1972 lines
54 KiB
C++
1972 lines
54 KiB
C++
/* Lower complex number operations to scalar operations.
|
||
Copyright (C) 2004-2022 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 3, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "cfghooks.h"
|
||
#include "tree-pass.h"
|
||
#include "ssa.h"
|
||
#include "fold-const.h"
|
||
#include "stor-layout.h"
|
||
#include "tree-eh.h"
|
||
#include "gimplify.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify-me.h"
|
||
#include "tree-cfg.h"
|
||
#include "tree-dfa.h"
|
||
#include "tree-ssa.h"
|
||
#include "tree-ssa-propagate.h"
|
||
#include "tree-hasher.h"
|
||
#include "cfgloop.h"
|
||
#include "cfganal.h"
|
||
#include "gimple-fold.h"
|
||
#include "diagnostic-core.h"
|
||
|
||
|
||
/* For each complex ssa name, a lattice value. We're interested in finding
|
||
out whether a complex number is degenerate in some way, having only real
|
||
or only complex parts. */
|
||
|
||
enum
|
||
{
|
||
UNINITIALIZED = 0,
|
||
ONLY_REAL = 1,
|
||
ONLY_IMAG = 2,
|
||
VARYING = 3
|
||
};
|
||
|
||
/* The type complex_lattice_t holds combinations of the above
|
||
constants. */
|
||
typedef int complex_lattice_t;
|
||
|
||
#define PAIR(a, b) ((a) << 2 | (b))
|
||
|
||
class complex_propagate : public ssa_propagation_engine
|
||
{
|
||
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
|
||
enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
|
||
};
|
||
|
||
static vec<complex_lattice_t> complex_lattice_values;
|
||
|
||
/* For each complex variable, a pair of variables for the components exists in
|
||
the hashtable. */
|
||
static int_tree_htab_type *complex_variable_components;
|
||
|
||
/* For each complex SSA_NAME, a pair of ssa names for the components. */
|
||
static vec<tree> complex_ssa_name_components;
|
||
|
||
/* Vector of PHI triplets (original complex PHI and corresponding real and
|
||
imag PHIs if real and/or imag PHIs contain temporarily
|
||
non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
|
||
static vec<gphi *> phis_to_revisit;
|
||
|
||
/* BBs that need EH cleanup. */
|
||
static bitmap need_eh_cleanup;
|
||
|
||
/* Lookup UID in the complex_variable_components hashtable and return the
|
||
associated tree. */
|
||
static tree
|
||
cvc_lookup (unsigned int uid)
|
||
{
|
||
struct int_tree_map in;
|
||
in.uid = uid;
|
||
return complex_variable_components->find_with_hash (in, uid).to;
|
||
}
|
||
|
||
/* Insert the pair UID, TO into the complex_variable_components hashtable. */
|
||
|
||
static void
|
||
cvc_insert (unsigned int uid, tree to)
|
||
{
|
||
int_tree_map h;
|
||
int_tree_map *loc;
|
||
|
||
h.uid = uid;
|
||
loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
|
||
loc->uid = uid;
|
||
loc->to = to;
|
||
}
|
||
|
||
/* Return true if T is not a zero constant. In the case of real values,
|
||
we're only interested in +0.0. */
|
||
|
||
static int
|
||
some_nonzerop (tree t)
|
||
{
|
||
int zerop = false;
|
||
|
||
/* Operations with real or imaginary part of a complex number zero
|
||
cannot be treated the same as operations with a real or imaginary
|
||
operand if we care about the signs of zeros in the result. */
|
||
if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
|
||
zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
|
||
else if (TREE_CODE (t) == FIXED_CST)
|
||
zerop = fixed_zerop (t);
|
||
else if (TREE_CODE (t) == INTEGER_CST)
|
||
zerop = integer_zerop (t);
|
||
|
||
return !zerop;
|
||
}
|
||
|
||
|
||
/* Compute a lattice value from the components of a complex type REAL
|
||
and IMAG. */
|
||
|
||
static complex_lattice_t
|
||
find_lattice_value_parts (tree real, tree imag)
|
||
{
|
||
int r, i;
|
||
complex_lattice_t ret;
|
||
|
||
r = some_nonzerop (real);
|
||
i = some_nonzerop (imag);
|
||
ret = r * ONLY_REAL + i * ONLY_IMAG;
|
||
|
||
/* ??? On occasion we could do better than mapping 0+0i to real, but we
|
||
certainly don't want to leave it UNINITIALIZED, which eventually gets
|
||
mapped to VARYING. */
|
||
if (ret == UNINITIALIZED)
|
||
ret = ONLY_REAL;
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Compute a lattice value from gimple_val T. */
|
||
|
||
static complex_lattice_t
|
||
find_lattice_value (tree t)
|
||
{
|
||
tree real, imag;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SSA_NAME:
|
||
return complex_lattice_values[SSA_NAME_VERSION (t)];
|
||
|
||
case COMPLEX_CST:
|
||
real = TREE_REALPART (t);
|
||
imag = TREE_IMAGPART (t);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return find_lattice_value_parts (real, imag);
|
||
}
|
||
|
||
/* Determine if LHS is something for which we're interested in seeing
|
||
simulation results. */
|
||
|
||
static bool
|
||
is_complex_reg (tree lhs)
|
||
{
|
||
return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
|
||
}
|
||
|
||
/* Mark the incoming parameters to the function as VARYING. */
|
||
|
||
static void
|
||
init_parameter_lattice_values (void)
|
||
{
|
||
tree parm, ssa_name;
|
||
|
||
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
|
||
if (is_complex_reg (parm)
|
||
&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
|
||
complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
|
||
}
|
||
|
||
/* Initialize simulation state for each statement. Return false if we
|
||
found no statements we want to simulate, and thus there's nothing
|
||
for the entire pass to do. */
|
||
|
||
static bool
|
||
init_dont_simulate_again (void)
|
||
{
|
||
basic_block bb;
|
||
bool saw_a_complex_op = false;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
||
gsi_next (&gsi))
|
||
{
|
||
gphi *phi = gsi.phi ();
|
||
prop_set_simulate_again (phi,
|
||
is_complex_reg (gimple_phi_result (phi)));
|
||
}
|
||
|
||
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
||
gsi_next (&gsi))
|
||
{
|
||
gimple *stmt;
|
||
tree op0, op1;
|
||
bool sim_again_p;
|
||
|
||
stmt = gsi_stmt (gsi);
|
||
op0 = op1 = NULL_TREE;
|
||
|
||
/* Most control-altering statements must be initially
|
||
simulated, else we won't cover the entire cfg. */
|
||
sim_again_p = stmt_ends_bb_p (stmt);
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_CALL:
|
||
if (gimple_call_lhs (stmt))
|
||
sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
|
||
break;
|
||
|
||
case GIMPLE_ASSIGN:
|
||
sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
|
||
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
||
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
|
||
op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
|
||
else
|
||
op0 = gimple_assign_rhs1 (stmt);
|
||
if (gimple_num_ops (stmt) > 2)
|
||
op1 = gimple_assign_rhs2 (stmt);
|
||
break;
|
||
|
||
case GIMPLE_COND:
|
||
