead is constant;
|
|
if we're optimizing for speed, amortize it over the per-iteration cost.
|
|
If ROUND_UP_P is true, the result is round up rather than to zero when
|
|
optimizing for speed. */
|
|
static int64_t
|
|
adjust_setup_cost (struct ivopts_data *data, int64_t cost,
|
|
bool round_up_p = false)
|
|
{
|
|
if (cost == INFTY)
|
|
return cost;
|
|
else if (optimize_loop_for_speed_p (data->current_loop))
|
|
{
|
|
int64_t niters = (int64_t) avg_loop_niter (data->current_loop);
|
|
return (cost + (round_up_p ? niters - 1 : 0)) / niters;
|
|
}
|
|
else
|
|
return cost;
|
|
}
|
|
|
|
/* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
|
|
EXPR operand holding the shift. COST0 and COST1 are the costs for
|
|
calculating the operands of EXPR. Returns true if successful, and returns
|
|
the cost in COST. */
|
|
|
|
static bool
|
|
get_shiftadd_cost (tree expr, scalar_int_mode mode, comp_cost cost0,
|
|
comp_cost cost1, tree mult, bool speed, comp_cost *cost)
|
|
{
|
|
comp_cost res;
|
|
tree op1 = TREE_OPERAND (expr, 1);
|
|
tree cst = TREE_OPERAND (mult, 1);
|
|
tree multop = TREE_OPERAND (mult, 0);
|
|
int m = exact_log2 (int_cst_value (cst));
|
|
int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
|
int as_cost, sa_cost;
|
|
bool mult_in_op1;
|
|
|
|
if (!(m >= 0 && m < maxm))
|
|
return false;
|
|
|
|
STRIP_NOPS (op1);
|
|
mult_in_op1 = operand_equal_p (op1, mult, 0);
|
|
|
|
as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
|
|
|
|
/* If the target has a cheap shift-and-add or shift-and-sub instruction,
|
|
use that in preference to a shift insn followed by an add insn. */
|
|
sa_cost = (TREE_CODE (expr) != MINUS_EXPR
|
|
? shiftadd_cost (speed, mode, m)
|
|
: (mult_in_op1
|
|
? shiftsub1_cost (speed, mode, m)
|
|
: shiftsub0_cost (speed, mode, m)));
|
|
|
|
res = comp_cost (MIN (as_cost, sa_cost), 0);
|
|
res += (mult_in_op1 ? cost0 : cost1);
|
|
|
|
STRIP_NOPS (multop);
|
|
if (!is_gimple_val (multop))
|
|
res += force_expr_to_var_cost (multop, speed);
|
|
|
|
*cost = res;
|
|
return true;
|
|
}
|
|
|
|
/* Estimates cost of forcing expression EXPR into a variable. */
|
|
|
|
static comp_cost
|
|
force_expr_to_var_cost (tree expr, bool speed)
|
|
{
|
|
static bool costs_initialized = false;
|
|
static unsigned integer_cost [2];
|
|
static unsigned symbol_cost [2];
|
|
static unsigned address_cost [2];
|
|
tree op0, op1;
|
|
comp_cost cost0, cost1, cost;
|
|
machine_mode mode;
|
|
scalar_int_mode int_mode;
|
|
|
|
if (!costs_initialized)
|
|
{
|
|
tree type = build_pointer_type (integer_type_node);
|
|
tree var, addr;
|
|
rtx x;
|
|
int i;
|
|
|
|
var = create_tmp_var_raw (integer_type_node, "test_var");
|
|
TREE_STATIC (var) = 1;
|
|
x = produce_memory_decl_rtl (var, NULL);
|
|
SET_DECL_RTL (var, x);
|
|
|
|
addr = build1 (ADDR_EXPR, type, var);
|
|
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
|
|
2000), i);
|
|
|
|
symbol_cost[i] = computation_cost (addr, i) + 1;
|
|
|
|
address_cost[i]
|
|
= computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
|
|
fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
|
|
fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
|
|
fprintf (dump_file, " address %d\n", (int) address_cost[i]);
|
|
fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
costs_initialized = true;
|
|
}
|
|
|
|
STRIP_NOPS (expr);
|
|
|
|
if (SSA_VAR_P (expr))
|
|
return no_cost;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
{
|
|
if (poly_int_tree_p (expr))
|
|
return comp_cost (integer_cost [speed], 0);
|
|
|
|
if (TREE_CODE (expr) == ADDR_EXPR)
|
|
{
|
|
tree obj = TREE_OPERAND (expr, 0);
|
|
|
|
if (VAR_P (obj)
|
|
|| TREE_CODE (obj) == PARM_DECL
|
|
|| TREE_CODE (obj) == RESULT_DECL)
|
|
return comp_cost (symbol_cost [speed], 0);
|
|
}
|
|
|
|
return comp_cost (address_cost [speed], 0);
|
|
}
|
|
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case MULT_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
STRIP_NOPS (op0);
|
|
STRIP_NOPS (op1);
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
case NEGATE_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
STRIP_NOPS (op0);
|
|
op1 = NULL_TREE;
|
|
break;
|
|
/* See add_iv_candidate_for_doloop, for doloop may_be_zero case, we
|
|
introduce COND_EXPR for IV base, need to support better cost estimation
|
|
for this COND_EXPR and tcc_comparison. */
|
|
case COND_EXPR:
|
|
op0 = TREE_OPERAND (expr, 1);
|
|
STRIP_NOPS (op0);
|
|
op1 = TREE_OPERAND (expr, 2);
|
|
STRIP_NOPS (op1);
|
|
break;
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
case GT_EXPR:
|
|
case GE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
case UNORDERED_EXPR:
|
|
case ORDERED_EXPR:
|
|
case UNLT_EXPR:
|
|
case UNLE_EXPR:
|
|
case UNGT_EXPR:
|
|
case UNGE_EXPR:
|
|
case UNEQ_EXPR:
|
|
case LTGT_EXPR:
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
STRIP_NOPS (op0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
STRIP_NOPS (op1);
|
|
break;
|
|
|
|
default:
|
|
/* Just an arbitrary value, FIXME. */
|
|
return comp_cost (target_spill_cost[speed], 0);
|
|
}
|
|
|
|
if (op0 == NULL_TREE
|
|
|| TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
|
|
cost0 = no_cost;
|
|
else
|
|
cost0 = force_expr_to_var_cost (op0, speed);
|
|
|
|
if (op1 == NULL_TREE
|
|
|| TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
|
|
cost1 = no_cost;
|
|
else
|
|
cost1 = force_expr_to_var_cost (op1, speed);
|
|
|
|
mode = TYPE_MODE (TREE_TYPE (expr));
|
|
switch (TREE_CODE (expr))
|
|
{
|
|
case POINTER_PLUS_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case NEGATE_EXPR:
|
|
cost = comp_cost (add_cost (speed, mode), 0);
|
|
if (TREE_CODE (expr) != NEGATE_EXPR)
|
|
{
|
|
tree mult = NULL_TREE;
|
|
comp_cost sa_cost;
|
|
if (TREE_CODE (op1) == MULT_EXPR)
|
|
mult = op1;
|
|
else if (TREE_CODE (op0) == MULT_EXPR)
|
|
mult = op0;
|
|
|
|
if (mult != NULL_TREE
|
|
&& is_a <scalar_int_mode> (mode, &int_mode)
|
|
&& cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
|
|
&& get_shiftadd_cost (expr, int_mode, cost0, cost1, mult,
|
|
speed, &sa_cost))
|
|
return sa_cost;
|
|
}
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
{
|
|
tree inner_mode, outer_mode;
|
|
outer_mode = TREE_TYPE (expr);
|
|
inner_mode = TREE_TYPE (op0);
|
|
cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
|
|
TYPE_MODE (inner_mode), speed), 0);
|
|
}
|
|
break;
|
|
|
|
case MULT_EXPR:
|
|
if (cst_and_fits_in_hwi (op0))
|
|
cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
|
|
mode, speed), 0);
|
|
else if (cst_and_fits_in_hwi (op1))
|
|
cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
|
|
mode, speed), 0);
|
|
else
|
|
return comp_cost (target_spill_cost [speed], 0);
|
|
break;
|
|
|
|
case TRUNC_DIV_EXPR:
|
|
/* Division by power of two is usually cheap, so we allow it. Forbid
|
|
anything else. */
|
|
if (integer_pow2p (TREE_OPERAND (expr, 1)))
|
|
cost = comp_cost (add_cost (speed, mode), 0);
|
|
else
|
|
cost = comp_cost (target_spill_cost[speed], 0);
|
|
break;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
cost = comp_cost (add_cost (speed, mode), 0);
|
|
break;
|
|
case COND_EXPR:
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
STRIP_NOPS (op0);
|
|
if (op0 == NULL_TREE || TREE_CODE (op0) == SSA_NAME
|
|
|| CONSTANT_CLASS_P (op0))
|
|
cost = no_cost;
|
|
else
|
|
cost = force_expr_to_var_cost (op0, speed);
|
|
break;
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
case GT_EXPR:
|
|
case GE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
case UNORDERED_EXPR:
|
|
case ORDERED_EXPR:
|
|
case UNLT_EXPR:
|
|
case UNLE_EXPR:
|
|
case UNGT_EXPR:
|
|
case UNGE_EXPR:
|
|
case UNEQ_EXPR:
|
|
case LTGT_EXPR:
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
/* Simply use add cost for now, FIXME if there is some more accurate cost
|
|
evaluation way. */
|
|
cost = comp_cost (add_cost (speed, mode), 0);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
cost += cost0;
|
|
cost += cost1;
|
|
return cost;
|
|
}
|
|
|
|
/* Estimates cost of forcing EXPR into a variable. INV_VARS is a set of the
|
|
invariants the computation depends on. */
|
|
|
|
static comp_cost
|
|
force_var_cost (struct ivopts_data *data, tree expr, bitmap *inv_vars)
|
|
{
|
|
if (!expr)
|
|
return no_cost;
|
|
|
|
find_inv_vars (data, &expr, inv_vars);
|
|
return force_expr_to_var_cost (expr, data->speed);
|
|
}
|
|
|
|
/* Returns cost of auto-modifying address expression in shape base + offset.
|
|
AINC_STEP is step size of the address IV. AINC_OFFSET is offset of the
|
|
address expression. The address expression has ADDR_MODE in addr space
|
|
AS. The memory access has MEM_MODE. SPEED means we are optimizing for
|
|
speed or size. */
|
|
|
|
enum ainc_type
|
|
{
|
|
AINC_PRE_INC, /* Pre increment. */
|
|
AINC_PRE_DEC, /* Pre decrement. */
|
|
AINC_POST_INC, /* Post increment. */
|
|
AINC_POST_DEC, /* Post decrement. */
|
|
AINC_NONE /* Also the number of auto increment types. */
|
|
};
|
|
|
|
struct ainc_cost_data
|
|
{
|
|
int64_t costs[AINC_NONE];
|
|
};
|
|
|
|
static comp_cost
|
|
get_address_cost_ainc (poly_int64 ainc_step, poly_int64 ainc_offset,
|
|
machine_mode addr_mode, machine_mode mem_mode,
|
|
addr_space_t as, bool speed)
|
|
{
|
|
if (!USE_LOAD_PRE_DECREMENT (mem_mode)
|
|
&& !USE_STORE_PRE_DECREMENT (mem_mode)
|
|
&& !USE_LOAD_POST_DECREMENT (mem_mode)
|
|
&& !USE_STORE_POST_DECREMENT (mem_mode)
|
|
&& !USE_LOAD_PRE_INCREMENT (mem_mode)
|
|
&& !USE_STORE_PRE_INCREMENT (mem_mode)
|
|
&& !USE_LOAD_POST_INCREMENT (mem_mode)
|
|
&& !USE_STORE_POST_INCREMENT (mem_mode))
|
|
return infinite_cost;
|
|
|
|
static vec<ainc_cost_data *> ainc_cost_data_list;
|
|
unsigned idx = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
|
|
if (idx >= ainc_cost_data_list.length ())
|
|
{
|
|
unsigned nsize = ((unsigned) as + 1) *MAX_MACHINE_MODE;
|
|
|
|
gcc_assert (nsize > idx);
|
|
ainc_cost_data_list.safe_grow_cleared (nsize, true);
|
|
}
|
|
|
|
ainc_cost_data *data = ainc_cost_data_list[idx];
|
|
if (data == NULL)
|
|
{
|
|
rtx reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
|
|
|
|
data = (ainc_cost_data *) xcalloc (1, sizeof (*data));
|
|
data->costs[AINC_PRE_DEC] = INFTY;
|
|
data->costs[AINC_POST_DEC] = INFTY;
|
|
data->costs[AINC_PRE_INC] = INFTY;
|
|
data->costs[AINC_POST_INC] = INFTY;
|
|
if (USE_LOAD_PRE_DECREMENT (mem_mode)
|
|
|| USE_STORE_PRE_DECREMENT (mem_mode))
|
|
{
|
|
rtx addr = gen_rtx_PRE_DEC (addr_mode, reg);
|
|
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
data->costs[AINC_PRE_DEC]
|
|
= address_cost (addr, mem_mode, as, speed);
|
|
}
|
|
if (USE_LOAD_POST_DECREMENT (mem_mode)
|
|
|| USE_STORE_POST_DECREMENT (mem_mode))
|
|
{
|
|
rtx addr = gen_rtx_POST_DEC (addr_mode, reg);
|
|
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
data->costs[AINC_POST_DEC]
|
|
= address_cost (addr, mem_mode, as, speed);
|
|
}
|
|
if (USE_LOAD_PRE_INCREMENT (mem_mode)
|
|
|| USE_STORE_PRE_INCREMENT (mem_mode))
|
|
{
|
|
rtx addr = gen_rtx_PRE_INC (addr_mode, reg);
|
|
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
data->costs[AINC_PRE_INC]
|
|
= address_cost (addr, mem_mode, as, speed);
|
|
}
|
|
if (USE_LOAD_POST_INCREMENT (mem_mode)
|
|
|| USE_STORE_POST_INCREMENT (mem_mode))
|
|
{
|
|
rtx addr = gen_rtx_POST_INC (addr_mode, reg);
|
|
|
|
if (memory_address_addr_space_p (mem_mode, addr, as))
|
|
data->costs[AINC_POST_INC]
|
|
= address_cost (addr, mem_mode, as, speed);
|
|
}
|
|
ainc_cost_data_list[idx] = data;
|
|
}
|
|
|
|
poly_int64 msize = GET_MODE_SIZE (mem_mode);
|
|
if (known_eq (ainc_offset, 0) && known_eq (msize, ainc_step))
|
|
return comp_cost (data->costs[AINC_POST_INC], 0);
|
|
if (known_eq (ainc_offset, 0) && known_eq (msize, -ainc_step))
|
|
return comp_cost (data->costs[AINC_POST_DEC], 0);
|
|
if (known_eq (ainc_offset, msize) && known_eq (msize, ainc_step))
|
|
return comp_cost (data->costs[AINC_PRE_INC], 0);
|
|
if (known_eq (ainc_offset, -msize) && known_eq (msize, -ainc_step))
|
|
return comp_cost (data->costs[AINC_PRE_DEC], 0);
|
|
|
|
return infinite_cost;
|
|
}
|
|
|
|
/* Return cost of computing USE's address expression by using CAND.
