5560 lines
123 KiB
C++
5560 lines
123 KiB
C++
/* real.cc - software floating point emulation.
|
||
Copyright (C) 1993-2022 Free Software Foundation, Inc.
|
||
Contributed by Stephen L. Moshier (moshier@world.std.com).
|
||
Re-written by Richard Henderson <rth@redhat.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "realmpfr.h"
|
||
#include "dfp.h"
|
||
|
||
/* The floating point model used internally is not exactly IEEE 754
|
||
compliant, and close to the description in the ISO C99 standard,
|
||
section 5.2.4.2.2 Characteristics of floating types.
|
||
|
||
Specifically
|
||
|
||
x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
|
||
|
||
where
|
||
s = sign (+- 1)
|
||
b = base or radix, here always 2
|
||
e = exponent
|
||
p = precision (the number of base-b digits in the significand)
|
||
f_k = the digits of the significand.
|
||
|
||
We differ from typical IEEE 754 encodings in that the entire
|
||
significand is fractional. Normalized significands are in the
|
||
range [0.5, 1.0).
|
||
|
||
A requirement of the model is that P be larger than the largest
|
||
supported target floating-point type by at least 2 bits. This gives
|
||
us proper rounding when we truncate to the target type. In addition,
|
||
E must be large enough to hold the smallest supported denormal number
|
||
in a normalized form.
|
||
|
||
Both of these requirements are easily satisfied. The largest target
|
||
significand is 113 bits; we store at least 160. The smallest
|
||
denormal number fits in 17 exponent bits; we store 26. */
|
||
|
||
|
||
/* Used to classify two numbers simultaneously. */
|
||
#define CLASS2(A, B) ((A) << 2 | (B))
|
||
|
||
#if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
|
||
#error "Some constant folding done by hand to avoid shift count warnings"
|
||
#endif
|
||
|
||
static void get_zero (REAL_VALUE_TYPE *, int);
|
||
static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
|
||
static void get_canonical_snan (REAL_VALUE_TYPE *, int);
|
||
static void get_inf (REAL_VALUE_TYPE *, int);
|
||
static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *, unsigned int);
|
||
static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
unsigned int);
|
||
static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
unsigned int);
|
||
static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
||
static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *);
|
||
static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *, int);
|
||
static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
||
static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
||
static int cmp_significand_0 (const REAL_VALUE_TYPE *);
|
||
static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
|
||
static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
|
||
static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
|
||
static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
|
||
static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *);
|
||
static void normalize (REAL_VALUE_TYPE *);
|
||
|
||
static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *, int);
|
||
static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *);
|
||
static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
|
||
const REAL_VALUE_TYPE *);
|
||
static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
|
||
static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
||
|
||
static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
|
||
static void decimal_from_integer (REAL_VALUE_TYPE *);
|
||
static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
|
||
size_t);
|
||
|
||
static const REAL_VALUE_TYPE * ten_to_ptwo (int);
|
||
static const REAL_VALUE_TYPE * ten_to_mptwo (int);
|
||
static const REAL_VALUE_TYPE * real_digit (int);
|
||
static void times_pten (REAL_VALUE_TYPE *, int);
|
||
|
||
static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
|
||
|
||
/* Initialize R with a positive zero. */
|
||
|
||
static inline void
|
||
get_zero (REAL_VALUE_TYPE *r, int sign)
|
||
{
|
||
memset (r, 0, sizeof (*r));
|