op0 = gimple_cond_lhs (stmt);
|
||
op1 = gimple_cond_rhs (stmt);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (op0 || op1)
|
||
switch (gimple_expr_code (stmt))
|
||
{
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case RDIV_EXPR:
|
||
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
|
||
|| TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
|
||
saw_a_complex_op = true;
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
case CONJ_EXPR:
|
||
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
|
||
saw_a_complex_op = true;
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
/* The total store transformation performed during
|
||
gimplification creates such uninitialized loads
|
||
and we need to lower the statement to be able
|
||
to fix things up. */
|
||
if (TREE_CODE (op0) == SSA_NAME
|
||
&& ssa_undefined_value_p (op0))
|
||
saw_a_complex_op = true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
prop_set_simulate_again (stmt, sim_again_p);
|
||
}
|
||
}
|
||
|
||
return saw_a_complex_op;
|
||
}
|
||
|
||
|
||
/* Evaluate statement STMT against the complex lattice defined above. */
|
||
|
||
enum ssa_prop_result
|
||
complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
|
||
tree *result_p)
|
||
{
|
||
complex_lattice_t new_l, old_l, op1_l, op2_l;
|
||
unsigned int ver;
|
||
tree lhs;
|
||
|
||
lhs = gimple_get_lhs (stmt);
|
||
/* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
|
||
if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
||
return SSA_PROP_VARYING;
|
||
|
||
/* These conditions should be satisfied due to the initial filter
|
||
set up in init_dont_simulate_again. */
|
||
gcc_assert (TREE_CODE (lhs) == SSA_NAME);
|
||
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
|
||
|
||
*result_p = lhs;
|
||
ver = SSA_NAME_VERSION (lhs);
|
||
old_l = complex_lattice_values[ver];
|
||
|
||
switch (gimple_expr_code (stmt))
|
||
{
|
||
case SSA_NAME:
|
||
case COMPLEX_CST:
|
||
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
||
break;
|
||
|
||
case COMPLEX_EXPR:
|
||
new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
|
||
gimple_assign_rhs2 (stmt));
|
||
break;
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
||
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
|
||
|
||
/* We've set up the lattice values such that IOR neatly
|
||
models addition. */
|
||
new_l = op1_l | op2_l;
|
||
break;
|
||
|
||
case MULT_EXPR:
|
||
case RDIV_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
||
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
|
||
|
||
/* Obviously, if either varies, so does the result. */
|
||
if (op1_l == VARYING || op2_l == VARYING)
|
||
new_l = VARYING;
|
||
/* Don't prematurely promote variables if we've not yet seen
|
||
their inputs. */
|
||
else if (op1_l == UNINITIALIZED)
|
||
new_l = op2_l;
|
||
else if (op2_l == UNINITIALIZED)
|
||
new_l = op1_l;
|
||
else
|
||
{
|
||
/* At this point both numbers have only one component. If the
|
||
numbers are of opposite kind, the result is imaginary,
|
||
otherwise the result is real. The add/subtract translates
|
||
the real/imag from/to 0/1; the ^ performs the comparison. */
|
||
new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
|
||
|
||
/* Don't allow the lattice value to flip-flop indefinitely. */
|
||
new_l |= old_l;
|
||
}
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
case CONJ_EXPR:
|
||
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
||
break;
|
||
|
||
default:
|
||
new_l = VARYING;
|
||
break;
|
||
}
|
||
|
||
/* If nothing changed this round, let the propagator know. */
|
||
if (new_l == old_l)
|
||
return SSA_PROP_NOT_INTERESTING;
|
||
|
||
complex_lattice_values[ver] = new_l;
|
||
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
|
||
}
|
||
|
||
/* Evaluate a PHI node against the complex lattice defined above. */
|
||
|
||
enum ssa_prop_result
|
||
complex_propagate::visit_phi (gphi *phi)
|
||
{
|
||
complex_lattice_t new_l, old_l;
|
||
unsigned int ver;
|
||
tree lhs;
|
||
int i;
|
||
|
||
lhs = gimple_phi_result (phi);
|
||
|
||
/* This condition should be satisfied due to the initial filter
|
||
set up in init_dont_simulate_again. */
|
||
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
|
||
|
||
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
||
return SSA_PROP_VARYING;
|
||
|
||
/* We've set up the lattice values such that IOR neatly models PHI meet. */
|
||
new_l = UNINITIALIZED;
|
||
for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
|
||
new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
|
||
|
||
ver = SSA_NAME_VERSION (lhs);
|
||
old_l = complex_lattice_values[ver];
|
||
|
||
if (new_l == old_l)
|
||
return SSA_PROP_NOT_INTERESTING;
|
||
|
||
complex_lattice_values[ver] = new_l;
|
||
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
|
||
}
|
||
|
||
/* Create one backing variable for a complex component of ORIG. */
|
||
|
||
static tree
|
||
create_one_component_var (tree type, tree orig, const char *prefix,
|
||
const char *suffix, enum tree_code code)
|
||
{
|
||
tree r = create_tmp_var (type, prefix);
|
||
|
||
DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
|
||
DECL_ARTIFICIAL (r) = 1;
|
||
|
||
if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
|
||
{
|
||
const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
|
||
name = ACONCAT ((name, suffix, NULL));
|
||
DECL_NAME (r) = get_identifier (name);
|
||
|
||
SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
|
||
DECL_HAS_DEBUG_EXPR_P (r) = 1;
|
||
DECL_IGNORED_P (r) = 0;
|
||
copy_warning (r, orig);
|
||
}
|
||
else
|
||
{
|
||
DECL_IGNORED_P (r) = 1;
|
||
suppress_warning (r);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Retrieve a value for a complex component of VAR. */
|
||
|
||
static tree
|
||
get_component_var (tree var, bool imag_p)
|
||
{
|
||
size_t decl_index = DECL_UID (var) * 2 + imag_p;
|
||
tree ret = cvc_lookup (decl_index);
|
||
|
||
if (ret == NULL)
|
||
{
|
||
ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
|
||
imag_p ? "CI" : "CR",
|
||
imag_p ? "$imag" : "$real",
|
||
imag_p ? IMAGPART_EXPR : REALPART_EXPR);
|
||
cvc_insert (decl_index, ret);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Retrieve a value for a complex component of SSA_NAME. */
|
||
|
||
static tree
|
||
get_component_ssa_name (tree ssa_name, bool imag_p)
|
||
{
|
||
complex_lattice_t lattice = find_lattice_value (ssa_name);
|
||
size_t ssa_name_index;
|
||
tree ret;
|
||
|
||
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
|
||
if (SCALAR_FLOAT_TYPE_P (inner_type))
|
||
return build_real (inner_type, dconst0);
|
||
else
|
||
return build_int_cst (inner_type, 0);
|
||
}
|
||