|
|
AFF_INV and AFF_VAR represent invariant and variant parts of the
|
|
address expression, respectively. If AFF_INV is simple, store
|
|
the loop invariant variables which are depended by it in INV_VARS;
|
|
if AFF_INV is complicated, handle it as a new invariant expression
|
|
and record it in INV_EXPR. RATIO indicates multiple times between
|
|
steps of USE and CAND. If CAN_AUTOINC is nonNULL, store boolean
|
|
value to it indicating if this is an auto-increment address. */
|
|
|
|
static comp_cost
|
|
get_address_cost (struct ivopts_data *data, struct iv_use *use,
|
|
struct iv_cand *cand, aff_tree *aff_inv,
|
|
aff_tree *aff_var, HOST_WIDE_INT ratio,
|
|
bitmap *inv_vars, iv_inv_expr_ent **inv_expr,
|
|
bool *can_autoinc, bool speed)
|
|
{
|
|
rtx addr;
|
|
bool simple_inv = true;
|
|
tree comp_inv = NULL_TREE, type = aff_var->type;
|
|
comp_cost var_cost = no_cost, cost = no_cost;
|
|
struct mem_address parts = {NULL_TREE, integer_one_node,
|
|
NULL_TREE, NULL_TREE, NULL_TREE};
|
|
machine_mode addr_mode = TYPE_MODE (type);
|
|
machine_mode mem_mode = TYPE_MODE (use->mem_type);
|
|
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
|
|
/* Only true if ratio != 1. */
|
|
bool ok_with_ratio_p = false;
|
|
bool ok_without_ratio_p = false;
|
|
|
|
if (!aff_combination_const_p (aff_inv))
|
|
{
|
|
parts.index = integer_one_node;
|
|
/* Addressing mode "base + index". */
|
|
ok_without_ratio_p = valid_mem_ref_p (mem_mode, as, &parts);
|
|
if (ratio != 1)
|
|
{
|
|
parts.step = wide_int_to_tree (type, ratio);
|
|
/* Addressing mode "base + index << scale". */
|
|
ok_with_ratio_p = valid_mem_ref_p (mem_mode, as, &parts);
|
|
if (!ok_with_ratio_p)
|
|
parts.step = NULL_TREE;
|
|
}
|
|
if (ok_with_ratio_p || ok_without_ratio_p)
|
|
{
|
|
if (maybe_ne (aff_inv->offset, 0))
|
|
{
|
|
parts.offset = wide_int_to_tree (sizetype, aff_inv->offset);
|
|
/* Addressing mode "base + index [<< scale] + offset". */
|
|
if (!valid_mem_ref_p (mem_mode, as, &parts))
|
|
parts.offset = NULL_TREE;
|
|
else
|
|
aff_inv->offset = 0;
|
|
}
|
|
|
|
move_fixed_address_to_symbol (&parts, aff_inv);
|
|
/* Base is fixed address and is moved to symbol part. */
|
|
if (parts.symbol != NULL_TREE && aff_combination_zero_p (aff_inv))
|
|
parts.base = NULL_TREE;
|
|
|
|
/* Addressing mode "symbol + base + index [<< scale] [+ offset]". */
|
|
if (parts.symbol != NULL_TREE
|
|
&& !valid_mem_ref_p (mem_mode, as, &parts))
|
|
{
|
|
aff_combination_add_elt (aff_inv, parts.symbol, 1);
|
|
parts.symbol = NULL_TREE;
|
|
/* Reset SIMPLE_INV since symbol address needs to be computed
|
|
outside of address expression in this case. */
|
|
simple_inv = false;
|
|
/* Symbol part is moved back to base part, it can't be NULL. */
|
|
parts.base = integer_one_node;
|
|
}
|
|
}
|
|
else
|
|
parts.index = NULL_TREE;
|
|
}
|
|
else
|
|
{
|
|
poly_int64 ainc_step;
|
|
if (can_autoinc
|
|
&& ratio == 1
|
|
&& ptrdiff_tree_p (cand->iv->step, &ainc_step))
|
|
{
|
|
poly_int64 ainc_offset = (aff_inv->offset).force_shwi ();
|
|
|
|
if (stmt_after_increment (data->current_loop, cand, use->stmt))
|
|
ainc_offset += ainc_step;
|
|
cost = get_address_cost_ainc (ainc_step, ainc_offset,
|
|
addr_mode, mem_mode, as, speed);
|
|
if (!cost.infinite_cost_p ())
|
|
{
|
|
*can_autoinc = true;
|
|
return cost;
|
|
}
|
|
cost = no_cost;
|
|
}
|
|
if (!aff_combination_zero_p (aff_inv))
|
|
{
|
|
parts.offset = wide_int_to_tree (sizetype, aff_inv->offset);
|
|
/* Addressing mode "base + offset". */
|
|
if (!valid_mem_ref_p (mem_mode, as, &parts))
|
|
parts.offset = NULL_TREE;
|
|
else
|
|
aff_inv->offset = 0;
|
|
}
|
|
}
|
|
|
|
if (simple_inv)
|
|
simple_inv = (aff_inv == NULL
|
|
|| aff_combination_const_p (aff_inv)
|
|
|| aff_combination_singleton_var_p (aff_inv));
|
|
if (!aff_combination_zero_p (aff_inv))
|
|
comp_inv = aff_combination_to_tree (aff_inv);
|
|
if (comp_inv != NULL_TREE)
|
|
cost = force_var_cost (data, comp_inv, inv_vars);
|
|
if (ratio != 1 && parts.step == NULL_TREE)
|
|
var_cost += mult_by_coeff_cost (ratio, addr_mode, speed);
|
|
if (comp_inv != NULL_TREE && parts.index == NULL_TREE)
|
|
var_cost += add_cost (speed, addr_mode);
|
|
|
|
if (comp_inv && inv_expr && !simple_inv)
|
|
{
|
|
*inv_expr = get_loop_invariant_expr (data, comp_inv);
|
|
/* Clear depends on. */
|
|
if (*inv_expr != NULL && inv_vars && *inv_vars)
|
|
bitmap_clear (*inv_vars);
|
|
|
|
/* Cost of small invariant expression adjusted against loop niters
|
|
is usually zero, which makes it difficult to be differentiated
|
|
from candidate based on loop invariant variables. Secondly, the
|
|
generated invariant expression may not be hoisted out of loop by
|
|
following pass. We penalize the cost by rounding up in order to
|
|
neutralize such effects. */
|
|
cost.cost = adjust_setup_cost (data, cost.cost, true);
|
|
cost.scratch = cost.cost;
|
|
}
|
|
|
|
cost += var_cost;
|
|
addr = addr_for_mem_ref (&parts, as, false);
|
|
gcc_assert (memory_address_addr_space_p (mem_mode, addr, as));
|
|
cost += address_cost (addr, mem_mode, as, speed);
|
|
|
|
if (parts.symbol != NULL_TREE)
|
|
cost.complexity += 1;
|
|
/* Don't increase the complexity of adding a scaled index if it's
|
|
the only kind of index that the target allows. */
|
|
if (parts.step != NULL_TREE && ok_without_ratio_p)
|
|
cost.complexity += 1;
|
|
if (parts.base != NULL_TREE && parts.index != NULL_TREE)
|
|
cost.complexity += 1;
|
|
if (parts.offset != NULL_TREE && !integer_zerop (parts.offset))
|
|
cost.complexity += 1;
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Scale (multiply) the computed COST (except scratch part that should be
|
|
hoisted out a loop) by header->frequency / AT->frequency, which makes
|
|
expected cost more accurate. */
|
|
|
|
static comp_cost
|
|
get_scaled_computation_cost_at (ivopts_data *data, gimple *at, comp_cost cost)
|
|
{
|
|
if (data->speed
|
|
&& data->current_loop->header->count.to_frequency (cfun) > 0)
|
|
{
|
|
basic_block bb = gimple_bb (at);
|
|
gcc_assert (cost.scratch <= cost.cost);
|
|
int scale_factor = (int)(intptr_t) bb->aux;
|
|
if (scale_factor == 1)
|
|
return cost;
|
|
|
|
int64_t scaled_cost
|
|
= cost.scratch + (cost.cost - cost.scratch) * scale_factor;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Scaling cost based on bb prob by %2.2f: "
|
|
"%" PRId64 " (scratch: %" PRId64 ") -> %" PRId64 "\n",
|
|
1.0f * scale_factor, cost.cost, cost.scratch, scaled_cost);
|
|
|
|
cost.cost = scaled_cost;
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Determines the cost of the computation by that USE is expressed
|
|
from induction variable CAND. If ADDRESS_P is true, we just need
|
|
to create an address from it, otherwise we want to get it into
|
|
register. A set of invariants we depend on is stored in INV_VARS.
|
|
If CAN_AUTOINC is nonnull, use it to record whether autoinc
|
|
addressing is likely. If INV_EXPR is nonnull, record invariant
|
|
expr entry in it. */
|
|
|
|
static comp_cost
|
|
get_computation_cost (struct ivopts_data *data, struct iv_use *use,
|
|
struct iv_cand *cand, bool address_p, bitmap *inv_vars,
|
|
bool *can_autoinc, iv_inv_expr_ent **inv_expr)
|
|
{
|
|
gimple *at = use->stmt;
|
|
tree ubase = use->iv->base, cbase = cand->iv->base;
|
|
tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
|
|
tree comp_inv = NULL_TREE;
|
|
HOST_WIDE_INT ratio, aratio;
|
|
comp_cost cost;
|
|
widest_int rat;
|
|
aff_tree aff_inv, aff_var;
|
|
bool speed = optimize_bb_for_speed_p (gimple_bb (at));
|
|
|
|
if (inv_vars)
|
|
*inv_vars = NULL;
|
|
if (can_autoinc)
|
|
*can_autoinc = false;
|
|
if (inv_expr)
|
|
*inv_expr = NULL;
|
|
|
|
/* Check if we have enough precision to express the values of use. */
|
|
if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
|
|
return infinite_cost;
|
|
|
|
if (address_p
|
|
|| (use->iv->base_object
|
|
&& cand->iv->base_object
|
|
&& POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
|
|
&& POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
|
|
{
|
|
/* Do not try to express address of an object with computation based
|
|
on address of a different object. This may cause problems in rtl
|
|
level alias analysis (that does not expect this to be happening,
|
|
as this is illegal in C), and would be unlikely to be useful
|
|
anyway. */
|
|
if (use->iv->base_object
|
|
&& cand->iv->base_object
|
|
&& !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
|
|
return infinite_cost;
|
|
}
|
|
|
|
if (!get_computation_aff_1 (data->current_loop, at, use,
|
|
cand, &aff_inv, &aff_var, &rat)
|
|
|| !wi::fits_shwi_p (rat))
|
|
return infinite_cost;
|
|
|
|
ratio = rat.to_shwi ();
|
|
if (address_p)
|
|
{
|
|
cost = get_address_cost (data, use, cand, &aff_inv, &aff_var, ratio,
|
|
inv_vars, inv_expr, can_autoinc, speed);
|
|
cost = get_scaled_computation_cost_at (data, at, cost);
|
|
/* For doloop IV cand, add on the extra cost. */
|
|
cost += cand->doloop_p ? targetm.doloop_cost_for_address : 0;
|
|
return cost;
|
|
}
|
|
|
|
bool simple_inv = (aff_combination_const_p (&aff_inv)
|
|
|| aff_combination_singleton_var_p (&aff_inv));
|
|
tree signed_type = signed_type_for (aff_combination_type (&aff_inv));
|
|
aff_combination_convert (&aff_inv, signed_type);
|
|
if (!aff_combination_zero_p (&aff_inv))
|
|
comp_inv = aff_combination_to_tree (&aff_inv);
|
|
|
|
cost = force_var_cost (data, comp_inv, inv_vars);
|
|
if (comp_inv && inv_expr && !simple_inv)
|
|
{
|
|
*inv_expr = get_loop_invariant_expr (data, comp_inv);
|
|
/* Clear depends on. */
|
|
if (*inv_expr != NULL && inv_vars && *inv_vars)
|
|
bitmap_clear (*inv_vars);
|
|
|
|
cost.cost = adjust_setup_cost (data, cost.cost);
|
|
/* Record setup cost in scratch field. */
|
|
cost.scratch = cost.cost;
|
|
}
|
|
/* Cost of constant integer can be covered when adding invariant part to
|
|
variant part. */
|
|
else if (comp_inv && CONSTANT_CLASS_P (comp_inv))
|
|
cost = no_cost;
|
|
|
|
/* Need type narrowing to represent use with cand. */
|
|
if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
|
|
{
|
|
machine_mode outer_mode = TYPE_MODE (utype);
|
|
machine_mode inner_mode = TYPE_MODE (ctype);
|
|
cost += comp_cost (convert_cost (outer_mode, inner_mode, speed), 0);
|
|
}
|
|
|
|
/* Turn a + i * (-c) into a - i * c. */
|
|
if (ratio < 0 && comp_inv && !integer_zerop (comp_inv))
|
|
aratio = -ratio;
|
|
else
|
|
aratio = ratio;
|
|
|
|
if (ratio != 1)
|
|
cost += mult_by_coeff_cost (aratio, TYPE_MODE (utype), speed);
|
|
|
|
/* TODO: We may also need to check if we can compute a + i * 4 in one
|
|
instruction. */
|
|
/* Need to add up the invariant and variant parts. */
|
|
if (comp_inv && !integer_zerop (comp_inv))
|
|
cost += add_cost (speed, TYPE_MODE (utype));
|
|
|
|
cost = get_scaled_computation_cost_at (data, at, cost);
|
|
|
|
/* For doloop IV cand, add on the extra cost. */
|
|
if (cand->doloop_p && use->type == USE_NONLINEAR_EXPR)
|
|
cost += targetm.doloop_cost_for_generic;
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Determines cost of computing the use in GROUP with CAND in a generic
|
|
expression. */
|
|
|
|
static bool
|
|
determine_group_iv_cost_generic (struct ivopts_data *data,
|
|
struct iv_group *group, struct iv_cand *cand)
|
|
{
|
|
comp_cost cost;
|
|
iv_inv_expr_ent *inv_expr = NULL;
|
|
bitmap inv_vars = NULL, inv_exprs = NULL;
|
|
struct iv_use *use = group->vuses[0];
|
|
|
|
/* The simple case first -- if we need to express value of the preserved
|
|
original biv, the cost is 0. This also prevents us from counting the
|
|
cost of increment twice -- once at this use and once in the cost of
|
|
the candidate. */
|
|
if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
|
|
cost = no_cost;
|
|
/* If the IV candidate involves undefined SSA values and is not the
|
|
same IV as on the USE avoid using that candidate here. */
|
|
else if (cand->involves_undefs
|
|
&& (!use->iv || !operand_equal_p (cand->iv->base, use->iv->base, 0)))
|
|
return false;
|
|
else
|
|
cost = get_computation_cost (data, use, cand, false,
|
|
&inv_vars, NULL, &inv_expr);
|
|
|
|
if (inv_expr)
|
|
{
|
|
inv_exprs = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (inv_exprs, inv_expr->id);
|
|
}
|
|
set_group_iv_cost (data, group, cand, cost, inv_vars,
|
|
NULL_TREE, ERROR_MARK, inv_exprs);
|
|
return !cost.infinite_cost_p ();
|
|
}
|
|
|
|
/* Determines cost of computing uses in GROUP with CAND in addresses. */
|
|
|
|
static bool
|
|
determine_group_iv_cost_address (struct ivopts_data *data,
|
|
struct iv_group *group, struct iv_cand *cand)
|
|
{
|
|
unsigned i;
|
|
bitmap inv_vars = NULL, inv_exprs = NULL;
|
|
bool can_autoinc;
|
|
iv_inv_expr_ent *inv_expr = NULL;
|
|
struct iv_use *use = group->vuses[0];
|
|
comp_cost sum_cost = no_cost, cost;
|
|
|
|
cost = get_computation_cost (data, use, cand, true,
|
|
&inv_vars, &can_autoinc, &inv_expr);
|
|
|
|
if (inv_expr)
|
|
{
|
|
inv_exprs = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (inv_exprs, inv_expr->id);
|
|
}
|
|
sum_cost = cost;
|
|
if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
|
|
{
|
|
if (can_autoinc)
|
|
sum_cost -= cand->cost_step;
|
|
/* If we generated the candidate solely for exploiting autoincrement
|
|
opportunities, and it turns out it can't be used, set the cost to
|
|
infinity to make sure we ignore it. */
|
|
else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
|
|
sum_cost = infinite_cost;
|
|
}
|
|
|
|
/* Uses in a group can share setup code, so only add setup cost once. */
|
|
cost -= cost.scratch;
|
|
/* Compute and add costs for rest uses of this group. */
|
|
for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
|
|
{
|
|
struct iv_use *next = group->vuses[i];
|
|
|
|
/* TODO: We could skip computing cost for sub iv_use when it has the
|
|
same cost as the first iv_use, but the cost really depends on the
|
|
offset and where the iv_use is. */
|
|
cost = get_computation_cost (data, next, cand, true,
|
|
NULL, &can_autoinc, &inv_expr);
|
|
if (inv_expr)
|
|
{
|
|
if (!inv_exprs)
|
|
inv_exprs = BITMAP_ALLOC (NULL);
|
|
|
|
bitmap_set_bit (inv_exprs, inv_expr->id);
|
|
}
|
|
sum_cost += cost;
|
|
}
|
|
set_group_iv_cost (data, group, cand, sum_cost, inv_vars,
|
|
NULL_TREE, ERROR_MARK, inv_exprs);
|
|
|
|
return !sum_cost.infinite_cost_p ();
|
|
}
|
|
|
|
/* Computes value of candidate CAND at position AT in iteration DESC->NITER,
|
|
and stores it to VAL. */
|
|
|
|
static void
|
|
cand_value_at (class loop *loop, struct iv_cand *cand, gimple *at,
|
|
class tree_niter_desc *desc, aff_tree *val)
|
|
{
|
|
aff_tree step, delta, nit;
|
|
struct iv *iv = cand->iv;
|
|
tree type = TREE_TYPE (iv->base);
|
|
tree niter = desc->niter;
|
|
bool after_adjust = stmt_after_increment (loop, cand, at);
|
|
tree steptype;
|
|
|
|
if (POINTER_TYPE_P (type))
|
|
steptype = sizetype;
|
|
else
|
|
steptype = unsigned_type_for (type);
|
|
|
|
/* If AFTER_ADJUST is required, the code below generates the equivalent
|
|
of BASE + NITER * STEP + STEP, when ideally we'd prefer the expression
|
|
BASE + (NITER + 1) * STEP, especially when NITER is often of the form
|
|
SSA_NAME - 1. Unfortunately, guaranteeing that adding 1 to NITER
|
|
doesn't overflow is tricky, so we peek inside the TREE_NITER_DESC
|
|
class for common idioms that we know are safe. */
|
|
if (after_adjust
|
|
&& desc->control.no_overflow
|
|
&& integer_onep (desc->control.step)
|
|
&& (desc->cmp == LT_EXPR
|
|
|| desc->cmp == NE_EXPR)
|
|
&& TREE_CODE (desc->bound) == SSA_NAME)
|
|
{
|
|
if (integer_onep (desc->control.base))
|
|
{
|
|
niter = desc->bound;
|
|
after_adjust = false;
|
|
}
|
|
else if (TREE_CODE (niter) == MINUS_EXPR
|
|
&& integer_onep (TREE_OPERAND (niter, 1)))
|
|
{
|
|
niter = TREE_OPERAND (niter, 0);
|
|
after_adjust = false;
|
|
}
|
|
}
|
|
|
|
tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
|
|
aff_combination_convert (&step, steptype);
|
|
tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
|
|
aff_combination_convert (&nit, steptype);
|
|
aff_combination_mult (&nit, &step, &delta);
|
|
if (after_adjust)
|
|
aff_combination_add (&delta, &step);
|
|
|
|
tree_to_aff_combination (iv->base, type, val);
|
|
if (!POINTER_TYPE_P (type))
|
|
aff_combination_convert (val, steptype);
|
|
aff_combination_add (val, &delta);
|
|
}
|
|
|
|
/* Returns period of induction variable iv. */
|
|
|
|
static tree
|
|
iv_period (struct iv *iv)
|
|
{
|
|
tree step = iv->step, period, type;
|
|
tree pow2div;
|
|
|
|
gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
|
|
|
|
type = unsigned_type_for (TREE_TYPE (step));
|
|
/* Period of the iv is lcm (step, type_range)/step -1,
|
|
i.e., N*type_range/step - 1. Since type range is power
|
|
of two, N == (step >> num_of_ending_zeros_binary (step),
|
|
so the final result is
|
|
|
|
(type_range >> num_of_ending_zeros_binary (step)) - 1
|
|
|
|
*/
|
|
pow2div = num_ending_zeros (step);
|
|
|
|
period = build_low_bits_mask (type,
|
|
(TYPE_PRECISION (type)
|
|
- tree_to_uhwi (pow2div)));
|
|
|
|
return period;
|
|
}
|
|
|
|
/* Returns the comparison operator used when eliminating the iv USE. */
|
|
|
|
static enum tree_code
|
|
iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
|
|
{
|
|
class loop *loop = data->current_loop;
|
|
basic_block ex_bb;
|
|
edge exit;
|
|
|
|
ex_bb = gimple_bb (use->stmt);
|
|
exit = EDGE_SUCC (ex_bb, 0);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
exit = EDGE_SUCC (ex_bb, 1);
|
|
|
|
return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
|
|
}
|
|
|
|
/* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
|
|
we only detect the situation that BASE = SOMETHING + OFFSET, where the
|
|
calculation is performed in non-wrapping type.