||
r->sign = sign;
|
||
}
|
||
|
||
/* Initialize R with the canonical quiet NaN. */
|
||
|
||
static inline void
|
||
get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
|
||
{
|
||
memset (r, 0, sizeof (*r));
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->canonical = 1;
|
||
}
|
||
|
||
static inline void
|
||
get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
|
||
{
|
||
memset (r, 0, sizeof (*r));
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = 1;
|
||
r->canonical = 1;
|
||
}
|
||
|
||
static inline void
|
||
get_inf (REAL_VALUE_TYPE *r, int sign)
|
||
{
|
||
memset (r, 0, sizeof (*r));
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
|
||
|
||
/* Right-shift the significand of A by N bits; put the result in the
|
||
significand of R. If any one bits are shifted out, return true. */
|
||
|
||
static bool
|
||
sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
unsigned int n)
|
||
{
|
||
unsigned long sticky = 0;
|
||
unsigned int i, ofs = 0;
|
||
|
||
if (n >= HOST_BITS_PER_LONG)
|
||
{
|
||
for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
|
||
sticky |= a->sig[i];
|
||
n &= HOST_BITS_PER_LONG - 1;
|
||
}
|
||
|
||
if (n != 0)
|
||
{
|
||
sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
r->sig[i]
|
||
= (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
|
||
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
|
||
<< (HOST_BITS_PER_LONG - n)));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; ofs + i < SIGSZ; ++i)
|
||
r->sig[i] = a->sig[ofs + i];
|
||
for (; i < SIGSZ; ++i)
|
||
r->sig[i] = 0;
|
||
}
|
||
|
||
return sticky != 0;
|
||
}
|
||
|
||
/* Right-shift the significand of A by N bits; put the result in the
|
||
significand of R. */
|
||
|
||
static void
|
||
rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
unsigned int n)
|
||
{
|
||
unsigned int i, ofs = n / HOST_BITS_PER_LONG;
|
||
|
||
n &= HOST_BITS_PER_LONG - 1;
|
||
if (n != 0)
|
||
{
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
r->sig[i]
|
||
= (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
|
||
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
|
||
<< (HOST_BITS_PER_LONG - n)));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; ofs + i < SIGSZ; ++i)
|
||
r->sig[i] = a->sig[ofs + i];
|
||
for (; i < SIGSZ; ++i)
|
||
r->sig[i] = 0;
|
||
}
|
||
}
|
||
|
||
/* Left-shift the significand of A by N bits; put the result in the
|
||
significand of R. */
|
||
|
||
static void
|
||
lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
unsigned int n)
|
||
{
|
||
unsigned int i, ofs = n / HOST_BITS_PER_LONG;
|
||
|
||
n &= HOST_BITS_PER_LONG - 1;
|
||
if (n == 0)
|
||
{
|
||
for (i = 0; ofs + i < SIGSZ; ++i)
|
||
r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
|
||
for (; i < SIGSZ; ++i)
|
||
r->sig[SIGSZ-1-i] = 0;
|
||
}
|
||
else
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
r->sig[SIGSZ-1-i]
|
||
= (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
|
||
| ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
|
||
>> (HOST_BITS_PER_LONG - n)));
|
||
}
|
||
}
|
||
|
||
/* Likewise, but N is specialized to 1. */
|
||
|
||
static inline void
|
||
lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = SIGSZ - 1; i > 0; --i)
|
||
r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
|
||
r->sig[0] = a->sig[0] << 1;
|
||
}
|
||
|
||
/* Add the significands of A and B, placing the result in R. Return
|
||
true if there was carry out of the most significant word. */
|
||
|
||
static inline bool
|
||
add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b)
|
||
{
|
||
bool carry = false;
|
||
int i;
|
||
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
unsigned long ai = a->sig[i];
|
||
unsigned long ri = ai + b->sig[i];
|
||
|
||
if (carry)
|
||
{
|
||
carry = ri < ai;
|
||
carry |= ++ri == 0;
|
||
}
|
||
else
|
||
carry = ri < ai;
|
||
|
||
r->sig[i] = ri;
|
||
}
|
||
|
||
return carry;
|
||
}
|
||
|
||
/* Subtract the significands of A and B, placing the result in R. CARRY is
|
||
true if there's a borrow incoming to the least significant word.