|
||
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
|
||
ret = complex_ssa_name_components[ssa_name_index];
|
||
if (ret == NULL)
|
||
{
|
||
if (SSA_NAME_VAR (ssa_name))
|
||
ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
|
||
else
|
||
ret = TREE_TYPE (TREE_TYPE (ssa_name));
|
||
ret = make_ssa_name (ret);
|
||
|
||
/* Copy some properties from the original. In particular, whether it
|
||
is used in an abnormal phi, and whether it's uninitialized. */
|
||
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
|
||
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
|
||
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
|
||
&& TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
|
||
{
|
||
SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
|
||
set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
|
||
}
|
||
|
||
complex_ssa_name_components[ssa_name_index] = ret;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Set a value for a complex component of SSA_NAME, return a
|
||
gimple_seq of stuff that needs doing. */
|
||
|
||
static gimple_seq
|
||
set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
|
||
{
|
||
complex_lattice_t lattice = find_lattice_value (ssa_name);
|
||
size_t ssa_name_index;
|
||
tree comp;
|
||
gimple *last;
|
||
gimple_seq list;
|
||
|
||
/* We know the value must be zero, else there's a bug in our lattice
|
||
analysis. But the value may well be a variable known to contain
|
||
zero. We should be safe ignoring it. */
|
||
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
|
||
return NULL;
|
||
|
||
/* If we've already assigned an SSA_NAME to this component, then this
|
||
means that our walk of the basic blocks found a use before the set.
|
||
This is fine. Now we should create an initialization for the value
|
||
we created earlier. */
|
||
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
|
||
comp = complex_ssa_name_components[ssa_name_index];
|
||
if (comp)
|
||
;
|
||
|
||
/* If we've nothing assigned, and the value we're given is already stable,
|
||
then install that as the value for this SSA_NAME. This preemptively
|
||
copy-propagates the value, which avoids unnecessary memory allocation. */
|
||
else if (is_gimple_min_invariant (value)
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
complex_ssa_name_components[ssa_name_index] = value;
|
||
return NULL;
|
||
}
|
||
else if (TREE_CODE (value) == SSA_NAME
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
/* Replace an anonymous base value with the variable from cvc_lookup.
|
||
This should result in better debug info. */
|
||
if (!SSA_NAME_IS_DEFAULT_DEF (value)
|
||
&& SSA_NAME_VAR (ssa_name)
|
||
&& (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
|
||
&& !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
|
||
{
|
||
comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
|
||
replace_ssa_name_symbol (value, comp);
|
||
}
|
||
|
||
complex_ssa_name_components[ssa_name_index] = value;
|
||
return NULL;
|
||
}
|
||
|
||
/* Finally, we need to stabilize the result by installing the value into
|
||
a new ssa name. */
|
||
else
|
||
comp = get_component_ssa_name (ssa_name, imag_p);
|
||
|
||
/* Do all the work to assign VALUE to COMP. */
|
||
list = NULL;
|
||
value = force_gimple_operand (value, &list, false, NULL);
|
||
last = gimple_build_assign (comp, value);
|
||
gimple_seq_add_stmt (&list, last);
|
||
gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Extract the real or imaginary part of a complex variable or constant.
|
||
Make sure that it's a proper gimple_val and gimplify it if not.
|
||
Emit any new code before gsi. */
|
||
|
||
static tree
|
||
extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
|
||
bool gimple_p, bool phiarg_p = false)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case COMPLEX_CST:
|
||
return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
|
||
|
||
case COMPLEX_EXPR:
|
||
gcc_unreachable ();
|
||
|
||
case BIT_FIELD_REF:
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_TYPE (t));
|
||
t = unshare_expr (t);
|
||
TREE_TYPE (t) = inner_type;
|
||
TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
|
||
if (imagpart_p)
|
||
TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
|
||
TYPE_SIZE (inner_type));
|
||
if (gimple_p)
|
||
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
return t;
|
||
}
|
||
|
||
case VAR_DECL:
|
||
case RESULT_DECL:
|
||
case PARM_DECL:
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
case MEM_REF:
|
||
{
|
||
tree inner_type = TREE_TYPE (TREE_TYPE (t));
|
||
|
||
t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
|
||
inner_type, unshare_expr (t));
|
||
|
||
if (gimple_p)
|
||
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
|
||
GSI_SAME_STMT);
|
||
|
||
return t;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
t = get_component_ssa_name (t, imagpart_p);
|
||
if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
|
||
gcc_assert (phiarg_p);
|
||
return t;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Update the complex components of the ssa name on the lhs of STMT. */
|
||
|
||
static void
|
||
update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
|
||
tree i)
|
||
{
|
||
tree lhs;
|
||
gimple_seq list;
|
||
|
||
lhs = gimple_get_lhs (stmt);
|
||
|
||
list = set_component_ssa_name (lhs, false, r);
|
||
if (list)
|
||
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
||
|
||
list = set_component_ssa_name (lhs, true, i);
|
||
if (list)
|
||
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
static void
|
||
update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
|
||
{
|
||
gimple_seq list;
|
||
|
||
list = set_component_ssa_name (lhs, false, r);
|
||
if (list)
|
||
gsi_insert_seq_on_edge (e, list);
|
||
|
||
list = set_component_ssa_name (lhs, true, i);
|
||
if (list)
|
||
gsi_insert_seq_on_edge (e, list);
|
||
}
|
||
|
||
|
||
/* Update an assignment to a complex variable in place. */
|
||
|
||
static void
|
||
update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
|
||
{
|
||
gimple *old_stmt = gsi_stmt (*gsi);
|
||
gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
|
||
gimple *stmt = gsi_stmt (*gsi);
|
||
update_stmt (stmt);
|
||
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
||
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
|
||
|
||
update_complex_components (gsi, gsi_stmt (*gsi), r, i);
|
||
}
|
||
|
||
|
||
/* Generate code at the entry point of the function to initialize the
|
||
component variables for a complex parameter. */
|
||
|
||
static void
|
||
update_parameter_components (void)
|
||
{
|
||
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
tree parm;