|
|
|
|
TODO: More generally, we could test for the situation that
|
|
BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
|
|
This would require knowing the sign of OFFSET. */
|
|
|
|
static bool
|
|
difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
|
|
{
|
|
enum tree_code code;
|
|
tree e1, e2;
|
|
aff_tree aff_e1, aff_e2, aff_offset;
|
|
|
|
if (!nowrap_type_p (TREE_TYPE (base)))
|
|
return false;
|
|
|
|
base = expand_simple_operations (base);
|
|
|
|
if (TREE_CODE (base) == SSA_NAME)
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (base);
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return false;
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
|
return false;
|
|
|
|
e1 = gimple_assign_rhs1 (stmt);
|
|
e2 = gimple_assign_rhs2 (stmt);
|
|
}
|
|
else
|
|
{
|
|
code = TREE_CODE (base);
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
|
return false;
|
|
e1 = TREE_OPERAND (base, 0);
|
|
e2 = TREE_OPERAND (base, 1);
|
|
}
|
|
|
|
/* Use affine expansion as deeper inspection to prove the equality. */
|
|
tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
|
|
&aff_e2, &data->name_expansion_cache);
|
|
tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
|
|
&aff_offset, &data->name_expansion_cache);
|
|
aff_combination_scale (&aff_offset, -1);
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
aff_combination_add (&aff_e2, &aff_offset);
|
|
if (aff_combination_zero_p (&aff_e2))
|
|
return true;
|
|
|
|
tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
|
|
&aff_e1, &data->name_expansion_cache);
|
|
aff_combination_add (&aff_e1, &aff_offset);
|
|
return aff_combination_zero_p (&aff_e1);
|
|
|
|
case POINTER_PLUS_EXPR:
|
|
aff_combination_add (&aff_e2, &aff_offset);
|
|
return aff_combination_zero_p (&aff_e2);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Tries to replace loop exit by one formulated in terms of a LT_EXPR
|
|
comparison with CAND. NITER describes the number of iterations of
|
|
the loops. If successful, the comparison in COMP_P is altered accordingly.
|
|
|
|
We aim to handle the following situation:
|
|
|
|
sometype *base, *p;
|
|
int a, b, i;
|
|
|
|
i = a;
|
|
p = p_0 = base + a;
|
|
|
|
do
|
|
{
|
|
bla (*p);
|
|
p++;
|
|
i++;
|
|
}
|
|
while (i < b);
|
|
|
|
Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
|
|
We aim to optimize this to
|
|
|
|
p = p_0 = base + a;
|
|
do
|
|
{
|
|
bla (*p);
|
|
p++;
|
|
}
|
|
while (p < p_0 - a + b);
|
|
|
|
This preserves the correctness, since the pointer arithmetics does not
|
|
overflow. More precisely:
|
|
|
|
1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
|
|
overflow in computing it or the values of p.
|
|
2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
|
|
overflow. To prove this, we use the fact that p_0 = base + a. */
|
|
|
|
static bool
|
|
iv_elimination_compare_lt (struct ivopts_data *data,
|
|
struct iv_cand *cand, enum tree_code *comp_p,
|
|
class tree_niter_desc *niter)
|
|
{
|
|
tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
|
|
class aff_tree nit, tmpa, tmpb;
|
|
enum tree_code comp;
|
|
HOST_WIDE_INT step;
|
|
|
|
/* We need to know that the candidate induction variable does not overflow.
|
|
While more complex analysis may be used to prove this, for now just
|
|
check that the variable appears in the original program and that it
|
|
is computed in a type that guarantees no overflows. */
|
|
cand_type = TREE_TYPE (cand->iv->base);
|
|
if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
|
|
return false;
|
|
|
|
/* Make sure that the loop iterates till the loop bound is hit, as otherwise
|
|
the calculation of the BOUND could overflow, making the comparison
|
|
invalid. */
|
|
if (!data->loop_single_exit_p)
|
|
return false;
|
|
|
|
/* We need to be able to decide whether candidate is increasing or decreasing
|
|
in order to choose the right comparison operator. */
|
|
if (!cst_and_fits_in_hwi (cand->iv->step))
|
|
return false;
|
|
step = int_cst_value (cand->iv->step);
|
|
|
|
/* Check that the number of iterations matches the expected pattern:
|
|
a + 1 > b ? 0 : b - a - 1. */
|
|
mbz = niter->may_be_zero;
|
|
if (TREE_CODE (mbz) == GT_EXPR)
|
|
{
|
|
/* Handle a + 1 > b. */
|
|
tree op0 = TREE_OPERAND (mbz, 0);
|
|
if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
|
|
{
|
|
a = TREE_OPERAND (op0, 0);
|
|
b = TREE_OPERAND (mbz, 1);
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else if (TREE_CODE (mbz) == LT_EXPR)
|
|
{
|
|
tree op1 = TREE_OPERAND (mbz, 1);
|
|
|
|
/* Handle b < a + 1. */
|
|
if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
|
|
{
|
|
a = TREE_OPERAND (op1, 0);
|
|
b = TREE_OPERAND (mbz, 0);
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
/* Expected number of iterations is B - A - 1. Check that it matches
|
|
the actual number, i.e., that B - A - NITER = 1. */
|
|
tree_to_aff_combination (niter->niter, nit_type, &nit);
|
|
tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
|
|
tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
|
|
aff_combination_scale (&nit, -1);
|
|
aff_combination_scale (&tmpa, -1);
|
|
aff_combination_add (&tmpb, &tmpa);
|
|
aff_combination_add (&tmpb, &nit);
|
|
if (tmpb.n != 0 || maybe_ne (tmpb.offset, 1))
|
|
return false;
|
|
|
|
/* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
|
|
overflow. */
|
|
offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
|
|
cand->iv->step,
|
|
fold_convert (TREE_TYPE (cand->iv->step), a));
|
|
if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
|
|
return false;
|
|
|
|
/* Determine the new comparison operator. */
|
|
comp = step < 0 ? GT_EXPR : LT_EXPR;
|
|
if (*comp_p == NE_EXPR)
|
|
*comp_p = comp;
|
|
else if (*comp_p == EQ_EXPR)
|
|
*comp_p = invert_tree_comparison (comp, false);
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Check whether it is possible to express the condition in USE by comparison
|
|
of candidate CAND. If so, store the value compared with to BOUND, and the
|
|
comparison operator to COMP. */
|
|
|
|
static bool
|
|
may_eliminate_iv (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand, tree *bound,
|
|
enum tree_code *comp)
|
|
{
|
|
basic_block ex_bb;
|
|
edge exit;
|
|
tree period;
|
|
class loop *loop = data->current_loop;
|
|
aff_tree bnd;
|
|
class tree_niter_desc *desc = NULL;
|
|
|
|
if (TREE_CODE (cand->iv->step) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* For now works only for exits that dominate the loop latch.
|
|
TODO: extend to other conditions inside loop body. */
|
|
ex_bb = gimple_bb (use->stmt);
|
|
if (use->stmt != last_stmt (ex_bb)
|
|
|| gimple_code (use->stmt) != GIMPLE_COND
|
|
|| !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
|
|
return false;
|
|
|
|
exit = EDGE_SUCC (ex_bb, 0);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
exit = EDGE_SUCC (ex_bb, 1);
|
|
if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
return false;
|
|
|
|
desc = niter_for_exit (data, exit);
|
|
if (!desc)
|
|
return false;
|
|
|
|
/* Determine whether we can use the variable to test the exit condition.
|
|
This is the case iff the period of the induction variable is greater
|
|
than the number of iterations for which the exit condition is true. */
|
|
period = iv_period (cand->iv);
|
|
|
|
/* If the number of iterations is constant, compare against it directly. */
|
|
if (TREE_CODE (desc->niter) == INTEGER_CST)
|
|
{
|
|
/* See cand_value_at. */
|
|
if (stmt_after_increment (loop, cand, use->stmt))
|
|
{
|
|
if (!tree_int_cst_lt (desc->niter, period))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (tree_int_cst_lt (period, desc->niter))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If not, and if this is the only possible exit of the loop, see whether
|
|
we can get a conservative estimate on the number of iterations of the
|
|
entire loop and compare against that instead. */
|
|
else
|
|
{
|
|
widest_int period_value, max_niter;
|
|
|
|
max_niter = desc->max;
|
|
if (stmt_after_increment (loop, cand, use->stmt))
|
|
max_niter += 1;
|
|
period_value = wi::to_widest (period);
|
|
if (wi::gtu_p (max_niter, period_value))
|
|
{
|
|
/* See if we can take advantage of inferred loop bound
|
|
information. */
|
|
if (data->loop_single_exit_p)
|
|
{
|
|
if (!max_loop_iterations (loop, &max_niter))
|
|
return false;
|
|
/* The loop bound is already adjusted by adding 1. */
|
|
if (wi::gtu_p (max_niter, period_value))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* For doloop IV cand, the bound would be zero. It's safe whether
|
|
may_be_zero set or not. */
|
|
if (cand->doloop_p)
|
|
{
|
|
*bound = build_int_cst (TREE_TYPE (cand->iv->base), 0);
|
|
*comp = iv_elimination_compare (data, use);
|
|
return true;
|
|
}
|
|
|
|
cand_value_at (loop, cand, use->stmt, desc, &bnd);
|
|
|
|
*bound = fold_convert (TREE_TYPE (cand->iv->base),
|
|
aff_combination_to_tree (&bnd));
|
|
*comp = iv_elimination_compare (data, use);
|
|
|
|
/* It is unlikely that computing the number of iterations using division
|
|
would be more profitable than keeping the original induction variable. */
|
|
if (expression_expensive_p (*bound))
|
|
return false;
|
|
|
|
/* Sometimes, it is possible to handle the situation that the number of
|
|
iterations may be zero unless additional assumptions by using <
|
|
instead of != in the exit condition.
|
|
|
|
TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
|
|
base the exit condition on it. However, that is often too
|
|
expensive. */
|
|
if (!integer_zerop (desc->may_be_zero))
|
|
return iv_elimination_compare_lt (data, cand, comp, desc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
|
|
be copied, if it is used in the loop body and DATA->body_includes_call. */
|
|
|
|
static int
|
|
parm_decl_cost (struct ivopts_data *data, tree bound)
|
|
{
|
|
tree sbound = bound;
|
|
STRIP_NOPS (sbound);
|
|
|
|
if (TREE_CODE (sbound) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (sbound)
|
|
&& TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
|
|
&& data->body_includes_call)
|
|
return COSTS_N_INSNS (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determines cost of computing the use in GROUP with CAND in a condition. */
|
|
|
|
static bool
|
|
determine_group_iv_cost_cond (struct ivopts_data *data,
|
|
struct iv_group *group, struct iv_cand *cand)
|
|
{
|
|
tree bound = NULL_TREE;
|
|
struct iv *cmp_iv;
|
|
bitmap inv_exprs = NULL;
|
|
bitmap inv_vars_elim = NULL, inv_vars_express = NULL, inv_vars;
|
|
comp_cost elim_cost = infinite_cost, express_cost, cost, bound_cost;
|
|
enum comp_iv_rewrite rewrite_type;
|
|
iv_inv_expr_ent *inv_expr_elim = NULL, *inv_expr_express = NULL, *inv_expr;
|
|
tree *control_var, *bound_cst;
|
|
enum tree_code comp = ERROR_MARK;
|
|
struct iv_use *use = group->vuses[0];
|
|
|
|
/* Extract condition operands. */
|
|
rewrite_type = extract_cond_operands (data, use->stmt, &control_var,
|
|
&bound_cst, NULL, &cmp_iv);
|
|
gcc_assert (rewrite_type != COMP_IV_NA);
|
|
|
|
/* Try iv elimination. */
|
|
if (rewrite_type == COMP_IV_ELIM
|
|
&& may_eliminate_iv (data, use, cand, &bound, &comp))
|
|
{
|
|
elim_cost = force_var_cost (data, bound, &inv_vars_elim);
|
|
if (elim_cost.cost == 0)
|
|
elim_cost.cost = parm_decl_cost (data, bound);
|
|
else if (TREE_CODE (bound) == INTEGER_CST)
|
|
elim_cost.cost = 0;
|
|
/* If we replace a loop condition 'i < n' with 'p < base + n',
|
|
inv_vars_elim will have 'base' and 'n' set, which implies that both
|
|
'base' and 'n' will be live during the loop. More likely,
|
|
'base + n' will be loop invariant, resulting in only one live value
|
|
during the loop. So in that case we clear inv_vars_elim and set
|
|
inv_expr_elim instead. */
|
|
if (inv_vars_elim && bitmap_count_bits (inv_vars_elim) > 1)
|
|
{
|
|
inv_expr_elim = get_loop_invariant_expr (data, bound);
|
|
bitmap_clear (inv_vars_elim);
|
|
}
|
|
/* The bound is a loop invariant, so it will be only computed
|
|
once. */
|
|
elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
|
|
}
|
|
|
|
/* When the condition is a comparison of the candidate IV against
|
|
zero, prefer this IV.