|
||
Return true if there was borrow out of the most significant word. */
|
||
|
||
static inline bool
|
||
sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b, int carry)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
unsigned long ai = a->sig[i];
|
||
unsigned long ri = ai - b->sig[i];
|
||
|
||
if (carry)
|
||
{
|
||
carry = ri > ai;
|
||
carry |= ~--ri == 0;
|
||
}
|
||
else
|
||
carry = ri > ai;
|
||
|
||
r->sig[i] = ri;
|
||
}
|
||
|
||
return carry;
|
||
}
|
||
|
||
/* Negate the significand A, placing the result in R. */
|
||
|
||
static inline void
|
||
neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
|
||
{
|
||
bool carry = true;
|
||
int i;
|
||
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
unsigned long ri, ai = a->sig[i];
|
||
|
||
if (carry)
|
||
{
|
||
if (ai)
|
||
{
|
||
ri = -ai;
|
||
carry = false;
|
||
}
|
||
else
|
||
ri = ai;
|
||
}
|
||
else
|
||
ri = ~ai;
|
||
|
||
r->sig[i] = ri;
|
||
}
|
||
}
|
||
|
||
/* Compare significands. Return tri-state vs zero. */
|
||
|
||
static inline int
|
||
cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
|
||
{
|
||
int i;
|
||
|
||
for (i = SIGSZ - 1; i >= 0; --i)
|
||
{
|
||
unsigned long ai = a->sig[i];
|
||
unsigned long bi = b->sig[i];
|
||
|
||
if (ai > bi)
|
||
return 1;
|
||
if (ai < bi)
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if A is nonzero. */
|
||
|
||
static inline int
|
||
cmp_significand_0 (const REAL_VALUE_TYPE *a)
|
||
{
|
||
int i;
|
||
|
||
for (i = SIGSZ - 1; i >= 0; --i)
|
||
if (a->sig[i])
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Set bit N of the significand of R. */
|
||
|
||
static inline void
|
||
set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
|
||
{
|
||
r->sig[n / HOST_BITS_PER_LONG]
|
||
|= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
|
||
}
|
||
|
||
/* Clear bit N of the significand of R. */
|
||
|
||
static inline void
|
||
clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
|
||
{
|
||
r->sig[n / HOST_BITS_PER_LONG]
|
||
&= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
|
||
}
|
||
|
||
/* Test bit N of the significand of R. */
|
||
|
||
static inline bool
|
||
test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
|
||
{
|
||
/* ??? Compiler bug here if we return this expression directly.
|
||
The conversion to bool strips the "&1" and we wind up testing
|
||
e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
|
||
int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
|
||
return t;
|
||
}
|
||
|
||
/* Clear bits 0..N-1 of the significand of R. */
|
||
|
||
static void
|
||
clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
|
||
{
|
||
int i, w = n / HOST_BITS_PER_LONG;
|
||
|
||
for (i = 0; i < w; ++i)
|
||
r->sig[i] = 0;
|
||
|
||
/* We are actually passing N == SIGNIFICAND_BITS which would result
|
||
in an out-of-bound access below. */
|
||
if (n % HOST_BITS_PER_LONG != 0)
|
||
r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
|
||
}
|
||
|
||
/* Divide the significands of A and B, placing the result in R. Return
|
||
true if the division was inexact. */
|
||
|
||
static inline bool
|
||
div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b)
|
||
{
|
||
REAL_VALUE_TYPE u;
|
||
int i, bit = SIGNIFICAND_BITS - 1;
|
||
unsigned long msb, inexact;
|
||
|
||
u = *a;
|
||
memset (r->sig, 0, sizeof (r->sig));
|
||
|
||
msb = 0;
|
||
goto start;
|
||
do
|
||
{
|
||
msb = u.sig[SIGSZ-1] & SIG_MSB;
|
||
lshift_significand_1 (&u, &u);
|
||
start:
|
||
if (msb || cmp_significands (&u, b) >= 0)
|
||
{
|
||
sub_significands (&u, &u, b, 0);
|
||
set_significand_bit (r, bit);
|
||
}
|
||
}
|
||
while (--bit >= 0);
|
||
|
||
for (i = 0, inexact = 0; i < SIGSZ; i++)