|
||
|
||
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
|
||
{
|
||
tree type = TREE_TYPE (parm);
|
||
tree ssa_name, r, i;
|
||
|
||
if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
|
||
continue;
|
||
|
||
type = TREE_TYPE (type);
|
||
ssa_name = ssa_default_def (cfun, parm);
|
||
if (!ssa_name)
|
||
continue;
|
||
|
||
r = build1 (REALPART_EXPR, type, ssa_name);
|
||
i = build1 (IMAGPART_EXPR, type, ssa_name);
|
||
update_complex_components_on_edge (entry_edge, ssa_name, r, i);
|
||
}
|
||
}
|
||
|
||
/* Generate code to set the component variables of a complex variable
|
||
to match the PHI statements in block BB. */
|
||
|
||
static void
|
||
update_phi_components (basic_block bb)
|
||
{
|
||
gphi_iterator gsi;
|
||
|
||
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gphi *phi = gsi.phi ();
|
||
|
||
if (is_complex_reg (gimple_phi_result (phi)))
|
||
{
|
||
gphi *p[2] = { NULL, NULL };
|
||
unsigned int i, j, n;
|
||
bool revisit_phi = false;
|
||
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
|
||
if (TREE_CODE (l) == SSA_NAME)
|
||
p[j] = create_phi_node (l, bb);
|
||
}
|
||
|
||
for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
|
||
{
|
||
tree comp, arg = gimple_phi_arg_def (phi, i);
|
||
for (j = 0; j < 2; j++)
|
||
if (p[j])
|
||
{
|
||
comp = extract_component (NULL, arg, j > 0, false, true);
|
||
if (TREE_CODE (comp) == SSA_NAME
|
||
&& SSA_NAME_DEF_STMT (comp) == NULL)
|
||
{
|
||
/* For the benefit of any gimple simplification during
|
||
this pass that might walk SSA_NAME def stmts,
|
||
don't add SSA_NAMEs without definitions into the
|
||
PHI arguments, but put a decl in there instead
|
||
temporarily, and revisit this PHI later on. */
|
||
if (SSA_NAME_VAR (comp))
|
||
comp = SSA_NAME_VAR (comp);
|
||
else
|
||
comp = create_tmp_reg (TREE_TYPE (comp),
|
||
get_name (comp));
|
||
revisit_phi = true;
|
||
}
|
||
SET_PHI_ARG_DEF (p[j], i, comp);
|
||
}
|
||
}
|
||
|
||
if (revisit_phi)
|
||
{
|
||
phis_to_revisit.safe_push (phi);
|
||
phis_to_revisit.safe_push (p[0]);
|
||
phis_to_revisit.safe_push (p[1]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Expand a complex move to scalars. */
|
||
|
||
static void
|
||
expand_complex_move (gimple_stmt_iterator *gsi, tree type)
|
||
{
|
||
tree inner_type = TREE_TYPE (type);
|
||
tree r, i, lhs, rhs;
|
||
gimple *stmt = gsi_stmt (*gsi);
|
||
|
||
if (is_gimple_assign (stmt))
|
||
{
|
||
lhs = gimple_assign_lhs (stmt);
|
||
if (gimple_num_ops (stmt) == 2)
|
||
rhs = gimple_assign_rhs1 (stmt);
|
||
else
|
||
rhs = NULL_TREE;
|
||
}
|
||
else if (is_gimple_call (stmt))
|
||
{
|
||
lhs = gimple_call_lhs (stmt);
|
||
rhs = NULL_TREE;
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
if (TREE_CODE (lhs) == SSA_NAME)
|
||
{
|
||
if (is_ctrl_altering_stmt (stmt))
|
||
{
|
||
edge e;
|
||
|
||
/* The value is not assigned on the exception edges, so we need not
|
||
concern ourselves there. We do need to update on the fallthru
|
||
edge. Find it. */
|
||
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
|
||
if (!e)
|
||
gcc_unreachable ();
|
||
|
||
r = build1 (REALPART_EXPR, inner_type, lhs);
|
||
i = build1 (IMAGPART_EXPR, inner_type, lhs);
|
||
update_complex_components_on_edge (e, lhs, r, i);
|
||
}
|
||
else if (is_gimple_call (stmt)
|
||
|| gimple_has_side_effects (stmt)
|
||
|| gimple_assign_rhs_code (stmt) == PAREN_EXPR)
|
||
{
|
||
r = build1 (REALPART_EXPR, inner_type, lhs);
|
||
i = build1 (IMAGPART_EXPR, inner_type, lhs);
|
||
update_complex_components (gsi, stmt, r, i);
|
||
}
|
||
else
|
||
{
|
||
if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
|
||
{
|
||
r = extract_component (gsi, rhs, 0, true);
|
||
i = extract_component (gsi, rhs, 1, true);
|
||
}
|
||
else
|
||
{
|
||
r = gimple_assign_rhs1 (stmt);
|
||
i = gimple_assign_rhs2 (stmt);
|
||
}
|
||
update_complex_assignment (gsi, r, i);
|
||
}
|
||
}
|
||
else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
|
||
{
|
||
tree x;
|
||
gimple *t;
|
||
location_t loc;
|
||
|
||
loc = gimple_location (stmt);
|
||
r = extract_component (gsi, rhs, 0, false);
|
||
i = extract_component (gsi, rhs, 1, false);
|
||
|
||
x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
|
||
t = gimple_build_assign (x, r);
|
||
gimple_set_location (t, loc);
|
||
gsi_insert_before (gsi, t, GSI_SAME_STMT);
|
||
|
||
if (stmt == gsi_stmt (*gsi))
|
||
{
|
||
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
|
||
gimple_assign_set_lhs (stmt, x);
|
||
gimple_assign_set_rhs1 (stmt, i);
|
||
}
|
||
else
|
||
{
|
||
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
|
||
t = gimple_build_assign (x, i);
|
||
gimple_set_location (t, loc);
|
||
gsi_insert_before (gsi, t, GSI_SAME_STMT);
|
||
|
||
stmt = gsi_stmt (*gsi);
|
||
gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
|
||
gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
|
||
}
|
||
|
||
update_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
/* Expand complex addition to scalars:
|
||
a + b = (ar + br) + i(ai + bi)
|
||
a - b = (ar - br) + i(ai + bi)
|
||
*/
|
||
|
||
static void
|
||
expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
|
||
tree ar, tree ai, tree br, tree bi,
|
||
enum tree_code code,
|
||
complex_lattice_t al, complex_lattice_t bl)
|
||
{
|
||
tree rr, ri;
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
switch (PAIR (al, bl))
|
||
{
|
||
case PAIR (ONLY_REAL, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = ai;
|
||
break;
|
||
|
||
case PAIR (ONLY_REAL, ONLY_IMAG):
|
||
rr = ar;
|
||
if (code == MINUS_EXPR)
|
||
ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi);
|
||
else
|
||
ri = bi;
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_REAL):
|
||
if (code == MINUS_EXPR)
|
||
rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br);
|
||
else
|
||
rr = br;
|
||
ri = ai;
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
||
rr = ar;
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = ai;
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_IMAG):
|
||
rr = ar;
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
break;
|
||
|
||
case PAIR (ONLY_REAL, VARYING):
|
||
if (code == MINUS_EXPR)
|
||
goto general;
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = bi;
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, VARYING):
|
||
if (code == MINUS_EXPR)
|
||
goto general;
|
||
rr = br;
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
break;
|
||
|
||
case PAIR (VARYING, VARYING):
|
||
general:
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Expand a complex multiplication or division to a libcall to the c99
|
||
compliant routines. TYPE is the complex type of the operation.