|
|
|
|
TODO: The constant that we're subtracting from the cost should
|
|
be target-dependent. This information should be added to the
|
|
target costs for each backend. */
|
|
if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
|
|
&& integer_zerop (*bound_cst)
|
|
&& (operand_equal_p (*control_var, cand->var_after, 0)
|
|
|| operand_equal_p (*control_var, cand->var_before, 0)))
|
|
elim_cost -= 1;
|
|
|
|
express_cost = get_computation_cost (data, use, cand, false,
|
|
&inv_vars_express, NULL,
|
|
&inv_expr_express);
|
|
if (cmp_iv != NULL)
|
|
find_inv_vars (data, &cmp_iv->base, &inv_vars_express);
|
|
|
|
/* Count the cost of the original bound as well. */
|
|
bound_cost = force_var_cost (data, *bound_cst, NULL);
|
|
if (bound_cost.cost == 0)
|
|
bound_cost.cost = parm_decl_cost (data, *bound_cst);
|
|
else if (TREE_CODE (*bound_cst) == INTEGER_CST)
|
|
bound_cost.cost = 0;
|
|
express_cost += bound_cost;
|
|
|
|
/* Choose the better approach, preferring the eliminated IV. */
|
|
if (elim_cost <= express_cost)
|
|
{
|
|
cost = elim_cost;
|
|
inv_vars = inv_vars_elim;
|
|
inv_vars_elim = NULL;
|
|
inv_expr = inv_expr_elim;
|
|
/* For doloop candidate/use pair, adjust to zero cost. */
|
|
if (group->doloop_p && cand->doloop_p && elim_cost.cost > no_cost.cost)
|
|
cost = no_cost;
|
|
}
|
|
else
|
|
{
|
|
cost = express_cost;
|
|
inv_vars = inv_vars_express;
|
|
inv_vars_express = NULL;
|
|
bound = NULL_TREE;
|
|
comp = ERROR_MARK;
|
|
inv_expr = inv_expr_express;
|
|
}
|
|
|
|
if (inv_expr)
|
|
{
|
|
inv_exprs = BITMAP_ALLOC (NULL);
|
|
bitmap_set_bit (inv_exprs, inv_expr->id);
|
|
}
|
|
set_group_iv_cost (data, group, cand, cost,
|
|
inv_vars, bound, comp, inv_exprs);
|
|
|
|
if (inv_vars_elim)
|
|
BITMAP_FREE (inv_vars_elim);
|
|
if (inv_vars_express)
|
|
BITMAP_FREE (inv_vars_express);
|
|
|
|
return !cost.infinite_cost_p ();
|
|
}
|
|
|
|
/* Determines cost of computing uses in GROUP with CAND. Returns false
|
|
if USE cannot be represented with CAND. */
|
|
|
|
static bool
|
|
determine_group_iv_cost (struct ivopts_data *data,
|
|
struct iv_group *group, struct iv_cand *cand)
|
|
{
|
|
switch (group->type)
|
|
{
|
|
case USE_NONLINEAR_EXPR:
|
|
return determine_group_iv_cost_generic (data, group, cand);
|
|
|
|
case USE_REF_ADDRESS:
|
|
case USE_PTR_ADDRESS:
|
|
return determine_group_iv_cost_address (data, group, cand);
|
|
|
|
case USE_COMPARE:
|
|
return determine_group_iv_cost_cond (data, group, cand);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Return true if get_computation_cost indicates that autoincrement is
|
|
a possibility for the pair of USE and CAND, false otherwise. */
|
|
|
|
static bool
|
|
autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
|
|
struct iv_cand *cand)
|
|
{
|
|
if (!address_p (use->type))
|
|
return false;
|
|
|
|
bool can_autoinc = false;
|
|
get_computation_cost (data, use, cand, true, NULL, &can_autoinc, NULL);
|
|
return can_autoinc;
|
|
}
|
|
|
|
/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
|
|
use that allows autoincrement, and set their AINC_USE if possible. */
|
|
|
|
static void
|
|
set_autoinc_for_original_candidates (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
struct iv_cand *cand = data->vcands[i];
|
|
struct iv_use *closest_before = NULL;
|
|
struct iv_use *closest_after = NULL;
|
|
if (cand->pos != IP_ORIGINAL)
|
|
continue;
|
|
|
|
for (j = 0; j < data->vgroups.length (); j++)
|
|
{
|
|
struct iv_group *group = data->vgroups[j];
|
|
struct iv_use *use = group->vuses[0];
|
|
unsigned uid = gimple_uid (use->stmt);
|
|
|
|
if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
|
|
continue;
|
|
|
|
if (uid < gimple_uid (cand->incremented_at)
|
|
&& (closest_before == NULL
|
|
|| uid > gimple_uid (closest_before->stmt)))
|
|
closest_before = use;
|
|
|
|
if (uid > gimple_uid (cand->incremented_at)
|
|
&& (closest_after == NULL
|
|
|| uid < gimple_uid (closest_after->stmt)))
|
|
closest_after = use;
|
|
}
|
|
|
|
if (closest_before != NULL
|
|
&& autoinc_possible_for_pair (data, closest_before, cand))
|
|
cand->ainc_use = closest_before;
|
|
else if (closest_after != NULL
|
|
&& autoinc_possible_for_pair (data, closest_after, cand))
|
|
cand->ainc_use = closest_after;
|
|
}
|
|
}
|
|
|
|
/* Relate compare use with all candidates. */
|
|
|
|
static void
|
|
relate_compare_use_with_all_cands (struct ivopts_data *data)
|
|
{
|
|
unsigned i, count = data->vcands.length ();
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
|
|
if (group->type == USE_COMPARE)
|
|
bitmap_set_range (group->related_cands, 0, count);
|
|
}
|
|
}
|
|
|
|
/* If PREFERRED_MODE is suitable and profitable, use the preferred
|
|
PREFERRED_MODE to compute doloop iv base from niter: base = niter + 1. */
|
|
|
|
static tree
|
|
compute_doloop_base_on_mode (machine_mode preferred_mode, tree niter,
|
|
const widest_int &iterations_max)
|
|
{
|
|
tree ntype = TREE_TYPE (niter);
|
|
tree pref_type = lang_hooks.types.type_for_mode (preferred_mode, 1);
|
|
if (!pref_type)
|
|
return fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
|
|
build_int_cst (ntype, 1));
|
|
|
|
gcc_assert (TREE_CODE (pref_type) == INTEGER_TYPE);
|
|
|
|
int prec = TYPE_PRECISION (ntype);
|
|
int pref_prec = TYPE_PRECISION (pref_type);
|
|
|
|
tree base;
|
|
|
|
/* Check if the PREFERRED_MODED is able to present niter. */
|
|
if (pref_prec > prec
|
|
|| wi::ltu_p (iterations_max,
|
|
widest_int::from (wi::max_value (pref_prec, UNSIGNED),
|
|
UNSIGNED)))
|
|
{
|
|
/* No wrap, it is safe to use preferred type after niter + 1. */
|
|
if (wi::ltu_p (iterations_max,
|
|
widest_int::from (wi::max_value (prec, UNSIGNED),
|
|
UNSIGNED)))
|
|
{
|
|
/* This could help to optimize "-1 +1" pair when niter looks
|
|
like "n-1": n is in original mode. "base = (n - 1) + 1"
|
|
in PREFERRED_MODED: it could be base = (PREFERRED_TYPE)n. */
|
|
base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
|
|
build_int_cst (ntype, 1));
|
|
base = fold_convert (pref_type, base);
|
|
}
|
|
|
|
/* To avoid wrap, convert niter to preferred type before plus 1. */
|
|
else
|
|
{
|
|
niter = fold_convert (pref_type, niter);
|
|
base = fold_build2 (PLUS_EXPR, pref_type, unshare_expr (niter),
|
|
build_int_cst (pref_type, 1));
|
|
}
|
|
}
|
|
else
|
|
base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
|
|
build_int_cst (ntype, 1));
|
|
return base;
|
|
}
|
|
|
|
/* Add one doloop dedicated IV candidate:
|
|
- Base is (may_be_zero ? 1 : (niter + 1)).
|
|
- Step is -1. */
|
|
|
|
static void
|
|
add_iv_candidate_for_doloop (struct ivopts_data *data)
|
|
{
|
|
tree_niter_desc *niter_desc = niter_for_single_dom_exit (data);
|
|
gcc_assert (niter_desc && niter_desc->assumptions);
|
|
|
|
tree niter = niter_desc->niter;
|
|
tree ntype = TREE_TYPE (niter);
|
|
gcc_assert (TREE_CODE (ntype) == INTEGER_TYPE);
|
|
|
|
tree may_be_zero = niter_desc->may_be_zero;
|
|
if (may_be_zero && integer_zerop (may_be_zero))
|
|
may_be_zero = NULL_TREE;
|
|
if (may_be_zero)
|
|
{
|
|
if (COMPARISON_CLASS_P (may_be_zero))
|
|
{
|
|
niter = fold_build3 (COND_EXPR, ntype, may_be_zero,
|
|
build_int_cst (ntype, 0),
|
|
rewrite_to_non_trapping_overflow (niter));
|
|
}
|
|
/* Don't try to obtain the iteration count expression when may_be_zero is
|
|
integer_nonzerop (actually iteration count is one) or else. */
|
|
else
|
|
return;
|
|
}
|
|
|
|
machine_mode mode = TYPE_MODE (ntype);
|
|
machine_mode pref_mode = targetm.preferred_doloop_mode (mode);
|
|
|
|
tree base;
|
|
if (mode != pref_mode)
|
|
{
|
|
base = compute_doloop_base_on_mode (pref_mode, niter, niter_desc->max);
|
|
ntype = TREE_TYPE (base);
|
|
}
|
|
else
|
|
base = fold_build2 (PLUS_EXPR, ntype, unshare_expr (niter),
|
|
build_int_cst (ntype, 1));
|
|
|
|
|
|
add_candidate (data, base, build_int_cst (ntype, -1), true, NULL, NULL, true);
|
|
}
|
|
|
|
/* Finds the candidates for the induction variables. */
|
|
|
|
static void
|
|
find_iv_candidates (struct ivopts_data *data)
|
|
{
|
|
/* Add commonly used ivs. */
|
|
add_standard_iv_candidates (data);
|
|
|
|
/* Add doloop dedicated ivs. */
|
|
if (data->doloop_use_p)
|
|
add_iv_candidate_for_doloop (data);
|
|
|
|
/* Add old induction variables. */
|
|
add_iv_candidate_for_bivs (data);
|
|
|
|
/* Add induction variables derived from uses. */
|
|
add_iv_candidate_for_groups (data);
|
|
|
|
set_autoinc_for_original_candidates (data);
|
|
|
|
/* Record the important candidates. */
|
|
record_important_candidates (data);
|
|
|
|
/* Relate compare iv_use with all candidates. */
|
|
if (!data->consider_all_candidates)
|
|
relate_compare_use_with_all_cands (data);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
unsigned i;
|
|
|
|
fprintf (dump_file, "\n<Important Candidates>:\t");
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
if (data->vcands[i]->important)
|
|
fprintf (dump_file, " %d,", data->vcands[i]->id);
|
|
fprintf (dump_file, "\n");
|
|
|
|
fprintf (dump_file, "\n<Group, Cand> Related:\n");
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
|
|
if (group->related_cands)
|
|
{
|
|
fprintf (dump_file, " Group %d:\t", group->id);
|
|
dump_bitmap (dump_file, group->related_cands);
|
|
}
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Determines costs of computing use of iv with an iv candidate. */
|
|
|
|
static void
|
|
determine_group_iv_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
struct iv_cand *cand;
|
|
struct iv_group *group;
|
|
bitmap to_clear = BITMAP_ALLOC (NULL);
|
|
|
|
alloc_use_cost_map (data);
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
for (j = 0; j < data->vcands.length (); j++)
|
|
{
|
|
cand = data->vcands[j];
|
|
determine_group_iv_cost (data, group, cand);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi)
|
|
{
|
|
cand = data->vcands[j];
|
|
if (!determine_group_iv_cost (data, group, cand))
|
|
bitmap_set_bit (to_clear, j);
|
|
}
|
|
|
|
/* Remove the candidates for that the cost is infinite from
|
|
the list of related candidates. */
|
|
bitmap_and_compl_into (group->related_cands, to_clear);
|
|
bitmap_clear (to_clear);
|
|
}
|
|
}
|
|
|
|
BITMAP_FREE (to_clear);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
bitmap_iterator bi;
|
|
|
|
/* Dump invariant variables. */
|
|
fprintf (dump_file, "\n<Invariant Vars>:\n");
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
struct version_info *info = ver_info (data, i);
|
|
if (info->inv_id)
|
|
{
|
|
fprintf (dump_file, "Inv %d:\t", info->inv_id);
|
|
print_generic_expr (dump_file, info->name, TDF_SLIM);
|
|
fprintf (dump_file, "%s\n",
|
|
info->has_nonlin_use ? "" : "\t(eliminable)");
|
|
}
|
|
}
|
|
|
|
/* Dump invariant expressions. */
|
|
fprintf (dump_file, "\n<Invariant Expressions>:\n");
|
|
auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ());
|
|
|
|
for (hash_table<iv_inv_expr_hasher>::iterator it
|
|
= data->inv_expr_tab->begin (); it != data->inv_expr_tab->end ();
|
|
++it)
|
|
list.safe_push (*it);
|
|
|
|
list.qsort (sort_iv_inv_expr_ent);
|
|
|
|
for (i = 0; i < list.length (); ++i)
|
|
{
|
|
fprintf (dump_file, "inv_expr %d: \t", list[i]->id);
|
|
print_generic_expr (dump_file, list[i]->expr, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
fprintf (dump_file, "\n<Group-candidate Costs>:\n");
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
|
|
fprintf (dump_file, "Group %d:\n", i);
|
|
fprintf (dump_file, " cand\tcost\tcompl.\tinv.expr.\tinv.vars\n");
|
|
for (j = 0; j < group->n_map_members; j++)
|
|
{
|
|
if (!group->cost_map[j].cand
|
|
|| group->cost_map[j].cost.infinite_cost_p ())
|
|
continue;
|
|
|
|
fprintf (dump_file, " %d\t%" PRId64 "\t%d\t",
|
|
group->cost_map[j].cand->id,
|
|
group->cost_map[j].cost.cost,
|
|
group->cost_map[j].cost.complexity);
|
|
if (!group->cost_map[j].inv_exprs
|
|
|| bitmap_empty_p (group->cost_map[j].inv_exprs))
|
|
fprintf (dump_file, "NIL;\t");
|
|
else
|
|
bitmap_print (dump_file,
|
|
group->cost_map[j].inv_exprs, "", ";\t");
|
|
if (!group->cost_map[j].inv_vars
|
|
|| bitmap_empty_p (group->cost_map[j].inv_vars))
|
|
fprintf (dump_file, "NIL;\n");
|
|
else
|
|
bitmap_print (dump_file,
|
|
group->cost_map[j].inv_vars, "", "\n");
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Determines cost of the candidate CAND. */
|
|
|
|
static void
|
|
determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
|
|
{
|
|
comp_cost cost_base;
|
|
int64_t cost, cost_step;
|
|
tree base;
|
|
|
|
gcc_assert (cand->iv != NULL);
|
|
|
|
/* There are two costs associated with the candidate -- its increment
|
|
and its initialization. The second is almost negligible for any loop
|
|
that rolls enough, so we take it just very little into account. */
|
|
|
|
base = cand->iv->base;
|
|
cost_base = force_var_cost (data, base, NULL);
|
|
/* It will be exceptional that the iv register happens to be initialized with
|
|
the proper value at no cost. In general, there will at least be a regcopy
|
|
or a const set. */
|
|
if (cost_base.cost == 0)
|
|
cost_base.cost = COSTS_N_INSNS (1);
|
|
/* Doloop decrement should be considered as zero cost. */
|
|
if (cand->doloop_p)
|
|
cost_step = 0;
|
|
else
|
|
cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
|
|
cost = cost_step + adjust_setup_cost (data, cost_base.cost);
|
|
|
|
/* Prefer the original ivs unless we may gain something by replacing it.