|
||
inexact |= u.sig[i];
|
||
|
||
return inexact != 0;
|
||
}
|
||
|
||
/* Adjust the exponent and significand of R such that the most
|
||
significant bit is set. We underflow to zero and overflow to
|
||
infinity here, without denormals. (The intermediate representation
|
||
exponent is large enough to handle target denormals normalized.) */
|
||
|
||
static void
|
||
normalize (REAL_VALUE_TYPE *r)
|
||
{
|
||
int shift = 0, exp;
|
||
int i, j;
|
||
|
||
if (r->decimal)
|
||
return;
|
||
|
||
/* Find the first word that is nonzero. */
|
||
for (i = SIGSZ - 1; i >= 0; i--)
|
||
if (r->sig[i] == 0)
|
||
shift += HOST_BITS_PER_LONG;
|
||
else
|
||
break;
|
||
|
||
/* Zero significand flushes to zero. */
|
||
if (i < 0)
|
||
{
|
||
r->cl = rvc_zero;
|
||
SET_REAL_EXP (r, 0);
|
||
return;
|
||
}
|
||
|
||
/* Find the first bit that is nonzero. */
|
||
for (j = 0; ; j++)
|
||
if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
|
||
break;
|
||
shift += j;
|
||
|
||
if (shift > 0)
|
||
{
|
||
exp = REAL_EXP (r) - shift;
|
||
if (exp > MAX_EXP)
|
||
get_inf (r, r->sign);
|
||
else if (exp < -MAX_EXP)
|
||
get_zero (r, r->sign);
|
||
else
|
||
{
|
||
SET_REAL_EXP (r, exp);
|
||
lshift_significand (r, r, shift);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
|
||
result may be inexact due to a loss of precision. */
|
||
|
||
static bool
|
||
do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b, int subtract_p)
|
||
{
|
||
int dexp, sign, exp;
|
||
REAL_VALUE_TYPE t;
|
||
bool inexact = false;
|
||
|
||
/* Determine if we need to add or subtract. */
|
||
sign = a->sign;
|
||
subtract_p = (sign ^ b->sign) ^ subtract_p;
|
||
|
||
switch (CLASS2 (a->cl, b->cl))
|
||
{
|
||
case CLASS2 (rvc_zero, rvc_zero):
|
||
/* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
|
||
get_zero (r, sign & !subtract_p);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_zero, rvc_normal):
|
||
case CLASS2 (rvc_zero, rvc_inf):
|
||
case CLASS2 (rvc_zero, rvc_nan):
|
||
/* 0 + ANY = ANY. */
|
||
case CLASS2 (rvc_normal, rvc_nan):
|
||
case CLASS2 (rvc_inf, rvc_nan):
|
||
case CLASS2 (rvc_nan, rvc_nan):
|
||
/* ANY + NaN = NaN. */
|
||
case CLASS2 (rvc_normal, rvc_inf):
|
||
/* R + Inf = Inf. */
|
||
*r = *b;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
r->sign = sign ^ subtract_p;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_normal, rvc_zero):
|
||
case CLASS2 (rvc_inf, rvc_zero):
|
||
case CLASS2 (rvc_nan, rvc_zero):
|
||
/* ANY + 0 = ANY. */
|
||
case CLASS2 (rvc_nan, rvc_normal):
|
||
case CLASS2 (rvc_nan, rvc_inf):
|
||
/* NaN + ANY = NaN. */
|
||
case CLASS2 (rvc_inf, rvc_normal):
|
||
/* Inf + R = Inf. */
|
||
*r = *a;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_inf, rvc_inf):
|
||
if (subtract_p)
|
||
/* Inf - Inf = NaN. */
|
||
get_canonical_qnan (r, 0);
|
||
else
|
||
/* Inf + Inf = Inf. */
|
||
*r = *a;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_normal, rvc_normal):
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Swap the arguments such that A has the larger exponent. */
|
||
dexp = REAL_EXP (a) - REAL_EXP (b);
|
||
if (dexp < 0)
|
||
{
|
||
const REAL_VALUE_TYPE *t;
|
||
t = a, a = b, b = t;
|
||
dexp = -dexp;
|
||
sign ^= subtract_p;
|
||
}
|
||
exp = REAL_EXP (a);
|
||
|
||
/* If the exponents are not identical, we need to shift the
|
||
significand of B down. */
|
||
if (dexp > 0)
|
||
{
|
||
/* If the exponents are too far apart, the significands
|
||
do not overlap, which makes the subtraction a noop. */
|
||
if (dexp >= SIGNIFICAND_BITS)
|
||
{
|
||
*r = *a;
|
||
r->sign = sign;
|
||
return true;
|
||
}
|
||
|
||
inexact |= sticky_rshift_significand (&t, b, dexp);
|
||
b = &t;
|
||
}
|