|
||
If INPLACE_P replace the statement at GSI with
|
||
the libcall and return NULL_TREE. Else insert the call, assign its
|
||
result to an output variable and return that variable. If INPLACE_P
|
||
is true then the statement being replaced should be an assignment
|
||
statement. */
|
||
|
||
static tree
|
||
expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
|
||
tree br, tree bi, enum tree_code code, bool inplace_p)
|
||
{
|
||
machine_mode mode;
|
||
enum built_in_function bcode;
|
||
tree fn, lhs;
|
||
gcall *stmt;
|
||
|
||
mode = TYPE_MODE (type);
|
||
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
|
||
|
||
if (code == MULT_EXPR)
|
||
bcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
else if (code == RDIV_EXPR)
|
||
bcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
else
|
||
gcc_unreachable ();
|
||
fn = builtin_decl_explicit (bcode);
|
||
stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
|
||
|
||
if (inplace_p)
|
||
{
|
||
gimple *old_stmt = gsi_stmt (*gsi);
|
||
gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
|
||
lhs = gimple_assign_lhs (old_stmt);
|
||
gimple_call_set_lhs (stmt, lhs);
|
||
gsi_replace (gsi, stmt, true);
|
||
|
||
type = TREE_TYPE (type);
|
||
if (stmt_can_throw_internal (cfun, stmt))
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
|
||
if (!(e->flags & EDGE_EH))
|
||
break;
|
||
basic_block bb = split_edge (e);
|
||
gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
|
||
update_complex_components (&gsi2, stmt,
|
||
build1 (REALPART_EXPR, type, lhs),
|
||
build1 (IMAGPART_EXPR, type, lhs));
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
update_complex_components (gsi, stmt,
|
||
build1 (REALPART_EXPR, type, lhs),
|
||
build1 (IMAGPART_EXPR, type, lhs));
|
||
SSA_NAME_DEF_STMT (lhs) = stmt;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
gimple_call_set_nothrow (stmt, true);
|
||
lhs = make_ssa_name (type);
|
||
gimple_call_set_lhs (stmt, lhs);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
|
||
return lhs;
|
||
}
|
||
|
||
/* Perform a complex multiplication on two complex constants A, B represented
|
||
by AR, AI, BR, BI of type TYPE.
|
||
The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
|
||
Insert the GIMPLE statements into GSI. Store the real and imaginary
|
||
components of the result into RR and RI. */
|
||
|
||
static void
|
||
expand_complex_multiplication_components (gimple_seq *stmts, location_t loc,
|
||
tree type, tree ar, tree ai,
|
||
tree br, tree bi,
|
||
tree *rr, tree *ri)
|
||
{
|
||
tree t1, t2, t3, t4;
|
||
|
||
t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br);
|
||
t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi);
|
||
t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi);
|
||
|
||
/* Avoid expanding redundant multiplication for the common
|
||
case of squaring a complex number. */
|
||
if (ar == br && ai == bi)
|
||
t4 = t3;
|
||
else
|
||
t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br);
|
||
|
||
*rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2);
|
||
*ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4);
|
||
}
|
||
|
||
/* Expand complex multiplication to scalars:
|
||
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
|
||
*/
|
||
|
||
static void
|
||
expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
|
||
tree ar, tree ai, tree br, tree bi,
|
||
complex_lattice_t al, complex_lattice_t bl)
|
||
{
|
||
tree rr, ri;
|
||
tree inner_type = TREE_TYPE (type);
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
gimple_seq stmts = NULL;
|
||
|
||
if (al < bl)
|
||
{
|
||
complex_lattice_t tl;
|
||
rr = ar, ar = br, br = rr;
|
||
ri = ai, ai = bi, bi = ri;
|
||
tl = al, al = bl, bl = tl;
|
||
}
|
||
|
||
switch (PAIR (al, bl))
|
||
{
|
||
case PAIR (ONLY_REAL, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
|
||
ri = ai;
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_REAL):
|
||
rr = ar;
|
||
if (TREE_CODE (ai) == REAL_CST
|
||
&& real_identical (&TREE_REAL_CST (ai), &dconst1))
|
||
ri = br;
|
||
else
|
||
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
||
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
|
||
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
|
||
ri = ar;
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
|
||
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_IMAG):
|
||
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
|
||
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
|
||
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
|
||
break;
|
||
|
||
case PAIR (VARYING, VARYING):
|
||
if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
|
||
{
|
||
/* If optimizing for size or not at all just do a libcall.
|
||
Same if there are exception-handling edges or signaling NaNs. */
|
||
if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
|
||
|| stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
|
||
|| flag_signaling_nans)
|
||
{
|
||
expand_complex_libcall (gsi, type, ar, ai, br, bi,
|
||
MULT_EXPR, true);
|
||
return;
|
||
}
|
||
|
||
if (!HONOR_NANS (inner_type))
|
||
{
|
||
/* If we are not worrying about NaNs expand to
|
||
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
|
||
expand_complex_multiplication_components (&stmts, loc, inner_type,
|
||
ar, ai, br, bi,
|
||
&rr, &ri);
|
||
break;
|
||
}
|
||
|
||
/* Else, expand x = a * b into
|
||
x = (ar*br - ai*bi) + i(ar*bi + br*ai);
|
||
if (isunordered (__real__ x, __imag__ x))
|
||
x = __muldc3 (a, b); */
|
||
|
||
tree tmpr, tmpi;
|
||
expand_complex_multiplication_components (&stmts, loc,
|
||
inner_type, ar, ai,
|
||
br, bi, &tmpr, &tmpi);
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
stmts = NULL;
|
||
|
||
gimple *check
|
||
= gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
|
||
NULL_TREE, NULL_TREE);
|
||
|
||
basic_block orig_bb = gsi_bb (*gsi);
|
||
/* We want to keep track of the original complex multiplication
|
||
statement as we're going to modify it later in
|
||
update_complex_assignment. Make sure that insert_cond_bb leaves
|
||
that statement in the join block. */
|
||
gsi_prev (gsi);
|
||
basic_block cond_bb
|
||
= insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
|
||
profile_probability::very_unlikely ());
|
||
|
||
gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
|
||
gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
|
||
|
||
tree libcall_res
|
||
= expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
|
||
bi, MULT_EXPR, false);
|
||
gimple_seq stmts2 = NULL;
|
||
tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR,
|
||
inner_type, libcall_res);
|
||
tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR,
|
||
inner_type, libcall_res);
|
||
gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT);
|
||
|
||
basic_block join_bb = single_succ_edge (cond_bb)->dest;
|
||
*gsi = gsi_start_nondebug_after_labels_bb (join_bb);
|
||
|
||
/* We have a conditional block with some assignments in cond_bb.