|
|
The reason is to make debugging simpler; so this is not relevant for
|
|
artificial ivs created by other optimization passes. */
|
|
if ((cand->pos != IP_ORIGINAL
|
|
|| !SSA_NAME_VAR (cand->var_before)
|
|
|| DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
|
|
/* Prefer doloop as well. */
|
|
&& !cand->doloop_p)
|
|
cost++;
|
|
|
|
/* Prefer not to insert statements into latch unless there are some
|
|
already (so that we do not create unnecessary jumps). */
|
|
if (cand->pos == IP_END
|
|
&& empty_block_p (ip_end_pos (data->current_loop)))
|
|
cost++;
|
|
|
|
cand->cost = cost;
|
|
cand->cost_step = cost_step;
|
|
}
|
|
|
|
/* Determines costs of computation of the candidates. */
|
|
|
|
static void
|
|
determine_iv_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<Candidate Costs>:\n");
|
|
fprintf (dump_file, " cand\tcost\n");
|
|
}
|
|
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
struct iv_cand *cand = data->vcands[i];
|
|
|
|
determine_iv_cost (data, cand);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " %d\t%d\n", i, cand->cost);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Estimate register pressure for loop having N_INVS invariants and N_CANDS
|
|
induction variables. Note N_INVS includes both invariant variables and
|
|
invariant expressions. */
|
|
|
|
static unsigned
|
|
ivopts_estimate_reg_pressure (struct ivopts_data *data, unsigned n_invs,
|
|
unsigned n_cands)
|
|
{
|
|
unsigned cost;
|
|
unsigned n_old = data->regs_used, n_new = n_invs + n_cands;
|
|
unsigned regs_needed = n_new + n_old, available_regs = target_avail_regs;
|
|
bool speed = data->speed;
|
|
|
|
/* If there is a call in the loop body, the call-clobbered registers
|
|
are not available for loop invariants. */
|
|
if (data->body_includes_call)
|
|
available_regs = available_regs - target_clobbered_regs;
|
|
|
|
/* If we have enough registers. */
|
|
if (regs_needed + target_res_regs < available_regs)
|
|
cost = n_new;
|
|
/* If close to running out of registers, try to preserve them. */
|
|
else if (regs_needed <= available_regs)
|
|
cost = target_reg_cost [speed] * regs_needed;
|
|
/* If we run out of available registers but the number of candidates
|
|
does not, we penalize extra registers using target_spill_cost. */
|
|
else if (n_cands <= available_regs)
|
|
cost = target_reg_cost [speed] * available_regs
|
|
+ target_spill_cost [speed] * (regs_needed - available_regs);
|
|
/* If the number of candidates runs out available registers, we penalize
|
|
extra candidate registers using target_spill_cost * 2. Because it is
|
|
more expensive to spill induction variable than invariant. */
|
|
else
|
|
cost = target_reg_cost [speed] * available_regs
|
|
+ target_spill_cost [speed] * (n_cands - available_regs) * 2
|
|
+ target_spill_cost [speed] * (regs_needed - n_cands);
|
|
|
|
/* Finally, add the number of candidates, so that we prefer eliminating
|
|
induction variables if possible. */
|
|
return cost + n_cands;
|
|
}
|
|
|
|
/* For each size of the induction variable set determine the penalty. */
|
|
|
|
static void
|
|
determine_set_costs (struct ivopts_data *data)
|
|
{
|
|
unsigned j, n;
|
|
gphi *phi;
|
|
gphi_iterator psi;
|
|
tree op;
|
|
class loop *loop = data->current_loop;
|
|
bitmap_iterator bi;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<Global Costs>:\n");
|
|
fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
|
|
fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
|
|
fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
|
|
fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
|
|
}
|
|
|
|
n = 0;
|
|
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
phi = psi.phi ();
|
|
op = PHI_RESULT (phi);
|
|
|
|
if (virtual_operand_p (op))
|
|
continue;
|
|
|
|
if (get_iv (data, op))
|
|
continue;
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (op))
|
|
&& !INTEGRAL_TYPE_P (TREE_TYPE (op)))
|
|
continue;
|
|
|
|
n++;
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
|
|
{
|
|
struct version_info *info = ver_info (data, j);
|
|
|
|
if (info->inv_id && info->has_nonlin_use)
|
|
n++;
|
|
}
|
|
|
|
data->regs_used = n;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " regs_used %d\n", n);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " cost for size:\n");
|
|
fprintf (dump_file, " ivs\tcost\n");
|
|
for (j = 0; j <= 2 * target_avail_regs; j++)
|
|
fprintf (dump_file, " %d\t%d\n", j,
|
|
ivopts_estimate_reg_pressure (data, 0, j));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Returns true if A is a cheaper cost pair than B. */
|
|
|
|
static bool
|
|
cheaper_cost_pair (class cost_pair *a, class cost_pair *b)
|
|
{
|
|
if (!a)
|
|
return false;
|
|
|
|
if (!b)
|
|
return true;
|
|
|
|
if (a->cost < b->cost)
|
|
return true;
|
|
|
|
if (b->cost < a->cost)
|
|
return false;
|
|
|
|
/* In case the costs are the same, prefer the cheaper candidate. */
|
|
if (a->cand->cost < b->cand->cost)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Compare if A is a more expensive cost pair than B. Return 1, 0 and -1
|
|
for more expensive, equal and cheaper respectively. */
|
|
|
|
static int
|
|
compare_cost_pair (class cost_pair *a, class cost_pair *b)
|
|
{
|
|
if (cheaper_cost_pair (a, b))
|
|
return -1;
|
|
if (cheaper_cost_pair (b, a))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Returns candidate by that USE is expressed in IVS. */
|
|
|
|
static class cost_pair *
|
|
iv_ca_cand_for_group (class iv_ca *ivs, struct iv_group *group)
|
|
{
|
|
return ivs->cand_for_group[group->id];
|
|
}
|
|
|
|
/* Computes the cost field of IVS structure. */
|
|
|
|
static void
|
|
iv_ca_recount_cost (struct ivopts_data *data, class iv_ca *ivs)
|
|
{
|
|
comp_cost cost = ivs->cand_use_cost;
|
|
|
|
cost += ivs->cand_cost;
|
|
cost += ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands);
|
|
ivs->cost = cost;
|
|
}
|
|
|
|
/* Remove use of invariants in set INVS by decreasing counter in N_INV_USES
|
|
and IVS. */
|
|
|
|
static void
|
|
iv_ca_set_remove_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned iid;
|
|
|
|
if (!invs)
|
|
return;
|
|
|
|
gcc_assert (n_inv_uses != NULL);
|
|
EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
|
|
{
|
|
n_inv_uses[iid]--;
|
|
if (n_inv_uses[iid] == 0)
|
|
ivs->n_invs--;
|
|
}
|
|
}
|
|
|
|
/* Set USE not to be expressed by any candidate in IVS. */
|
|
|
|
static void
|
|
iv_ca_set_no_cp (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_group *group)
|
|
{
|
|
unsigned gid = group->id, cid;
|
|
class cost_pair *cp;
|
|
|
|
cp = ivs->cand_for_group[gid];
|
|
if (!cp)
|
|
return;
|
|
cid = cp->cand->id;
|
|
|
|
ivs->bad_groups++;
|
|
ivs->cand_for_group[gid] = NULL;
|
|
ivs->n_cand_uses[cid]--;
|
|
|
|
if (ivs->n_cand_uses[cid] == 0)
|
|
{
|
|
bitmap_clear_bit (ivs->cands, cid);
|
|
if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p)
|
|
ivs->n_cands--;
|
|
ivs->cand_cost -= cp->cand->cost;
|
|
iv_ca_set_remove_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses);
|
|
iv_ca_set_remove_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses);
|
|
}
|
|
|
|
ivs->cand_use_cost -= cp->cost;
|
|
iv_ca_set_remove_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses);
|
|
iv_ca_set_remove_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses);
|
|
iv_ca_recount_cost (data, ivs);
|
|
}
|
|
|
|
/* Add use of invariants in set INVS by increasing counter in N_INV_USES and
|
|
IVS. */
|
|
|
|
static void
|
|
iv_ca_set_add_invs (class iv_ca *ivs, bitmap invs, unsigned *n_inv_uses)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned iid;
|
|
|
|
if (!invs)
|
|
return;
|
|
|
|
gcc_assert (n_inv_uses != NULL);
|
|
EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
|
|
{
|
|
n_inv_uses[iid]++;
|
|
if (n_inv_uses[iid] == 1)
|
|
ivs->n_invs++;
|
|
}
|
|
}
|
|
|
|
/* Set cost pair for GROUP in set IVS to CP. */
|
|
|
|
static void
|
|
iv_ca_set_cp (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_group *group, class cost_pair *cp)
|
|
{
|
|
unsigned gid = group->id, cid;
|
|
|
|
if (ivs->cand_for_group[gid] == cp)
|
|
return;
|
|
|
|
if (ivs->cand_for_group[gid])
|
|
iv_ca_set_no_cp (data, ivs, group);
|
|
|
|
if (cp)
|
|
{
|
|
cid = cp->cand->id;
|
|
|
|
ivs->bad_groups--;
|
|
ivs->cand_for_group[gid] = cp;
|
|
ivs->n_cand_uses[cid]++;
|
|
if (ivs->n_cand_uses[cid] == 1)
|
|
{
|
|
bitmap_set_bit (ivs->cands, cid);
|
|
if (!cp->cand->doloop_p || !targetm.have_count_reg_decr_p)
|
|
ivs->n_cands++;
|
|
ivs->cand_cost += cp->cand->cost;
|
|
iv_ca_set_add_invs (ivs, cp->cand->inv_vars, ivs->n_inv_var_uses);
|
|
iv_ca_set_add_invs (ivs, cp->cand->inv_exprs, ivs->n_inv_expr_uses);
|
|
}
|
|
|
|
ivs->cand_use_cost += cp->cost;
|
|
iv_ca_set_add_invs (ivs, cp->inv_vars, ivs->n_inv_var_uses);
|
|
iv_ca_set_add_invs (ivs, cp->inv_exprs, ivs->n_inv_expr_uses);
|
|
iv_ca_recount_cost (data, ivs);
|
|
}
|
|
}
|
|
|
|
/* Extend set IVS by expressing USE by some of the candidates in it
|
|
if possible. Consider all important candidates if candidates in
|
|
set IVS don't give any result. */
|
|
|
|
static void
|
|
iv_ca_add_group (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_group *group)
|
|
{
|
|
class cost_pair *best_cp = NULL, *cp;
|
|
bitmap_iterator bi;
|
|
unsigned i;
|
|
struct iv_cand *cand;
|
|
|
|
gcc_assert (ivs->upto >= group->id);
|
|
ivs->upto++;
|
|
ivs->bad_groups++;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
cp = get_group_iv_cost (data, group, cand);
|
|
if (cheaper_cost_pair (cp, best_cp))
|
|
best_cp = cp;
|
|
}
|
|
|
|
if (best_cp == NULL)
|
|
{
|
|
EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
cp = get_group_iv_cost (data, group, cand);
|
|
if (cheaper_cost_pair (cp, best_cp))
|
|
best_cp = cp;
|
|
}
|
|
}
|
|
|
|
iv_ca_set_cp (data, ivs, group, best_cp);
|
|
}
|
|
|
|
/* Get cost for assignment IVS. */
|
|
|
|
static comp_cost
|
|
iv_ca_cost (class iv_ca *ivs)
|
|
{
|
|
/* This was a conditional expression but it triggered a bug in
|
|
Sun C 5.5. */
|
|
if (ivs->bad_groups)
|
|
return infinite_cost;
|
|
else
|
|
return ivs->cost;
|
|
}
|
|
|
|
/* Compare if applying NEW_CP to GROUP for IVS introduces more invariants
|
|
than OLD_CP. Return 1, 0 and -1 for more, equal and fewer invariants
|
|
respectively. */
|
|
|
|
static int
|
|
iv_ca_compare_deps (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_group *group, class cost_pair *old_cp,
|
|
class cost_pair *new_cp)
|
|
{
|
|
gcc_assert (old_cp && new_cp && old_cp != new_cp);
|
|
unsigned old_n_invs = ivs->n_invs;
|
|
iv_ca_set_cp (data, ivs, group, new_cp);
|
|
unsigned new_n_invs = ivs->n_invs;
|
|
iv_ca_set_cp (data, ivs, group, old_cp);
|
|
|
|
return new_n_invs > old_n_invs ? 1 : (new_n_invs < old_n_invs ? -1 : 0);
|
|
}
|
|
|
|
/* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
|
|
it before NEXT. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_add (struct iv_group *group, class cost_pair *old_cp,
|
|
class cost_pair *new_cp, struct iv_ca_delta *next)
|
|
{
|
|
struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
|
|
|
|
change->group = group;
|
|
change->old_cp = old_cp;
|
|
change->new_cp = new_cp;
|
|
change->next = next;
|
|
|
|
return change;
|
|
}
|
|
|
|
/* Joins two lists of changes L1 and L2. Destructive -- old lists
|
|
are rewritten. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
|
|
{
|
|
struct iv_ca_delta *last;
|
|
|
|
if (!l2)
|
|
return l1;
|
|
|
|
if (!l1)
|
|
return l2;
|
|
|
|
for (last = l1; last->next; last = last->next)
|
|
continue;
|
|
last->next = l2;
|
|
|
|
return l1;
|
|
}
|
|
|
|
/* Reverse the list of changes DELTA, forming the inverse to it. */
|
|
|
|
static struct iv_ca_delta *
|
|
iv_ca_delta_reverse (struct iv_ca_delta *delta)
|
|
{
|
|
struct iv_ca_delta *act, *next, *prev = NULL;
|
|
|
|
for (act = delta; act; act = next)
|
|
{
|
|
next = act->next;
|
|
act->next = prev;
|
|
prev = act;
|
|
|
|
std::swap (act->old_cp, act->new_cp);
|
|
}
|
|
|
|
return prev;
|
|
}
|
|
|
|
/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
|
|
reverted instead. */
|
|
|
|
static void
|
|
iv_ca_delta_commit (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_ca_delta *delta, bool forward)
|
|
{
|
|
class cost_pair *from, *to;
|
|
struct iv_ca_delta *act;
|
|
|
|
if (!forward)
|
|
delta = iv_ca_delta_reverse (delta);
|
|
|
|
for (act = delta; act; act = act->next)
|
|
{
|
|
from = act->old_cp;
|
|
to = act->new_cp;
|
|
gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from);
|
|
iv_ca_set_cp (data, ivs, act->group, to);
|
|
}
|
|
|
|
if (!forward)
|
|
iv_ca_delta_reverse (delta);
|
|
}
|
|
|
|
/* Returns true if CAND is used in IVS. */
|
|
|
|
static bool
|
|
iv_ca_cand_used_p (class iv_ca *ivs, struct iv_cand *cand)
|
|
{
|
|
return ivs->n_cand_uses[cand->id] > 0;
|
|
}
|
|
|
|
/* Returns number of induction variable candidates in the set IVS. */
|
|
|
|
static unsigned
|
|
iv_ca_n_cands (class iv_ca *ivs)
|
|
{
|
|
return ivs->n_cands;
|
|
}
|
|
|
|
/* Free the list of changes DELTA. */
|
|
|
|
static void
|
|
iv_ca_delta_free (struct iv_ca_delta **delta)
|
|
{
|
|
struct iv_ca_delta *act, *next;
|
|
|
|
for (act = *delta; act; act = next)
|
|
{
|
|
next = act->next;
|
|
free (act);
|
|
}
|
|
|
|
*delta = NULL;
|
|
}
|
|
|
|
/* Allocates new iv candidates assignment. */
|
|
|
|
static class iv_ca *
|
|
iv_ca_new (struct ivopts_data *data)
|
|
{
|
|
class iv_ca *nw = XNEW (class iv_ca);
|
|
|
|
nw->upto = 0;
|
|
nw->bad_groups = 0;
|
|
nw->cand_for_group = XCNEWVEC (class cost_pair *,
|
|
data->vgroups.length ());
|
|
nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ());
|
|
nw->cands = BITMAP_ALLOC (NULL);
|
|
nw->n_cands = 0;
|
|
nw->n_invs = 0;
|
|
nw->cand_use_cost = no_cost;
|
|
nw->cand_cost = 0;
|
|
nw->n_inv_var_uses = XCNEWVEC (unsigned, data->max_inv_var_id + 1);
|
|
nw->n_inv_expr_uses = XCNEWVEC (unsigned, data->max_inv_expr_id + 1);
|
|
nw->cost = no_cost;
|
|
|
|
return nw;
|
|
}
|
|
|
|
/* Free memory occupied by the set IVS. */
|
|
|
|
static void
|
|
iv_ca_free (class iv_ca **ivs)
|
|
{
|
|
free ((*ivs)->cand_for_group);
|
|
free ((*ivs)->n_cand_uses);
|
|
BITMAP_FREE ((*ivs)->cands);
|
|
free ((*ivs)->n_inv_var_uses);
|
|
free ((*ivs)->n_inv_expr_uses);
|
|
free (*ivs);
|
|
*ivs = NULL;
|
|
}
|
|
|
|
/* Dumps IVS to FILE. */
|
|
|
|
static void
|
|
iv_ca_dump (struct ivopts_data *data, FILE *file, class iv_ca *ivs)
|
|
{
|
|
unsigned i;
|
|
comp_cost cost = iv_ca_cost (ivs);
|
|
|
|
fprintf (file, " cost: %" PRId64 " (complexity %d)\n", cost.cost,
|
|
cost.complexity);
|
|
fprintf (file, " reg_cost: %d\n",
|
|
ivopts_estimate_reg_pressure (data, ivs->n_invs, ivs->n_cands));
|
|
fprintf (file, " cand_cost: %" PRId64 "\n cand_group_cost: "
|
|
"%" PRId64 " (complexity %d)\n", ivs->cand_cost,
|
|
ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
|
|
bitmap_print (file, ivs->cands, " candidates: ","\n");
|
|
|
|
for (i = 0; i < ivs->upto; i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
class cost_pair *cp = iv_ca_cand_for_group (ivs, group);
|
|
if (cp)
|
|
fprintf (file, " group:%d --> iv_cand:%d, cost=("
|
|
"%" PRId64 ",%d)\n", group->id, cp->cand->id,
|
|
cp->cost.cost, cp->cost.complexity);
|
|
else
|
|
fprintf (file, " group:%d --> ??\n", group->id);
|
|
}
|
|
|
|
const char *pref = "";
|
|
fprintf (file, " invariant variables: ");
|
|
for (i = 1; i <= data->max_inv_var_id; i++)
|
|
if (ivs->n_inv_var_uses[i])
|
|
{
|
|
fprintf (file, "%s%d", pref, i);
|
|
pref = ", ";
|
|
}
|
|
|
|
pref = "";
|
|
fprintf (file, "\n invariant expressions: ");
|
|
for (i = 1; i <= data->max_inv_expr_id; i++)
|
|
if (ivs->n_inv_expr_uses[i])
|
|
{
|
|
fprintf (file, "%s%d", pref, i);
|
|
pref = ", ";
|
|
}
|
|
|
|
fprintf (file, "\n\n");
|
|
}
|
|
|
|
/* Try changing candidate in IVS to CAND for each use. Return cost of the
|
|
new set, and store differences in DELTA. Number of induction variables
|
|
in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
|
|
the function will try to find a solution with mimimal iv candidates. */
|
|
|
|
static comp_cost
|
|
iv_ca_extend (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_cand *cand, struct iv_ca_delta **delta,
|
|
unsigned *n_ivs, bool min_ncand)
|
|
{
|
|
unsigned i;
|
|
comp_cost cost;
|
|
struct iv_group *group;
|
|
class cost_pair *old_cp, *new_cp;
|
|
|
|
*delta = NULL;
|
|
for (i = 0; i < ivs->upto; i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
old_cp = iv_ca_cand_for_group (ivs, group);
|
|
|
|
if (old_cp
|
|
&& old_cp->cand == cand)
|
|
continue;
|
|
|
|
new_cp = get_group_iv_cost (data, group, cand);
|
|
if (!new_cp)
|
|
continue;
|
|
|
|
if (!min_ncand)
|
|
{
|
|
int cmp_invs = iv_ca_compare_deps (data, ivs, group, old_cp, new_cp);
|
|
/* Skip if new_cp depends on more invariants. */
|
|
if (cmp_invs > 0)
|
|
continue;
|
|
|
|
int cmp_cost = compare_cost_pair (new_cp, old_cp);
|
|
/* Skip if new_cp is not cheaper. */
|
|
if (cmp_cost > 0 || (cmp_cost == 0 && cmp_invs == 0))
|
|
continue;
|
|
}
|
|
|
|
*delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, *delta, true);
|
|
cost = iv_ca_cost (ivs);
|
|
if (n_ivs)
|
|
*n_ivs = iv_ca_n_cands (ivs);
|
|
iv_ca_delta_commit (data, ivs, *delta, false);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Try narrowing set IVS by removing CAND. Return the cost of
|
|
the new set and store the differences in DELTA. START is