||
|
||
if (subtract_p)
|
||
{
|
||
if (sub_significands (r, a, b, inexact))
|
||
{
|
||
/* We got a borrow out of the subtraction. That means that
|
||
A and B had the same exponent, and B had the larger
|
||
significand. We need to swap the sign and negate the
|
||
significand. */
|
||
sign ^= 1;
|
||
neg_significand (r, r);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (add_significands (r, a, b))
|
||
{
|
||
/* We got carry out of the addition. This means we need to
|
||
shift the significand back down one bit and increase the
|
||
exponent. */
|
||
inexact |= sticky_rshift_significand (r, r, 1);
|
||
r->sig[SIGSZ-1] |= SIG_MSB;
|
||
if (++exp > MAX_EXP)
|
||
{
|
||
get_inf (r, sign);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp);
|
||
/* Zero out the remaining fields. */
|
||
r->signalling = 0;
|
||
r->canonical = 0;
|
||
r->decimal = 0;
|
||
|
||
/* Re-normalize the result. */
|
||
normalize (r);
|
||
|
||
/* Special case: if the subtraction results in zero, the result
|
||
is positive. */
|
||
if (r->cl == rvc_zero)
|
||
r->sign = 0;
|
||
else
|
||
r->sig[0] |= inexact;
|
||
|
||
return inexact;
|
||
}
|
||
|
||
/* Calculate R = A * B. Return true if the result may be inexact. */
|
||
|
||
static bool
|
||
do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b)
|
||
{
|
||
REAL_VALUE_TYPE u, t, *rr;
|
||
unsigned int i, j, k;
|
||
int sign = a->sign ^ b->sign;
|
||
bool inexact = false;
|
||
|
||
switch (CLASS2 (a->cl, b->cl))
|
||
{
|
||
case CLASS2 (rvc_zero, rvc_zero):
|
||
case CLASS2 (rvc_zero, rvc_normal):
|
||
case CLASS2 (rvc_normal, rvc_zero):
|
||
/* +-0 * ANY = 0 with appropriate sign. */
|
||
get_zero (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_zero, rvc_nan):
|
||
case CLASS2 (rvc_normal, rvc_nan):
|
||
case CLASS2 (rvc_inf, rvc_nan):
|
||
case CLASS2 (rvc_nan, rvc_nan):
|
||
/* ANY * NaN = NaN. */
|
||
*r = *b;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
r->sign = sign;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_nan, rvc_zero):
|
||
case CLASS2 (rvc_nan, rvc_normal):
|
||
case CLASS2 (rvc_nan, rvc_inf):
|
||
/* NaN * ANY = NaN. */
|
||
*r = *a;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
r->sign = sign;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_zero, rvc_inf):
|
||
case CLASS2 (rvc_inf, rvc_zero):
|
||
/* 0 * Inf = NaN */
|
||
get_canonical_qnan (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_inf, rvc_inf):
|
||
case CLASS2 (rvc_normal, rvc_inf):
|
||
case CLASS2 (rvc_inf, rvc_normal):
|
||
/* Inf * Inf = Inf, R * Inf = Inf */
|
||
get_inf (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_normal, rvc_normal):
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (r == a || r == b)
|
||
rr = &t;
|
||
else
|
||
rr = r;
|
||
get_zero (rr, 0);
|
||
|
||
/* Collect all the partial products. Since we don't have sure access
|
||
to a widening multiply, we split each long into two half-words.
|
||
|
||
Consider the long-hand form of a four half-word multiplication:
|
||
|
||
A B C D
|
||
* E F G H
|
||
--------------
|
||
DE DF DG DH
|
||
CE CF CG CH
|
||
BE BF BG BH
|
||
AE AF AG AH
|
||
|
||
We construct partial products of the widened half-word products
|
||
that are known to not overlap, e.g. DF+DH. Each such partial
|
||
product is given its proper exponent, which allows us to sum them
|
||
and obtain the finished product. */
|
||
|
||
for (i = 0; i < SIGSZ * 2; ++i)
|
||
{
|
||
unsigned long ai = a->sig[i / 2];
|
||
if (i & 1)
|
||
ai >>= HOST_BITS_PER_LONG / 2;
|
||
else
|
||
ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
|
||
|
||
if (ai == 0)
|
||
continue;
|
||
|
||
for (j = 0; j < 2; ++j)
|
||
{
|
||
int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