|
||
Wire up the PHIs to wrap up. */
|
||
rr = make_ssa_name (inner_type);
|
||
ri = make_ssa_name (inner_type);
|
||
edge cond_to_join = single_succ_edge (cond_bb);
|
||
edge orig_to_join = find_edge (orig_bb, join_bb);
|
||
|
||
gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
|
||
add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
|
||
add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
|
||
|
||
gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
|
||
add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
|
||
add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
|
||
}
|
||
else
|
||
/* If we are not worrying about NaNs expand to
|
||
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
|
||
expand_complex_multiplication_components (&stmts, loc,
|
||
inner_type, ar, ai,
|
||
br, bi, &rr, &ri);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Keep this algorithm in sync with fold-const.cc:const_binop().
|
||
|
||
Expand complex division to scalars, straightforward algorithm.
|
||
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
|
||
t = br*br + bi*bi
|
||
*/
|
||
|
||
static void
|
||
expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
|
||
tree ar, tree ai, tree br, tree bi,
|
||
enum tree_code code)
|
||
{
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
tree rr, ri, div, t1, t2, t3;
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br);
|
||
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi);
|
||
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
|
||
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
|
||
t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
|
||
rr = gimple_build (&stmts, loc, code, inner_type, t3, div);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
|
||
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
|
||
t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2);
|
||
ri = gimple_build (&stmts, loc, code, inner_type, t3, div);
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Keep this algorithm in sync with fold-const.cc:const_binop().
|
||
|
||
Expand complex division to scalars, modified algorithm to minimize
|
||
overflow with wide input ranges. */
|
||
|
||
static void
|
||
expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
|
||
tree ar, tree ai, tree br, tree bi,
|
||
enum tree_code code)
|
||
{
|
||
tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
|
||
basic_block bb_cond, bb_true, bb_false, bb_join;
|
||
gimple *stmt;
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
/* Examine |br| < |bi|, and branch. */
|
||
t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br);
|
||
t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi);
|
||
compare = gimple_build (&stmts, loc,
|
||
LT_EXPR, boolean_type_node, t1, t2);
|
||
|
||
bb_cond = bb_true = bb_false = bb_join = NULL;
|
||
rr = ri = tr = ti = NULL;
|
||
if (TREE_CODE (compare) != INTEGER_CST)
|
||
{
|
||
edge e;
|
||
gimple *stmt;
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
stmts = NULL;
|
||
stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node,
|
||
NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
|
||
/* Split the original block, and create the TRUE and FALSE blocks. */
|
||
e = split_block (gsi_bb (*gsi), stmt);
|
||
bb_cond = e->src;
|
||
bb_join = e->dest;
|
||
bb_true = create_empty_bb (bb_cond);
|
||
bb_false = create_empty_bb (bb_true);
|
||
bb_true->count = bb_false->count
|
||
= bb_cond->count.apply_probability (profile_probability::even ());
|
||
|
||
/* Wire the blocks together. */
|
||
e->flags = EDGE_TRUE_VALUE;
|
||
/* TODO: With value profile we could add an historgram to determine real
|
||
branch outcome. */
|
||
e->probability = profile_probability::even ();
|
||
redirect_edge_succ (e, bb_true);
|
||
edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
|
||
e2->probability = profile_probability::even ();
|
||
make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
|
||
make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
|
||
add_bb_to_loop (bb_true, bb_cond->loop_father);
|
||
add_bb_to_loop (bb_false, bb_cond->loop_father);
|
||
|
||
/* Update dominance info. Note that bb_join's data was
|
||
updated by split_block. */
|
||
if (dom_info_available_p (CDI_DOMINATORS))
|
||
{
|
||
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
|
||
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
|
||
}
|
||
|
||
rr = create_tmp_reg (inner_type);
|
||
ri = create_tmp_reg (inner_type);
|
||
}
|
||
else
|
||
{
|
||
gimple_seq_discard (stmts);
|
||
stmts = NULL;
|
||
}
|
||
|
||
/* In the TRUE branch, we compute
|
||
ratio = br/bi;
|
||
div = (br * ratio) + bi;
|
||
tr = (ar * ratio) + ai;
|
||
ti = (ai * ratio) - ar;
|
||
tr = tr / div;
|
||
ti = ti / div; */
|
||
if (bb_true || integer_nonzerop (compare))
|
||
{
|
||
if (bb_true)
|
||
{
|
||
*gsi = gsi_last_bb (bb_true);
|
||
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
|
||
}
|
||
|
||
ratio = gimple_build (&stmts, loc, code, inner_type, br, bi);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio);
|
||
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
|
||
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
|
||
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar);
|
||
|
||
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
|
||
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
stmts = NULL;
|
||
|
||
if (bb_true)
|
||
{
|
||
stmt = gimple_build_assign (rr, tr);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (ri, ti);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
gsi_remove (gsi, true);
|
||
}
|
||
}
|
||
|
||
/* In the FALSE branch, we compute
|
||
ratio = d/c;
|
||
divisor = (d * ratio) + c;
|
||
tr = (b * ratio) + a;
|
||
ti = b - (a * ratio);
|
||
tr = tr / div;
|
||
ti = ti / div; */
|
||
if (bb_false || integer_zerop (compare))
|
||
{
|
||
if (bb_false)
|
||
{
|
||
*gsi = gsi_last_bb (bb_false);
|
||
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
|
||
}
|
||
|
||
ratio = gimple_build (&stmts, loc, code, inner_type, bi, br);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio);
|
||
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
|
||
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar);
|
||
|
||
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
|
||
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1);
|
||
|
||
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
|
||
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
stmts = NULL;
|
||
|
||
if (bb_false)
|
||
{
|
||
stmt = gimple_build_assign (rr, tr);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
stmt = gimple_build_assign (ri, ti);
|
||
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