|
|
the candidate with which we start narrowing. */
|
|
|
|
static comp_cost
|
|
iv_ca_narrow (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_cand *cand, struct iv_cand *start,
|
|
struct iv_ca_delta **delta)
|
|
{
|
|
unsigned i, ci;
|
|
struct iv_group *group;
|
|
class cost_pair *old_cp, *new_cp, *cp;
|
|
bitmap_iterator bi;
|
|
struct iv_cand *cnd;
|
|
comp_cost cost, best_cost, acost;
|
|
|
|
*delta = NULL;
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
group = data->vgroups[i];
|
|
|
|
old_cp = iv_ca_cand_for_group (ivs, group);
|
|
if (old_cp->cand != cand)
|
|
continue;
|
|
|
|
best_cost = iv_ca_cost (ivs);
|
|
/* Start narrowing with START. */
|
|
new_cp = get_group_iv_cost (data, group, start);
|
|
|
|
if (data->consider_all_candidates)
|
|
{
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
|
|
{
|
|
if (ci == cand->id || (start && ci == start->id))
|
|
continue;
|
|
|
|
cnd = data->vcands[ci];
|
|
|
|
cp = get_group_iv_cost (data, group, cnd);
|
|
if (!cp)
|
|
continue;
|
|
|
|
iv_ca_set_cp (data, ivs, group, cp);
|
|
acost = iv_ca_cost (ivs);
|
|
|
|
if (acost < best_cost)
|
|
{
|
|
best_cost = acost;
|
|
new_cp = cp;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi)
|
|
{
|
|
if (ci == cand->id || (start && ci == start->id))
|
|
continue;
|
|
|
|
cnd = data->vcands[ci];
|
|
|
|
cp = get_group_iv_cost (data, group, cnd);
|
|
if (!cp)
|
|
continue;
|
|
|
|
iv_ca_set_cp (data, ivs, group, cp);
|
|
acost = iv_ca_cost (ivs);
|
|
|
|
if (acost < best_cost)
|
|
{
|
|
best_cost = acost;
|
|
new_cp = cp;
|
|
}
|
|
}
|
|
}
|
|
/* Restore to old cp for use. */
|
|
iv_ca_set_cp (data, ivs, group, old_cp);
|
|
|
|
if (!new_cp)
|
|
{
|
|
iv_ca_delta_free (delta);
|
|
return infinite_cost;
|
|
}
|
|
|
|
*delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, *delta, true);
|
|
cost = iv_ca_cost (ivs);
|
|
iv_ca_delta_commit (data, ivs, *delta, false);
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Try optimizing the set of candidates IVS by removing candidates different
|
|
from to EXCEPT_CAND from it. Return cost of the new set, and store
|
|
differences in DELTA. */
|
|
|
|
static comp_cost
|
|
iv_ca_prune (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_cand *except_cand, struct iv_ca_delta **delta)
|
|
{
|
|
bitmap_iterator bi;
|
|
struct iv_ca_delta *act_delta, *best_delta;
|
|
unsigned i;
|
|
comp_cost best_cost, acost;
|
|
struct iv_cand *cand;
|
|
|
|
best_delta = NULL;
|
|
best_cost = iv_ca_cost (ivs);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
|
|
if (cand == except_cand)
|
|
continue;
|
|
|
|
acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
|
|
|
|
if (acost < best_cost)
|
|
{
|
|
best_cost = acost;
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (!best_delta)
|
|
{
|
|
*delta = NULL;
|
|
return best_cost;
|
|
}
|
|
|
|
/* Recurse to possibly remove other unnecessary ivs. */
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
best_cost = iv_ca_prune (data, ivs, except_cand, delta);
|
|
iv_ca_delta_commit (data, ivs, best_delta, false);
|
|
*delta = iv_ca_delta_join (best_delta, *delta);
|
|
return best_cost;
|
|
}
|
|
|
|
/* Check if CAND_IDX is a candidate other than OLD_CAND and has
|
|
cheaper local cost for GROUP than BEST_CP. Return pointer to
|
|
the corresponding cost_pair, otherwise just return BEST_CP. */
|
|
|
|
static class cost_pair*
|
|
cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group,
|
|
unsigned int cand_idx, struct iv_cand *old_cand,
|
|
class cost_pair *best_cp)
|
|
{
|
|
struct iv_cand *cand;
|
|
class cost_pair *cp;
|
|
|
|
gcc_assert (old_cand != NULL && best_cp != NULL);
|
|
if (cand_idx == old_cand->id)
|
|
return best_cp;
|
|
|
|
cand = data->vcands[cand_idx];
|
|
cp = get_group_iv_cost (data, group, cand);
|
|
if (cp != NULL && cheaper_cost_pair (cp, best_cp))
|
|
return cp;
|
|
|
|
return best_cp;
|
|
}
|
|
|
|
/* Try breaking local optimal fixed-point for IVS by replacing candidates
|
|
which are used by more than one iv uses. For each of those candidates,
|
|
this function tries to represent iv uses under that candidate using
|
|
other ones with lower local cost, then tries to prune the new set.
|
|
If the new set has lower cost, It returns the new cost after recording
|
|
candidate replacement in list DELTA. */
|
|
|
|
static comp_cost
|
|
iv_ca_replace (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_ca_delta **delta)
|
|
{
|
|
bitmap_iterator bi, bj;
|
|
unsigned int i, j, k;
|
|
struct iv_cand *cand;
|
|
comp_cost orig_cost, acost;
|
|
struct iv_ca_delta *act_delta, *tmp_delta;
|
|
class cost_pair *old_cp, *best_cp = NULL;
|
|
|
|
*delta = NULL;
|
|
orig_cost = iv_ca_cost (ivs);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
|
|
{
|
|
if (ivs->n_cand_uses[i] == 1
|
|
|| ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND)
|
|
continue;
|
|
|
|
cand = data->vcands[i];
|
|
|
|
act_delta = NULL;
|
|
/* Represent uses under current candidate using other ones with
|
|
lower local cost. */
|
|
for (j = 0; j < ivs->upto; j++)
|
|
{
|
|
struct iv_group *group = data->vgroups[j];
|
|
old_cp = iv_ca_cand_for_group (ivs, group);
|
|
|
|
if (old_cp->cand != cand)
|
|
continue;
|
|
|
|
best_cp = old_cp;
|
|
if (data->consider_all_candidates)
|
|
for (k = 0; k < data->vcands.length (); k++)
|
|
best_cp = cheaper_cost_with_cand (data, group, k,
|
|
old_cp->cand, best_cp);
|
|
else
|
|
EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj)
|
|
best_cp = cheaper_cost_with_cand (data, group, k,
|
|
old_cp->cand, best_cp);
|
|
|
|
if (best_cp == old_cp)
|
|
continue;
|
|
|
|
act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta);
|
|
}
|
|
/* No need for further prune. */
|
|
if (!act_delta)
|
|
continue;
|
|
|
|
/* Prune the new candidate set. */
|
|
iv_ca_delta_commit (data, ivs, act_delta, true);
|
|
acost = iv_ca_prune (data, ivs, NULL, &tmp_delta);
|
|
iv_ca_delta_commit (data, ivs, act_delta, false);
|
|
act_delta = iv_ca_delta_join (act_delta, tmp_delta);
|
|
|
|
if (acost < orig_cost)
|
|
{
|
|
*delta = act_delta;
|
|
return acost;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
return orig_cost;
|
|
}
|
|
|
|
/* Tries to extend the sets IVS in the best possible way in order to
|
|
express the GROUP. If ORIGINALP is true, prefer candidates from
|
|
the original set of IVs, otherwise favor important candidates not
|
|
based on any memory object. */
|
|
|
|
static bool
|
|
try_add_cand_for (struct ivopts_data *data, class iv_ca *ivs,
|
|
struct iv_group *group, bool originalp)
|
|
{
|
|
comp_cost best_cost, act_cost;
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
struct iv_cand *cand;
|
|
struct iv_ca_delta *best_delta = NULL, *act_delta;
|
|
class cost_pair *cp;
|
|
|
|
iv_ca_add_group (data, ivs, group);
|
|
best_cost = iv_ca_cost (ivs);
|
|
cp = iv_ca_cand_for_group (ivs, group);
|
|
if (cp)
|
|
{
|
|
best_delta = iv_ca_delta_add (group, NULL, cp, NULL);
|
|
iv_ca_set_no_cp (data, ivs, group);
|
|
}
|
|
|
|
/* If ORIGINALP is true, try to find the original IV for the use. Otherwise
|
|
first try important candidates not based on any memory object. Only if
|
|
this fails, try the specific ones. Rationale -- in loops with many
|
|
variables the best choice often is to use just one generic biv. If we
|
|
added here many ivs specific to the uses, the optimization algorithm later
|
|
would be likely to get stuck in a local minimum, thus causing us to create
|
|
too many ivs. The approach from few ivs to more seems more likely to be
|
|
successful -- starting from few ivs, replacing an expensive use by a
|
|
specific iv should always be a win. */
|
|
EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
|
|
if (originalp && cand->pos !=IP_ORIGINAL)
|
|
continue;
|
|
|
|
if (!originalp && cand->iv->base_object != NULL_TREE)
|
|
continue;
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
cp = get_group_iv_cost (data, group, cand);
|
|
if (!cp)
|
|
continue;
|
|
|
|
iv_ca_set_cp (data, ivs, group, cp);
|
|
act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
|
|
true);
|
|
iv_ca_set_no_cp (data, ivs, group);
|
|
act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
|
|
|
|
if (act_cost < best_cost)
|
|
{
|
|
best_cost = act_cost;
|
|
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (best_cost.infinite_cost_p ())
|
|
{
|
|
for (i = 0; i < group->n_map_members; i++)
|
|
{
|
|
cp = group->cost_map + i;
|
|
cand = cp->cand;
|
|
if (!cand)
|
|
continue;
|
|
|
|
/* Already tried this. */
|
|
if (cand->important)
|
|
{
|
|
if (originalp && cand->pos == IP_ORIGINAL)
|
|
continue;
|
|
if (!originalp && cand->iv->base_object == NULL_TREE)
|
|
continue;
|
|
}
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
act_delta = NULL;
|
|
iv_ca_set_cp (data, ivs, group, cp);
|
|
act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
|
|
iv_ca_set_no_cp (data, ivs, group);
|
|
act_delta = iv_ca_delta_add (group,
|
|
iv_ca_cand_for_group (ivs, group),
|
|
cp, act_delta);
|
|
|
|
if (act_cost < best_cost)
|
|
{
|
|
best_cost = act_cost;
|
|
|
|
if (best_delta)
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
iv_ca_delta_free (&best_delta);
|
|
|
|
return !best_cost.infinite_cost_p ();
|
|
}
|
|
|
|
/* Finds an initial assignment of candidates to uses. */
|
|
|
|
static class iv_ca *
|
|
get_initial_solution (struct ivopts_data *data, bool originalp)
|
|
{
|
|
unsigned i;
|
|
class iv_ca *ivs = iv_ca_new (data);
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp))
|
|
{
|
|
iv_ca_free (&ivs);
|
|
return NULL;
|
|
}
|
|
|
|
return ivs;
|
|
}
|
|
|
|
/* Tries to improve set of induction variables IVS. TRY_REPLACE_P
|
|
points to a bool variable, this function tries to break local
|
|
optimal fixed-point by replacing candidates in IVS if it's true. */
|
|
|
|
static bool
|
|
try_improve_iv_set (struct ivopts_data *data,
|
|
class iv_ca *ivs, bool *try_replace_p)
|
|
{
|
|
unsigned i, n_ivs;
|
|
comp_cost acost, best_cost = iv_ca_cost (ivs);
|
|
struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
|
|
struct iv_cand *cand;
|
|
|
|
/* Try extending the set of induction variables by one. */
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
cand = data->vcands[i];
|
|
|
|
if (iv_ca_cand_used_p (ivs, cand))
|
|
continue;
|
|
|
|
acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
|
|
if (!act_delta)
|
|
continue;
|
|
|
|
/* If we successfully added the candidate and the set is small enough,
|
|
try optimizing it by removing other candidates. */
|
|
if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
|
|
{
|
|
iv_ca_delta_commit (data, ivs, act_delta, true);
|
|
acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
|
|
iv_ca_delta_commit (data, ivs, act_delta, false);
|
|
act_delta = iv_ca_delta_join (act_delta, tmp_delta);
|
|
}
|
|
|
|
if (acost < best_cost)
|
|
{
|
|
best_cost = acost;
|
|
iv_ca_delta_free (&best_delta);
|
|
best_delta = act_delta;
|
|
}
|
|
else
|
|
iv_ca_delta_free (&act_delta);
|
|
}
|
|
|
|
if (!best_delta)
|
|
{
|
|
/* Try removing the candidates from the set instead. */
|
|
best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
|
|
|
|
if (!best_delta && *try_replace_p)
|
|
{
|
|
*try_replace_p = false;
|
|
/* So far candidate selecting algorithm tends to choose fewer IVs
|
|
so that it can handle cases in which loops have many variables
|
|
but the best choice is often to use only one general biv. One
|
|
weakness is it can't handle opposite cases, in which different
|
|
candidates should be chosen with respect to each use. To solve
|
|
the problem, we replace candidates in a manner described by the
|
|
comments of iv_ca_replace, thus give general algorithm a chance
|
|
to break local optimal fixed-point in these cases. */
|
|
best_cost = iv_ca_replace (data, ivs, &best_delta);
|
|
}
|
|
|
|
if (!best_delta)
|
|
return false;
|
|
}
|
|
|
|
iv_ca_delta_commit (data, ivs, best_delta, true);
|
|
iv_ca_delta_free (&best_delta);
|
|
return best_cost == iv_ca_cost (ivs);
|
|
}
|
|
|
|
/* Attempts to find the optimal set of induction variables. We do simple
|
|
greedy heuristic -- we try to replace at most one candidate in the selected
|
|
solution and remove the unused ivs while this improves the cost. */
|
|
|
|
static class iv_ca *
|
|
find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
|
|
{
|
|
class iv_ca *set;
|
|
bool try_replace_p = true;
|
|
|
|
/* Get the initial solution. */
|
|
set = get_initial_solution (data, originalp);
|
|
if (!set)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Initial set of candidates:\n");
|
|
iv_ca_dump (data, dump_file, set);
|
|
}
|
|
|
|
while (try_improve_iv_set (data, set, &try_replace_p))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Improved to:\n");
|
|
iv_ca_dump (data, dump_file, set);
|
|
}
|
|
}
|
|
|
|
/* If the set has infinite_cost, it can't be optimal. */
|
|
if (iv_ca_cost (set).infinite_cost_p ())
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"Overflow to infinite cost in try_improve_iv_set.\n");
|
|
iv_ca_free (&set);
|
|
}
|
|
return set;
|
|
}
|
|
|
|
static class iv_ca *
|
|
find_optimal_iv_set (struct ivopts_data *data)
|
|
{
|
|
unsigned i;
|
|
comp_cost cost, origcost;
|
|
class iv_ca *set, *origset;
|
|
|
|
/* Determine the cost based on a strategy that starts with original IVs,
|
|
and try again using a strategy that prefers candidates not based
|
|
on any IVs. */
|
|
origset = find_optimal_iv_set_1 (data, true);
|
|
set = find_optimal_iv_set_1 (data, false);
|
|
|
|
if (!origset && !set)
|
|
return NULL;
|
|
|
|
origcost = origset ? iv_ca_cost (origset) : infinite_cost;
|
|
cost = set ? iv_ca_cost (set) : infinite_cost;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Original cost %" PRId64 " (complexity %d)\n\n",
|
|
origcost.cost, origcost.complexity);
|
|
fprintf (dump_file, "Final cost %" PRId64 " (complexity %d)\n\n",
|
|
cost.cost, cost.complexity);
|
|
}
|
|
|
|
/* Choose the one with the best cost. */
|
|
if (origcost <= cost)
|
|
{
|
|
if (set)
|
|
iv_ca_free (&set);
|
|
set = origset;
|
|
}
|
|
else if (origset)
|
|
iv_ca_free (&origset);
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
group->selected = iv_ca_cand_for_group (set, group)->cand;
|
|
}
|
|
|
|
return set;
|
|
}
|
|
|
|
/* Creates a new induction variable corresponding to CAND. */
|
|
|
|
static void
|
|
create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
|
|
{
|
|
gimple_stmt_iterator incr_pos;
|
|
tree base;
|
|
struct iv_use *use;
|
|
struct iv_group *group;
|
|
bool after = false;
|
|
|
|
gcc_assert (cand->iv != NULL);
|
|
|
|
switch (cand->pos)
|
|
{
|
|
case IP_NORMAL:
|
|
incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
|
|
break;
|
|
|
|
case IP_END:
|
|
incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
|
|
after = true;
|
|
break;
|
|
|
|
case IP_AFTER_USE:
|
|
after = true;
|
|
/* fall through */
|
|
case IP_BEFORE_USE:
|
|
incr_pos = gsi_for_stmt (cand->incremented_at);
|
|
break;
|
|
|
|
case IP_ORIGINAL:
|
|
/* Mark that the iv is preserved. */
|
|
name_info (data, cand->var_before)->preserve_biv = true;
|
|
name_info (data, cand->var_after)->preserve_biv = true;
|
|
|
|
/* Rewrite the increment so that it uses var_before directly. */
|
|
use = find_interesting_uses_op (data, cand->var_after);
|
|
group = data->vgroups[use->group_id];
|
|
group->selected = cand;
|
|
return;
|
|
}
|
|
|
|
gimple_add_tmp_var (cand->var_before);
|
|
|
|
base = unshare_expr (cand->iv->base);
|
|
|
|
create_iv (base, unshare_expr (cand->iv->step),
|
|
cand->var_before, data->current_loop,
|
|
&incr_pos, after, &cand->var_before, &cand->var_after);
|
|
}
|
|
|
|
/* Creates new induction variables described in SET. */
|
|
|
|
static void
|
|
create_new_ivs (struct ivopts_data *data, class iv_ca *set)
|
|
{
|
|
unsigned i;
|
|
struct iv_cand *cand;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
create_new_iv (data, cand);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Selected IV set for loop %d",
|
|
data->current_loop->num);
|
|
if (data->loop_loc != UNKNOWN_LOCATION)
|
|
fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
|
|
LOCATION_LINE (data->loop_loc));
|
|
fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters",
|
|
avg_loop_niter (data->current_loop));
|
|
fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands));
|
|
EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
|
|
{
|
|
cand = data->vcands[i];
|
|
dump_cand (dump_file, cand);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Rewrites USE (definition of iv used in a nonlinear expression)
|
|
using candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_nonlinear_expr (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
gassign *ass;
|
|
gimple_stmt_iterator bsi;
|
|
tree comp, type = get_use_type (use), tgt;
|
|
|
|
/* An important special case -- if we are asked to express value of
|
|
the original iv by itself, just exit; there is no need to
|
|
introduce a new computation (that might also need casting the
|
|
variable to unsigned and back). */
|
|
if (cand->pos == IP_ORIGINAL
|
|
&& cand->incremented_at == use->stmt)
|
|
{
|
|
tree op = NULL_TREE;
|
|
enum tree_code stmt_code;
|
|
|
|
gcc_assert (is_gimple_assign (use->stmt));
|
|
gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
|
|
|
|
/* Check whether we may leave the computation unchanged.