|
||
+ (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
|
||
|
||
if (exp > MAX_EXP)
|
||
{
|
||
get_inf (r, sign);
|
||
return true;
|
||
}
|
||
if (exp < -MAX_EXP)
|
||
{
|
||
/* Would underflow to zero, which we shouldn't bother adding. */
|
||
inexact = true;
|
||
continue;
|
||
}
|
||
|
||
memset (&u, 0, sizeof (u));
|
||
u.cl = rvc_normal;
|
||
SET_REAL_EXP (&u, exp);
|
||
|
||
for (k = j; k < SIGSZ * 2; k += 2)
|
||
{
|
||
unsigned long bi = b->sig[k / 2];
|
||
if (k & 1)
|
||
bi >>= HOST_BITS_PER_LONG / 2;
|
||
else
|
||
bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
|
||
|
||
u.sig[k / 2] = ai * bi;
|
||
}
|
||
|
||
normalize (&u);
|
||
inexact |= do_add (rr, rr, &u, 0);
|
||
}
|
||
}
|
||
|
||
rr->sign = sign;
|
||
if (rr != r)
|
||
*r = t;
|
||
|
||
return inexact;
|
||
}
|
||
|
||
/* Calculate R = A / B. Return true if the result may be inexact. */
|
||
|
||
static bool
|
||
do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
|
||
const REAL_VALUE_TYPE *b)
|
||
{
|
||
int exp, sign = a->sign ^ b->sign;
|
||
REAL_VALUE_TYPE t, *rr;
|
||
bool inexact;
|
||
|
||
switch (CLASS2 (a->cl, b->cl))
|
||
{
|
||
case CLASS2 (rvc_zero, rvc_zero):
|
||
/* 0 / 0 = NaN. */
|
||
case CLASS2 (rvc_inf, rvc_inf):
|
||
/* Inf / Inf = NaN. */
|
||
get_canonical_qnan (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_zero, rvc_normal):
|
||
case CLASS2 (rvc_zero, rvc_inf):
|
||
/* 0 / ANY = 0. */
|
||
case CLASS2 (rvc_normal, rvc_inf):
|
||
/* R / Inf = 0. */
|
||
get_zero (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_normal, rvc_zero):
|
||
/* R / 0 = Inf. */
|
||
case CLASS2 (rvc_inf, rvc_zero):
|
||
/* Inf / 0 = Inf. */
|
||
get_inf (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_zero, rvc_nan):
|
||
case CLASS2 (rvc_normal, rvc_nan):
|
||
case CLASS2 (rvc_inf, rvc_nan):
|
||
case CLASS2 (rvc_nan, rvc_nan):
|
||
/* ANY / NaN = NaN. */
|
||
*r = *b;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
r->sign = sign;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_nan, rvc_zero):
|
||
case CLASS2 (rvc_nan, rvc_normal):
|
||
case CLASS2 (rvc_nan, rvc_inf):
|
||
/* NaN / ANY = NaN. */
|
||
*r = *a;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
r->sign = sign;
|
||
return false;
|
||
|
||
case CLASS2 (rvc_inf, rvc_normal):
|
||
/* Inf / R = Inf. */
|
||
get_inf (r, sign);
|
||
return false;
|
||
|
||
case CLASS2 (rvc_normal, rvc_normal):
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (r == a || r == b)
|
||
rr = &t;
|
||
else
|
||
rr = r;
|
||
|
||
/* Make sure all fields in the result are initialized. */
|
||
get_zero (rr, 0);
|
||
rr->cl = rvc_normal;
|
||
rr->sign = sign;
|
||
|
||
exp = REAL_EXP (a) - REAL_EXP (b) + 1;
|
||
if (exp > MAX_EXP)
|
||
{
|
||
get_inf (r, sign);
|
||
return true;
|
||
}
|
||
if (exp < -MAX_EXP)
|
||
{
|
||
get_zero (r, sign);
|
||
return true;
|
||
}
|
||
SET_REAL_EXP (rr, exp);
|
||
|
||
inexact = div_significands (rr, a, b);
|
||
|
||
/* Re-normalize the result. */
|
||
normalize (rr);
|
||
rr->sig[0] |= inexact;
|
||
|
||
if (rr != r)
|
||
*r = t;
|
||
|
||
return inexact;
|
||
}
|
||
|
||
/* Return a tri-state comparison of A vs B. Return NAN_RESULT if
|
||
one of the two operands is a NaN. */
|
||
|
||
static int
|
||
do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
|
||
int nan_result)
|
||
{
|
||
int ret;
|
||
|
||
switch (CLASS2 (a->cl, b->cl))
|
||
{
|
||
case CLASS2 (rvc_zero, rvc_zero):
|
||
/* Sign of zero doesn't matter for compares. */
|
||
return 0;
|
||
|
||
case CLASS2 (rvc_normal, rvc_zero):
|
||
/* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
|
||
if (a->decimal)
|
||
return decimal_do_compare (a, b, nan_result);