||
gsi_remove (gsi, true);
|
||
}
|
||
}
|
||
|
||
if (bb_join)
|
||
*gsi = gsi_start_bb (bb_join);
|
||
else
|
||
rr = tr, ri = ti;
|
||
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Expand complex division to scalars. */
|
||
|
||
static void
|
||
expand_complex_division (gimple_stmt_iterator *gsi, tree type,
|
||
tree ar, tree ai, tree br, tree bi,
|
||
enum tree_code code,
|
||
complex_lattice_t al, complex_lattice_t bl)
|
||
{
|
||
tree rr, ri;
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
tree inner_type = TREE_TYPE (type);
|
||
switch (PAIR (al, bl))
|
||
{
|
||
case PAIR (ONLY_REAL, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = ai;
|
||
break;
|
||
|
||
case PAIR (ONLY_REAL, ONLY_IMAG):
|
||
rr = ai;
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
|
||
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_REAL):
|
||
rr = ar;
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
|
||
break;
|
||
|
||
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
ri = ar;
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_REAL):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
|
||
break;
|
||
|
||
case PAIR (VARYING, ONLY_IMAG):
|
||
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
|
||
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
|
||
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
|
||
break;
|
||
|
||
case PAIR (ONLY_REAL, VARYING):
|
||
case PAIR (ONLY_IMAG, VARYING):
|
||
case PAIR (VARYING, VARYING):
|
||
switch (flag_complex_method)
|
||
{
|
||
case 0:
|
||
/* straightforward implementation of complex divide acceptable. */
|
||
expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
|
||
break;
|
||
|
||
case 2:
|
||
if (SCALAR_FLOAT_TYPE_P (inner_type))
|
||
{
|
||
expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
|
||
break;
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
case 1:
|
||
/* wide ranges of inputs must work for complex divide. */
|
||
expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Expand complex negation to scalars:
|
||
-a = (-ar) + i(-ai)
|
||
*/
|
||
|
||
static void
|
||
expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
|
||
tree ar, tree ai)
|
||
{
|
||
tree rr, ri;
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar);
|
||
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, rr, ri);
|
||
}
|
||
|
||
/* Expand complex conjugate to scalars:
|
||
~a = (ar) + i(-ai)
|
||
*/
|
||
|
||
static void
|
||
expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
|
||
tree ar, tree ai)
|
||
{
|
||
tree ri;
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (gsi_stmt (*gsi));
|
||
|
||
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
|
||
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
update_complex_assignment (gsi, ar, ri);
|
||
}
|
||
|
||
/* Expand complex comparison (EQ or NE only). */
|
||
|
||
static void
|
||
expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
|
||
tree br, tree bi, enum tree_code code)
|
||
{
|
||
tree cr, ci, cc, type;
|
||
gimple *stmt = gsi_stmt (*gsi);
|
||
gimple_seq stmts = NULL;
|
||
location_t loc = gimple_location (stmt);
|
||
|
||
cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br);
|
||
ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi);
|
||
cc = gimple_build (&stmts, loc,
|
||
(code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR),
|
||
boolean_type_node, cr, ci);
|
||
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
||
|
||
switch (gimple_code (stmt))
|
||
{
|
||
case GIMPLE_RETURN:
|
||
{
|
||
greturn *return_stmt = as_a <greturn *> (stmt);
|
||
type = TREE_TYPE (gimple_return_retval (return_stmt));
|
||
gimple_return_set_retval (return_stmt, fold_convert (type, cc));
|
||
}
|
||
break;
|
||
|
||
case GIMPLE_ASSIGN:
|
||
type = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
|
||
stmt = gsi_stmt (*gsi);
|
||
break;
|
||
|
||
case GIMPLE_COND:
|
||
{
|
||
gcond *cond_stmt = as_a <gcond *> (stmt);
|
||
gimple_cond_set_code (cond_stmt, EQ_EXPR);
|
||
gimple_cond_set_lhs (cond_stmt, cc);
|
||
gimple_cond_set_rhs (cond_stmt, boolean_true_node);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
update_stmt (stmt);
|
||
if (maybe_clean_eh_stmt (stmt))
|
||
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
|
||
}
|
||
|
||
/* Expand inline asm that sets some complex SSA_NAMEs. */
|
||
|
||
static void
|
||
expand_complex_asm (gimple_stmt_iterator *gsi)
|
||
{
|
||
gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
|
||
unsigned int i;
|
||
bool diagnosed_p = false;
|
||
|
||
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
|
||
{
|
||
tree link = gimple_asm_output_op (stmt, i);
|
||
tree op = TREE_VALUE (link);
|
||
if (TREE_CODE (op) == SSA_NAME
|
||
&& TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
|
||
{
|
||
if (gimple_asm_nlabels (stmt) > 0)
|
||
{
|
||
if (!diagnosed_p)
|
||
{
|
||
sorry_at (gimple_location (stmt),
|
||
"%<asm goto%> with complex typed outputs");
|
||
diagnosed_p = true;
|
||
}
|
||
/* Make sure to not ICE later, see PR105165. */
|
||
tree zero = build_zero_cst (TREE_TYPE (TREE_TYPE (op)));
|
||
set_component_ssa_name (op, false, zero);
|
||
set_component_ssa_name (op, true, zero);
|
||
continue;
|
||
}
|
||
tree type = TREE_TYPE (op);
|
||
tree inner_type = TREE_TYPE (type);
|
||
tree r = build1 (REALPART_EXPR, inner_type, op);
|
||
tree i = build1 (IMAGPART_EXPR, inner_type, op);
|
||
gimple_seq list = set_component_ssa_name (op, false, r);
|
||
|
||
if (list)
|
||
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
||
|
||
list = set_component_ssa_name (op, true, i);
|
||
if (list)
|
||
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Process one statement. If we identify a complex operation, expand it. */
|
||
|
||
static void
|
||
expand_complex_operations_1 (gimple_stmt_iterator *gsi)
|
||
{
|
||
gimple *stmt = gsi_stmt (*gsi);
|
||
tree type, inner_type, lhs;
|
||
tree ac, ar, ai, bc, br, bi;
|
||
complex_lattice_t al, bl;
|
||
enum tree_code code;
|
||
|
||
if (gimple_code (stmt) == GIMPLE_ASM)
|
||
{
|
||
expand_complex_asm (gsi);
|
||
return;
|
||
}
|
||
|
||
lhs = gimple_get_lhs (stmt);
|
||
if (!lhs && gimple_code (stmt) != GIMPLE_COND)
|
||
return;
|
||
|
||
type = TREE_TYPE (gimple_op (stmt, 0));
|
||
code = gimple_expr_code (stmt);
|
||
|
||
/* Initial filter for operations we handle. */
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case RDIV_EXPR:
|
||
case NEGATE_EXPR:
|
||
case CONJ_EXPR:
|
||
if (TREE_CODE (type) != COMPLEX_TYPE)
|
||
return;
|
||
inner_type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
/* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
|
||
subcode, so we need to access the operands using gimple_op. */