|
|
This is the case only if it does not rely on other
|
|
computations in the loop -- otherwise, the computation
|
|
we rely upon may be removed in remove_unused_ivs,
|
|
thus leading to ICE. */
|
|
stmt_code = gimple_assign_rhs_code (use->stmt);
|
|
if (stmt_code == PLUS_EXPR
|
|
|| stmt_code == MINUS_EXPR
|
|
|| stmt_code == POINTER_PLUS_EXPR)
|
|
{
|
|
if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
|
|
op = gimple_assign_rhs2 (use->stmt);
|
|
else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
|
|
op = gimple_assign_rhs1 (use->stmt);
|
|
}
|
|
|
|
if (op != NULL_TREE)
|
|
{
|
|
if (expr_invariant_in_loop_p (data->current_loop, op))
|
|
return;
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
struct iv *iv = get_iv (data, op);
|
|
if (iv != NULL && integer_zerop (iv->step))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (gimple_code (use->stmt))
|
|
{
|
|
case GIMPLE_PHI:
|
|
tgt = PHI_RESULT (use->stmt);
|
|
|
|
/* If we should keep the biv, do not replace it. */
|
|
if (name_info (data, tgt)->preserve_biv)
|
|
return;
|
|
|
|
bsi = gsi_after_labels (gimple_bb (use->stmt));
|
|
break;
|
|
|
|
case GIMPLE_ASSIGN:
|
|
tgt = gimple_assign_lhs (use->stmt);
|
|
bsi = gsi_for_stmt (use->stmt);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
aff_tree aff_inv, aff_var;
|
|
if (!get_computation_aff_1 (data->current_loop, use->stmt,
|
|
use, cand, &aff_inv, &aff_var))
|
|
gcc_unreachable ();
|
|
|
|
unshare_aff_combination (&aff_inv);
|
|
unshare_aff_combination (&aff_var);
|
|
/* Prefer CSE opportunity than loop invariant by adding offset at last
|
|
so that iv_uses have different offsets can be CSEed. */
|
|
poly_widest_int offset = aff_inv.offset;
|
|
aff_inv.offset = 0;
|
|
|
|
gimple_seq stmt_list = NULL, seq = NULL;
|
|
tree comp_op1 = aff_combination_to_tree (&aff_inv);
|
|
tree comp_op2 = aff_combination_to_tree (&aff_var);
|
|
gcc_assert (comp_op1 && comp_op2);
|
|
|
|
comp_op1 = force_gimple_operand (comp_op1, &seq, true, NULL);
|
|
gimple_seq_add_seq (&stmt_list, seq);
|
|
comp_op2 = force_gimple_operand (comp_op2, &seq, true, NULL);
|
|
gimple_seq_add_seq (&stmt_list, seq);
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (comp_op2)))
|
|
std::swap (comp_op1, comp_op2);
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (comp_op1)))
|
|
{
|
|
comp = fold_build_pointer_plus (comp_op1,
|
|
fold_convert (sizetype, comp_op2));
|
|
comp = fold_build_pointer_plus (comp,
|
|
wide_int_to_tree (sizetype, offset));
|
|
}
|
|
else
|
|
{
|
|
comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp_op1,
|
|
fold_convert (TREE_TYPE (comp_op1), comp_op2));
|
|
comp = fold_build2 (PLUS_EXPR, TREE_TYPE (comp_op1), comp,
|
|
wide_int_to_tree (TREE_TYPE (comp_op1), offset));
|
|
}
|
|
|
|
comp = fold_convert (type, comp);
|
|
comp = force_gimple_operand (comp, &seq, false, NULL);
|
|
gimple_seq_add_seq (&stmt_list, seq);
|
|
if (gimple_code (use->stmt) != GIMPLE_PHI
|
|
/* We can't allow re-allocating the stmt as it might be pointed
|
|
to still. */
|
|
&& (get_gimple_rhs_num_ops (TREE_CODE (comp))
|
|
>= gimple_num_ops (gsi_stmt (bsi))))
|
|
{
|
|
comp = force_gimple_operand (comp, &seq, true, NULL);
|
|
gimple_seq_add_seq (&stmt_list, seq);
|
|
if (POINTER_TYPE_P (TREE_TYPE (tgt)))
|
|
{
|
|
duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
|
|
/* As this isn't a plain copy we have to reset alignment
|
|
information. */
|
|
if (SSA_NAME_PTR_INFO (comp))
|
|
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
|
|
}
|
|
}
|
|
|
|
gsi_insert_seq_before (&bsi, stmt_list, GSI_SAME_STMT);
|
|
if (gimple_code (use->stmt) == GIMPLE_PHI)
|
|
{
|
|
ass = gimple_build_assign (tgt, comp);
|
|
gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
|
|
|
|
bsi = gsi_for_stmt (use->stmt);
|
|
remove_phi_node (&bsi, false);
|
|
}
|
|
else
|
|
{
|
|
gimple_assign_set_rhs_from_tree (&bsi, comp);
|
|
use->stmt = gsi_stmt (bsi);
|
|
}
|
|
}
|
|
|
|
/* Performs a peephole optimization to reorder the iv update statement with
|
|
a mem ref to enable instruction combining in later phases. The mem ref uses
|
|
the iv value before the update, so the reordering transformation requires
|
|
adjustment of the offset. CAND is the selected IV_CAND.
|
|
|
|
Example:
|
|
|
|
t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
|
|
iv2 = iv1 + 1;
|
|
|
|
if (t < val) (1)
|
|
goto L;
|
|
goto Head;
|
|
|
|
|
|
directly propagating t over to (1) will introduce overlapping live range
|
|
thus increase register pressure. This peephole transform it into:
|
|
|
|
|
|
iv2 = iv1 + 1;
|
|
t = MEM_REF (base, iv2, 8, 8);
|
|
if (t < val)
|
|
goto L;
|
|
goto Head;
|
|
*/
|
|
|
|
static void
|
|
adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
|
|
{
|
|
tree var_after;
|
|
gimple *iv_update, *stmt;
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi, gsi_iv;
|
|
|
|
if (cand->pos != IP_NORMAL)
|
|
return;
|
|
|
|
var_after = cand->var_after;
|
|
iv_update = SSA_NAME_DEF_STMT (var_after);
|
|
|
|
bb = gimple_bb (iv_update);
|
|
gsi = gsi_last_nondebug_bb (bb);
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* Only handle conditional statement for now. */
|
|
if (gimple_code (stmt) != GIMPLE_COND)
|
|
return;
|
|
|
|
gsi_prev_nondebug (&gsi);
|
|
stmt = gsi_stmt (gsi);
|
|
if (stmt != iv_update)
|
|
return;
|
|
|
|
gsi_prev_nondebug (&gsi);
|
|
if (gsi_end_p (gsi))
|
|
return;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
return;
|
|
|
|
if (stmt != use->stmt)
|
|
return;
|
|
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Reordering \n");
|
|
print_gimple_stmt (dump_file, iv_update, 0);
|
|
print_gimple_stmt (dump_file, use->stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
gsi = gsi_for_stmt (use->stmt);
|
|
gsi_iv = gsi_for_stmt (iv_update);
|
|
gsi_move_before (&gsi_iv, &gsi);
|
|
|
|
cand->pos = IP_BEFORE_USE;
|
|
cand->incremented_at = use->stmt;
|
|
}
|
|
|
|
/* Return the alias pointer type that should be used for a MEM_REF
|
|
associated with USE, which has type USE_PTR_ADDRESS. */
|
|
|
|
static tree
|
|
get_alias_ptr_type_for_ptr_address (iv_use *use)
|
|
{
|
|
gcall *call = as_a <gcall *> (use->stmt);
|
|
switch (gimple_call_internal_fn (call))
|
|
{
|
|
case IFN_MASK_LOAD:
|
|
case IFN_MASK_STORE:
|
|
case IFN_MASK_LOAD_LANES:
|
|
case IFN_MASK_STORE_LANES:
|
|
case IFN_LEN_LOAD:
|
|
case IFN_LEN_STORE:
|
|
/* The second argument contains the correct alias type. */
|
|
gcc_assert (use->op_p = gimple_call_arg_ptr (call, 0));
|
|
return TREE_TYPE (gimple_call_arg (call, 1));
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Rewrites USE (address that is an iv) using candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_address (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
aff_tree aff;
|
|
bool ok;
|
|
|
|
adjust_iv_update_pos (cand, use);
|
|
ok = get_computation_aff (data->current_loop, use->stmt, use, cand, &aff);
|
|
gcc_assert (ok);
|
|
unshare_aff_combination (&aff);
|
|
|
|
/* To avoid undefined overflow problems, all IV candidates use unsigned
|
|
integer types. The drawback is that this makes it impossible for
|
|
create_mem_ref to distinguish an IV that is based on a memory object
|
|
from one that represents simply an offset.