|
||
/* Fall through. */
|
||
case CLASS2 (rvc_inf, rvc_zero):
|
||
case CLASS2 (rvc_inf, rvc_normal):
|
||
return (a->sign ? -1 : 1);
|
||
|
||
case CLASS2 (rvc_inf, rvc_inf):
|
||
return -a->sign - -b->sign;
|
||
|
||
case CLASS2 (rvc_zero, rvc_normal):
|
||
/* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
|
||
if (b->decimal)
|
||
return decimal_do_compare (a, b, nan_result);
|
||
/* Fall through. */
|
||
case CLASS2 (rvc_zero, rvc_inf):
|
||
case CLASS2 (rvc_normal, rvc_inf):
|
||
return (b->sign ? 1 : -1);
|
||
|
||
case CLASS2 (rvc_zero, rvc_nan):
|
||
case CLASS2 (rvc_normal, rvc_nan):
|
||
case CLASS2 (rvc_inf, rvc_nan):
|
||
case CLASS2 (rvc_nan, rvc_nan):
|
||
case CLASS2 (rvc_nan, rvc_zero):
|
||
case CLASS2 (rvc_nan, rvc_normal):
|
||
case CLASS2 (rvc_nan, rvc_inf):
|
||
return nan_result;
|
||
|
||
case CLASS2 (rvc_normal, rvc_normal):
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (a->decimal || b->decimal)
|
||
return decimal_do_compare (a, b, nan_result);
|
||
|
||
if (a->sign != b->sign)
|
||
return -a->sign - -b->sign;
|
||
|
||
if (REAL_EXP (a) > REAL_EXP (b))
|
||
ret = 1;
|
||
else if (REAL_EXP (a) < REAL_EXP (b))
|
||
ret = -1;
|
||
else
|
||
ret = cmp_significands (a, b);
|
||
|
||
return (a->sign ? -ret : ret);
|
||
}
|
||
|
||
/* Return A truncated to an integral value toward zero. */
|
||
|
||
static void
|
||
do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
|
||
{
|
||
*r = *a;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
if (r->decimal)
|
||
{
|
||
decimal_do_fix_trunc (r, a);
|
||
return;
|
||
}
|
||
if (REAL_EXP (r) <= 0)
|
||
get_zero (r, r->sign);
|
||
else if (REAL_EXP (r) < SIGNIFICAND_BITS)
|
||
clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Perform the binary or unary operation described by CODE.
|
||
For a unary operation, leave OP1 NULL. This function returns
|
||
true if the result may be inexact due to loss of precision. */
|
||
|
||
bool
|
||
real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
|
||
const REAL_VALUE_TYPE *op1)
|
||
{
|
||
enum tree_code code = (enum tree_code) icode;
|
||
|
||
if (op0->decimal || (op1 && op1->decimal))
|
||
return decimal_real_arithmetic (r, code, op0, op1);
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
/* Clear any padding areas in *r if it isn't equal to one of the
|
||
operands so that we can later do bitwise comparisons later on. */
|
||
if (r != op0 && r != op1)
|
||
memset (r, '\0', sizeof (*r));
|
||
return do_add (r, op0, op1, 0);
|
||
|
||
case MINUS_EXPR:
|
||
if (r != op0 && r != op1)
|
||
memset (r, '\0', sizeof (*r));
|
||
return do_add (r, op0, op1, 1);
|
||
|
||
case MULT_EXPR:
|
||
if (r != op0 && r != op1)
|
||
memset (r, '\0', sizeof (*r));
|
||
return do_multiply (r, op0, op1);
|
||
|
||
case RDIV_EXPR:
|
||
if (r != op0 && r != op1)
|
||
memset (r, '\0', sizeof (*r));
|
||
return do_divide (r, op0, op1);
|
||
|
||
case MIN_EXPR:
|
||
if (op1->cl == rvc_nan)
|
||
{
|
||
*r = *op1;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
}
|
||
else if (do_compare (op0, op1, -1) < 0)
|
||
*r = *op0;
|
||
else
|
||
*r = *op1;
|
||
break;
|
||
|
||
case MAX_EXPR:
|
||
if (op1->cl == rvc_nan)
|
||
{
|
||
*r = *op1;
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
}
|
||
else if (do_compare (op0, op1, 1) < 0)
|
||
*r = *op1;
|
||
else
|
||
*r = *op0;
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
*r = *op0;
|
||
r->sign ^= 1;
|
||
break;
|
||
|
||
case ABS_EXPR:
|
||
*r = *op0;
|
||
r->sign = 0;
|
||
break;
|
||
|
||
case FIX_TRUNC_EXPR:
|
||
do_fix_trunc (r, op0);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_negate (const REAL_VALUE_TYPE *op0)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