|
||
inner_type = TREE_TYPE (gimple_op (stmt, 1));
|
||
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
|
||
return;
|
||
break;
|
||
|
||
default:
|
||
{
|
||
tree rhs;
|
||
|
||
/* GIMPLE_COND may also fallthru here, but we do not need to
|
||
do anything with it. */
|
||
if (gimple_code (stmt) == GIMPLE_COND)
|
||
return;
|
||
|
||
if (TREE_CODE (type) == COMPLEX_TYPE)
|
||
expand_complex_move (gsi, type);
|
||
else if (is_gimple_assign (stmt)
|
||
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
||
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
|
||
&& TREE_CODE (lhs) == SSA_NAME)
|
||
{
|
||
rhs = gimple_assign_rhs1 (stmt);
|
||
rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
|
||
gimple_assign_rhs_code (stmt)
|
||
== IMAGPART_EXPR,
|
||
false);
|
||
gimple_assign_set_rhs_from_tree (gsi, rhs);
|
||
stmt = gsi_stmt (*gsi);
|
||
update_stmt (stmt);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Extract the components of the two complex values. Make sure and
|
||
handle the common case of the same value used twice specially. */
|
||
if (is_gimple_assign (stmt))
|
||
{
|
||
ac = gimple_assign_rhs1 (stmt);
|
||
bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
|
||
}
|
||
/* GIMPLE_CALL cannot get here. */
|
||
else
|
||
{
|
||
ac = gimple_cond_lhs (stmt);
|
||
bc = gimple_cond_rhs (stmt);
|
||
}
|
||
|
||
ar = extract_component (gsi, ac, false, true);
|
||
ai = extract_component (gsi, ac, true, true);
|
||
|
||
if (ac == bc)
|
||
br = ar, bi = ai;
|
||
else if (bc)
|
||
{
|
||
br = extract_component (gsi, bc, 0, true);
|
||
bi = extract_component (gsi, bc, 1, true);
|
||
}
|
||
else
|
||
br = bi = NULL_TREE;
|
||
|
||
al = find_lattice_value (ac);
|
||
if (al == UNINITIALIZED)
|
||
al = VARYING;
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_unary)
|
||
bl = UNINITIALIZED;
|
||
else if (ac == bc)
|
||
bl = al;
|
||
else
|
||
{
|
||
bl = find_lattice_value (bc);
|
||
if (bl == UNINITIALIZED)
|
||
bl = VARYING;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
|
||
break;
|
||
|
||
case MULT_EXPR:
|
||
expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
|
||
break;
|
||
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case RDIV_EXPR:
|
||
expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
expand_complex_negation (gsi, inner_type, ar, ai);
|
||
break;
|
||
|
||
case CONJ_EXPR:
|
||
expand_complex_conjugate (gsi, inner_type, ar, ai);
|
||
break;
|
||
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
expand_complex_comparison (gsi, ar, ai, br, bi, code);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Entry point for complex operation lowering during optimization. */
|
||
|
||
static unsigned int
|
||
tree_lower_complex (void)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
basic_block bb;
|
||
int n_bbs, i;
|
||
int *rpo;
|
||
|
||
if (!init_dont_simulate_again ())
|
||
return 0;
|
||
|
||
complex_lattice_values.create (num_ssa_names);
|
||
complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
|
||
|
||
init_parameter_lattice_values ();
|
||
class complex_propagate complex_propagate;
|
||
complex_propagate.ssa_propagate ();
|
||
|
||
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
||
|
||
complex_variable_components = new int_tree_htab_type (10);
|
||
|
||
complex_ssa_name_components.create (2 * num_ssa_names);
|
||
complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
|
||
|
||
update_parameter_components ();
|
||
|
||
rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
|
||
for (i = 0; i < n_bbs; i++)
|
||
{
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
|
||
if (!bb)
|
||
continue;
|
||
update_phi_components (bb);
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
expand_complex_operations_1 (&gsi);
|
||
}
|
||
|
||
free (rpo);
|
||
|
||
if (!phis_to_revisit.is_empty ())
|
||
{
|
||
unsigned int n = phis_to_revisit.length ();
|
||
for (unsigned int j = 0; j < n; j += 3)
|
||
for (unsigned int k = 0; k < 2; k++)
|
||
if (gphi *phi = phis_to_revisit[j + k + 1])
|
||
{
|
||
unsigned int m = gimple_phi_num_args (phi);
|
||
for (unsigned int l = 0; l < m; ++l)
|
||
{
|
||
tree op = gimple_phi_arg_def (phi, l);
|
||
if (TREE_CODE (op) == SSA_NAME
|
||
|| is_gimple_min_invariant (op))
|
||
continue;
|
||
tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
|
||
op = extract_component (NULL, arg, k > 0, false, false);
|
||
SET_PHI_ARG_DEF (phi, l, op);
|
||
}
|
||
}
|
||
phis_to_revisit.release ();
|
||
}
|
||
|
||
gsi_commit_edge_inserts ();
|
||
|
||
unsigned todo
|
||
= gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
|
||
BITMAP_FREE (need_eh_cleanup);
|
||
|
||
delete complex_variable_components;
|
||
complex_variable_components = NULL;
|
||
complex_ssa_name_components.release ();
|
||
complex_lattice_values.release ();
|
||
return todo;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_complex =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"cplxlower", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_NONE, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
PROP_gimple_lcx, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_update_ssa, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_complex : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_complex (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_lower_complex, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
|
||
virtual unsigned int execute (function *) { return tree_lower_complex (); }
|
||
|
||
}; // class pass_lower_complex
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_lower_complex (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_complex (ctxt);
|
||
}
|
||
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_complex_O0 =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"cplxlower0", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_NONE, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
PROP_gimple_lcx, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_update_ssa, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_complex_O0 : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_complex_O0 (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *fun)
|
||
{
|
||
/* With errors, normal optimization passes are not run. If we don't
|
||
lower complex operations at all, rtl expansion will abort. */
|
||
return !(fun->curr_properties & PROP_gimple_lcx);
|
||
}
|
||
|
||
virtual unsigned int execute (function *) { return tree_lower_complex (); }
|
||
|
||
}; // class pass_lower_complex_O0
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_lower_complex_O0 (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_complex_O0 (ctxt);
|
||
}
|