|
|
|
|
To work around this problem, we pass a hint to create_mem_ref that
|
|
indicates which variable (if any) in aff is an IV based on a memory
|
|
object. Note that we only consider the candidate. If this is not
|
|
based on an object, the base of the reference is in some subexpression
|
|
of the use -- but these will use pointer types, so they are recognized
|
|
by the create_mem_ref heuristics anyway. */
|
|
tree iv = var_at_stmt (data->current_loop, cand, use->stmt);
|
|
tree base_hint = (cand->iv->base_object) ? iv : NULL_TREE;
|
|
gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
|
|
tree type = use->mem_type;
|
|
tree alias_ptr_type;
|
|
if (use->type == USE_PTR_ADDRESS)
|
|
alias_ptr_type = get_alias_ptr_type_for_ptr_address (use);
|
|
else
|
|
{
|
|
gcc_assert (type == TREE_TYPE (*use->op_p));
|
|
unsigned int align = get_object_alignment (*use->op_p);
|
|
if (align != TYPE_ALIGN (type))
|
|
type = build_aligned_type (type, align);
|
|
alias_ptr_type = reference_alias_ptr_type (*use->op_p);
|
|
}
|
|
tree ref = create_mem_ref (&bsi, type, &aff, alias_ptr_type,
|
|
iv, base_hint, data->speed);
|
|
|
|
if (use->type == USE_PTR_ADDRESS)
|
|
{
|
|
ref = fold_build1 (ADDR_EXPR, build_pointer_type (use->mem_type), ref);
|
|
ref = fold_convert (get_use_type (use), ref);
|
|
ref = force_gimple_operand_gsi (&bsi, ref, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
copy_ref_info (ref, *use->op_p);
|
|
|
|
*use->op_p = ref;
|
|
}
|
|
|
|
/* Rewrites USE (the condition such that one of the arguments is an iv) using
|
|
candidate CAND. */
|
|
|
|
static void
|
|
rewrite_use_compare (struct ivopts_data *data,
|
|
struct iv_use *use, struct iv_cand *cand)
|
|
{
|
|
tree comp, op, bound;
|
|
gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
|
|
enum tree_code compare;
|
|
struct iv_group *group = data->vgroups[use->group_id];
|
|
class cost_pair *cp = get_group_iv_cost (data, group, cand);
|
|
|
|
bound = cp->value;
|
|
if (bound)
|
|
{
|
|
tree var = var_at_stmt (data->current_loop, cand, use->stmt);
|
|
tree var_type = TREE_TYPE (var);
|
|
gimple_seq stmts;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Replacing exit test: ");
|
|
print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
|
|
}
|
|
compare = cp->comp;
|
|
bound = unshare_expr (fold_convert (var_type, bound));
|
|
op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (
|
|
loop_preheader_edge (data->current_loop),
|
|
stmts);
|
|
|
|
gcond *cond_stmt = as_a <gcond *> (use->stmt);
|
|
gimple_cond_set_lhs (cond_stmt, var);
|
|
gimple_cond_set_code (cond_stmt, compare);
|
|
gimple_cond_set_rhs (cond_stmt, op);
|
|
return;
|
|
}
|
|
|
|
/* The induction variable elimination failed; just express the original
|
|
giv. */
|
|
comp = get_computation_at (data->current_loop, use->stmt, use, cand);
|
|
gcc_assert (comp != NULL_TREE);
|
|
gcc_assert (use->op_p != NULL);
|
|
*use->op_p = force_gimple_operand_gsi (&bsi, comp, true,
|
|
SSA_NAME_VAR (*use->op_p),
|
|
true, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Rewrite the groups using the selected induction variables. */
|
|
|
|
static void
|
|
rewrite_groups (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
struct iv_cand *cand = group->selected;
|
|
|
|
gcc_assert (cand);
|
|
|
|
if (group->type == USE_NONLINEAR_EXPR)
|
|
{
|
|
for (j = 0; j < group->vuses.length (); j++)
|
|
{
|
|
rewrite_use_nonlinear_expr (data, group->vuses[j], cand);
|
|
update_stmt (group->vuses[j]->stmt);
|
|
}
|
|
}
|
|
else if (address_p (group->type))
|
|
{
|
|
for (j = 0; j < group->vuses.length (); j++)
|
|
{
|
|
rewrite_use_address (data, group->vuses[j], cand);
|
|
update_stmt (group->vuses[j]->stmt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (group->type == USE_COMPARE);
|
|
|
|
for (j = 0; j < group->vuses.length (); j++)
|
|
{
|
|
rewrite_use_compare (data, group->vuses[j], cand);
|
|
update_stmt (group->vuses[j]->stmt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Removes the ivs that are not used after rewriting. */
|
|
|
|
static void
|
|
remove_unused_ivs (struct ivopts_data *data, bitmap toremove)
|
|
{
|
|
unsigned j;
|
|
bitmap_iterator bi;
|
|
|
|
/* Figure out an order in which to release SSA DEFs so that we don't
|
|
release something that we'd have to propagate into a debug stmt
|
|
afterwards. */
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
|
|
{
|
|
struct version_info *info;
|
|
|
|
info = ver_info (data, j);
|
|
if (info->iv
|
|
&& !integer_zerop (info->iv->step)
|
|
&& !info->inv_id
|
|
&& !info->iv->nonlin_use
|
|
&& !info->preserve_biv)
|
|
{
|
|
bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
|
|
|
|
tree def = info->iv->ssa_name;
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS && SSA_NAME_DEF_STMT (def))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple *stmt;
|
|
int count = 0;
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
|
|
{
|
|
if (!gimple_debug_bind_p (stmt))
|
|
continue;
|
|
|
|
/* We just want to determine whether to do nothing
|
|
(count == 0), to substitute the computed
|
|
expression into a single use of the SSA DEF by
|
|
itself (count == 1), or to use a debug temp
|
|
because the SSA DEF is used multiple times or as
|
|
part of a larger expression (count > 1). */
|
|
count++;
|
|
if (gimple_debug_bind_get_value (stmt) != def)
|
|
count++;
|
|
|
|
if (count > 1)
|
|
break;
|
|
}
|
|
|
|
if (!count)
|
|
continue;
|
|
|
|
struct iv_use dummy_use;
|
|
struct iv_cand *best_cand = NULL, *cand;
|
|
unsigned i, best_pref = 0, cand_pref;
|
|
tree comp = NULL_TREE;
|
|
|
|
memset (&dummy_use, 0, sizeof (dummy_use));
|
|
dummy_use.iv = info->iv;
|
|
for (i = 0; i < data->vgroups.length () && i < 64; i++)
|
|
{
|
|
cand = data->vgroups[i]->selected;
|
|
if (cand == best_cand)
|
|
continue;
|
|
cand_pref = operand_equal_p (cand->iv->step,
|
|
info->iv->step, 0)
|
|
? 4 : 0;
|
|
cand_pref
|
|
+= TYPE_MODE (TREE_TYPE (cand->iv->base))
|
|
== TYPE_MODE (TREE_TYPE (info->iv->base))
|
|
? 2 : 0;
|
|
cand_pref
|
|
+= TREE_CODE (cand->iv->base) == INTEGER_CST
|
|
? 1 : 0;
|
|
if (best_cand == NULL || best_pref < cand_pref)
|
|
{
|
|
tree this_comp
|
|
= get_debug_computation_at (data->current_loop,
|
|
SSA_NAME_DEF_STMT (def),
|
|
&dummy_use, cand);
|
|
if (this_comp)
|
|
{
|
|
best_cand = cand;
|
|
best_pref = cand_pref;
|
|
comp = this_comp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!best_cand)
|
|
continue;
|
|
|
|
comp = unshare_expr (comp);
|
|
if (count > 1)
|
|
{
|
|
tree vexpr = build_debug_expr_decl (TREE_TYPE (comp));
|
|
/* FIXME: Is setting the mode really necessary? */
|
|
if (SSA_NAME_VAR (def))
|
|
SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def)));
|
|
else
|
|
SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr)));
|
|
gdebug *def_temp
|
|
= gimple_build_debug_bind (vexpr, comp, NULL);
|
|
gimple_stmt_iterator gsi;
|
|
|
|
if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
|
|
gsi = gsi_after_labels (gimple_bb
|
|
(SSA_NAME_DEF_STMT (def)));
|
|
else
|
|
gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
|
|
|
|
gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
|
|
comp = vexpr;
|
|
}
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
|
|
{
|
|
if (!gimple_debug_bind_p (stmt))
|
|
continue;
|
|
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, comp);
|
|
|
|
update_stmt (stmt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Frees memory occupied by class tree_niter_desc in *VALUE. Callback
|
|
for hash_map::traverse. */
|
|
|
|
bool
|
|
free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
|
|
{
|
|
free (value);
|
|
return true;
|
|
}
|
|
|
|
/* Frees data allocated by the optimization of a single loop. */
|
|
|
|
static void
|
|
free_loop_data (struct ivopts_data *data)
|
|
{
|
|
unsigned i, j;
|
|
bitmap_iterator bi;
|
|
tree obj;
|
|
|
|
if (data->niters)
|
|
{
|
|
data->niters->traverse<void *, free_tree_niter_desc> (NULL);
|
|
delete data->niters;
|
|
data->niters = NULL;
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
|
|
{
|
|
struct version_info *info;
|
|
|
|
info = ver_info (data, i);
|
|
info->iv = NULL;
|
|
info->has_nonlin_use = false;
|
|
info->preserve_biv = false;
|
|
info->inv_id = 0;
|
|
}
|
|
bitmap_clear (data->relevant);
|
|
bitmap_clear (data->important_candidates);
|
|
|
|
for (i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
|
|
for (j = 0; j < group->vuses.length (); j++)
|
|
free (group->vuses[j]);
|
|
group->vuses.release ();
|
|
|
|
BITMAP_FREE (group->related_cands);
|
|
for (j = 0; j < group->n_map_members; j++)
|
|
{
|
|
if (group->cost_map[j].inv_vars)
|
|
BITMAP_FREE (group->cost_map[j].inv_vars);
|
|
if (group->cost_map[j].inv_exprs)
|
|
BITMAP_FREE (group->cost_map[j].inv_exprs);
|
|
}
|
|
|
|
free (group->cost_map);
|
|
free (group);
|
|
}
|
|
data->vgroups.truncate (0);
|
|
|
|
for (i = 0; i < data->vcands.length (); i++)
|
|
{
|
|
struct iv_cand *cand = data->vcands[i];
|
|
|
|
if (cand->inv_vars)
|
|
BITMAP_FREE (cand->inv_vars);
|
|
if (cand->inv_exprs)
|
|
BITMAP_FREE (cand->inv_exprs);
|
|
free (cand);
|
|
}
|
|
data->vcands.truncate (0);
|
|
|
|
if (data->version_info_size < num_ssa_names)
|
|
{
|
|
data->version_info_size = 2 * num_ssa_names;
|
|
free (data->version_info);
|
|
data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
|
|
}
|
|
|
|
data->max_inv_var_id = 0;
|
|
data->max_inv_expr_id = 0;
|
|
|
|
FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
|
|
SET_DECL_RTL (obj, NULL_RTX);
|
|
|
|
decl_rtl_to_reset.truncate (0);
|
|
|
|
data->inv_expr_tab->empty ();
|
|
|
|
data->iv_common_cand_tab->empty ();
|
|
data->iv_common_cands.truncate (0);
|
|
}
|
|
|
|
/* Finalizes data structures used by the iv optimization pass. LOOPS is the
|
|
loop tree. */
|
|
|
|
static void
|
|
tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
|
|
{
|
|
free_loop_data (data);
|
|
free (data->version_info);
|
|
BITMAP_FREE (data->relevant);
|
|
BITMAP_FREE (data->important_candidates);
|
|
|
|
decl_rtl_to_reset.release ();
|
|
data->vgroups.release ();
|
|
data->vcands.release ();
|
|
delete data->inv_expr_tab;
|
|
data->inv_expr_tab = NULL;
|
|
free_affine_expand_cache (&data->name_expansion_cache);
|
|
if (data->base_object_map)
|
|
delete data->base_object_map;
|
|
delete data->iv_common_cand_tab;
|
|
data->iv_common_cand_tab = NULL;
|
|
data->iv_common_cands.release ();
|
|
obstack_free (&data->iv_obstack, NULL);
|
|
}
|
|
|
|
/* Returns true if the loop body BODY includes any function calls. */
|
|
|
|
static bool
|
|
loop_body_includes_call (basic_block *body, unsigned num_nodes)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < num_nodes; i++)
|
|
for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (is_gimple_call (stmt)
|
|
&& !gimple_call_internal_p (stmt)
|
|
&& !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Determine cost scaling factor for basic blocks in loop. */
|
|
#define COST_SCALING_FACTOR_BOUND (20)
|
|
|
|
static void
|
|
determine_scaling_factor (struct ivopts_data *data, basic_block *body)
|
|
{
|
|
int lfreq = data->current_loop->header->count.to_frequency (cfun);
|
|
if (!data->speed || lfreq <= 0)
|
|
return;
|
|
|
|
int max_freq = lfreq;
|
|
for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
|
{
|
|
body[i]->aux = (void *)(intptr_t) 1;
|
|
if (max_freq < body[i]->count.to_frequency (cfun))
|
|
max_freq = body[i]->count.to_frequency (cfun);
|
|
}
|
|
if (max_freq > lfreq)
|
|
{
|
|
int divisor, factor;
|
|
/* Check if scaling factor itself needs to be scaled by the bound. This
|
|
is to avoid overflow when scaling cost according to profile info. */
|
|
if (max_freq / lfreq > COST_SCALING_FACTOR_BOUND)
|
|
{
|
|
divisor = max_freq;
|
|
factor = COST_SCALING_FACTOR_BOUND;
|
|
}
|
|
else
|
|
{
|
|
divisor = lfreq;
|
|
factor = 1;
|
|
}
|
|
for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
|
{
|
|
int bfreq = body[i]->count.to_frequency (cfun);
|
|
if (bfreq <= lfreq)
|
|
continue;
|
|
|
|
body[i]->aux = (void*)(intptr_t) (factor * bfreq / divisor);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find doloop comparison use and set its doloop_p on if found. */
|
|
|
|
static bool
|
|
find_doloop_use (struct ivopts_data *data)
|
|
{
|
|
struct loop *loop = data->current_loop;
|
|
|
|
for (unsigned i = 0; i < data->vgroups.length (); i++)
|
|
{
|
|
struct iv_group *group = data->vgroups[i];
|
|
if (group->type == USE_COMPARE)
|
|
{
|
|
gcc_assert (group->vuses.length () == 1);
|
|
struct iv_use *use = group->vuses[0];
|
|
gimple *stmt = use->stmt;
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
basic_block bb = gimple_bb (stmt);
|
|
edge true_edge, false_edge;
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
|
/* This comparison is used for loop latch. Require latch is empty
|
|
for now. */
|
|
if ((loop->latch == true_edge->dest
|
|
|| loop->latch == false_edge->dest)
|
|
&& empty_block_p (loop->latch))
|
|
{
|
|
group->doloop_p = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Doloop cmp iv use: ");
|
|
print_gimple_stmt (dump_file, stmt, TDF_DETAILS);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* For the targets which support doloop, to predict whether later RTL doloop
|
|
transformation will perform on this loop, further detect the doloop use and
|
|
mark the flag doloop_use_p if predicted. */
|
|
|
|
void
|
|
analyze_and_mark_doloop_use (struct ivopts_data *data)
|
|
{
|
|
data->doloop_use_p = false;
|
|
|
|
if (!flag_branch_on_count_reg)
|
|
return;
|
|
|
|
if (data->current_loop->unroll == USHRT_MAX)
|
|
return;
|
|
|
|
if (!generic_predict_doloop_p (data))
|
|
return;
|
|
|
|
if (find_doloop_use (data))
|
|
{
|
|
data->doloop_use_p = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
struct loop *loop = data->current_loop;
|
|
fprintf (dump_file,
|
|
"Predict loop %d can perform"
|
|
" doloop optimization later.\n",
|
|
loop->num);
|
|
flow_loop_dump (loop, dump_file, NULL, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Optimizes the LOOP. Returns true if anything changed. */
|
|
|
|
static bool
|
|
tree_ssa_iv_optimize_loop (struct ivopts_data *data, class loop *loop,
|
|
bitmap toremove)
|
|
{
|
|
bool changed = false;
|
|
class iv_ca *iv_ca;
|
|
edge exit = single_dom_exit (loop);
|
|
basic_block *body;
|
|
|
|
gcc_assert (!data->niters);
|
|
data->current_loop = loop;
|
|
data->loop_loc = find_loop_location (loop).get_location_t ();
|
|
data->speed = optimize_loop_for_speed_p (loop);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Processing loop %d", loop->num);
|
|
if (data->loop_loc != UNKNOWN_LOCATION)
|
|
fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
|
|
LOCATION_LINE (data->loop_loc));
|
|
fprintf (dump_file, "\n");
|
|
|
|
if (exit)
|
|
{
|
|
fprintf (dump_file, " single exit %d -> %d, exit condition ",
|
|
exit->src->index, exit->dest->index);
|
|
print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
body = get_loop_body (loop);
|
|
data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
|
|
renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
|
|
|
|
data->loop_single_exit_p
|
|
= exit != NULL && loop_only_exit_p (loop, body, exit);
|
|
|
|
/* For each ssa name determines whether it behaves as an induction variable
|
|
in some loop. */
|
|
if (!find_induction_variables (data, body))
|
|
goto finish;
|
|
|
|
/* Finds interesting uses (item 1). */
|
|
find_interesting_uses (data, body);
|
|
if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
|
|
goto finish;
|
|
|
|
/* Determine cost scaling factor for basic blocks in loop. */
|
|
determine_scaling_factor (data, body);
|
|
|
|
/* Analyze doloop possibility and mark the doloop use if predicted. */
|
|
analyze_and_mark_doloop_use (data);
|
|
|
|
/* Finds candidates for the induction variables (item 2). */
|
|
find_iv_candidates (data);
|
|
|
|
/* Calculates the costs (item 3, part 1). */
|
|
determine_iv_costs (data);
|
|
determine_group_iv_costs (data);
|
|
determine_set_costs (data);
|
|
|
|
/* Find the optimal set of induction variables (item 3, part 2). */
|
|
iv_ca = find_optimal_iv_set (data);
|
|
/* Cleanup basic block aux field. */
|
|
for (unsigned i = 0; i < data->current_loop->num_nodes; i++)
|
|
body[i]->aux = NULL;
|
|
if (!iv_ca)
|
|
goto finish;
|
|
changed = true;
|
|
|
|
/* Create the new induction variables (item 4, part 1). */
|
|
create_new_ivs (data, iv_ca);
|
|
iv_ca_free (&iv_ca);
|
|
|
|
/* Rewrite the uses (item 4, part 2). */
|
|
rewrite_groups (data);
|
|
|
|
/* Remove the ivs that are unused after rewriting. */
|
|
remove_unused_ivs (data, toremove);
|
|
|
|
finish:
|
|
free (body);
|
|
free_loop_data (data);
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Main entry point. Optimizes induction variables in loops. */
|
|
|
|
void
|
|
tree_ssa_iv_optimize (void)
|
|
{
|
|
struct ivopts_data data;
|
|
auto_bitmap toremove;
|
|
|
|
tree_ssa_iv_optimize_init (&data);
|
|
mark_ssa_maybe_undefs ();
|
|
|
|
/* Optimize the loops starting with the innermost ones. */
|
|
for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
|
|
{
|
|
if (!dbg_cnt (ivopts_loop))
|
|
continue;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
flow_loop_dump (loop, dump_file, NULL, 1);
|
|
|
|
tree_ssa_iv_optimize_loop (&data, loop, toremove);
|
|
}
|
|
|
|
/* Remove eliminated IV defs. */
|
|
release_defs_bitset (toremove);
|
|
|
|
/* We have changed the structure of induction variables; it might happen
|
|
that definitions in the scev database refer to some of them that were
|
|
eliminated. */
|
|
scev_reset_htab ();
|
|
/* Likewise niter and control-IV information. */
|
|
free_numbers_of_iterations_estimates (cfun);
|
|
|
|
tree_ssa_iv_optimize_finalize (&data);
|
|
}
|
|
|
|
#include "gt-tree-ssa-loop-ivopts.h"
|