|
||
return r;
|
||
}
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_abs (const REAL_VALUE_TYPE *op0)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
real_arithmetic (&r, ABS_EXPR, op0, NULL);
|
||
return r;
|
||
}
|
||
|
||
/* Return whether OP0 == OP1. */
|
||
|
||
bool
|
||
real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
|
||
{
|
||
return do_compare (op0, op1, -1) == 0;
|
||
}
|
||
|
||
/* Return whether OP0 < OP1. */
|
||
|
||
bool
|
||
real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
|
||
{
|
||
return do_compare (op0, op1, 1) < 0;
|
||
}
|
||
|
||
bool
|
||
real_compare (int icode, const REAL_VALUE_TYPE *op0,
|
||
const REAL_VALUE_TYPE *op1)
|
||
{
|
||
enum tree_code code = (enum tree_code) icode;
|
||
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
return real_less (op0, op1);
|
||
case LE_EXPR:
|
||
return do_compare (op0, op1, 1) <= 0;
|
||
case GT_EXPR:
|
||
return do_compare (op0, op1, -1) > 0;
|
||
case GE_EXPR:
|
||
return do_compare (op0, op1, -1) >= 0;
|
||
case EQ_EXPR:
|
||
return real_equal (op0, op1);
|
||
case NE_EXPR:
|
||
return do_compare (op0, op1, -1) != 0;
|
||
case UNORDERED_EXPR:
|
||
return op0->cl == rvc_nan || op1->cl == rvc_nan;
|
||
case ORDERED_EXPR:
|
||
return op0->cl != rvc_nan && op1->cl != rvc_nan;
|
||
case UNLT_EXPR:
|
||
return do_compare (op0, op1, -1) < 0;
|
||
case UNLE_EXPR:
|
||
return do_compare (op0, op1, -1) <= 0;
|
||
case UNGT_EXPR:
|
||
return do_compare (op0, op1, 1) > 0;
|
||
case UNGE_EXPR:
|
||
return do_compare (op0, op1, 1) >= 0;
|
||
case UNEQ_EXPR:
|
||
return do_compare (op0, op1, 0) == 0;
|
||
case LTGT_EXPR:
|
||
return do_compare (op0, op1, 0) != 0;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return floor log2(R). */
|
||
|
||
int
|
||
real_exponent (const REAL_VALUE_TYPE *r)
|
||
{
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
return 0;
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
return (unsigned int)-1 >> 1;
|
||
case rvc_normal:
|
||
return REAL_EXP (r);
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* R = OP0 * 2**EXP. */
|
||
|
||
void
|
||
real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
|
||
{
|
||
*r = *op0;
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
r->signalling = 0;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
exp += REAL_EXP (op0);
|
||
if (exp > MAX_EXP)
|
||
get_inf (r, r->sign);
|
||
else if (exp < -MAX_EXP)
|
||
get_zero (r, r->sign);
|
||
else
|
||
SET_REAL_EXP (r, exp);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is infinite. */
|
||
|
||
bool
|
||
real_isinf (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return (r->cl == rvc_inf);
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is a NaN. */
|
||
|
||
bool
|
||
real_isnan (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return (r->cl == rvc_nan);
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is a signaling NaN. */
|
||
bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return real_isnan (r) && r->signalling;
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is finite. */
|
||
|
||
bool
|
||
real_isfinite (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return (r->cl != rvc_nan) && (r->cl != rvc_inf);
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is negative. */
|
||
|
||
bool
|
||
real_isneg (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return r->sign;
|
||
}
|
||
|
||
/* Determine whether a floating-point value X is minus zero. */
|
||
|
||
bool
|
||
real_isnegzero (const REAL_VALUE_TYPE *r)
|
||
{
|
||
return r->sign && r->cl == rvc_zero;
|
||
}
|
||
|
||
/* Compare two floating-point objects for bitwise identity. */
|
||
|
||
bool
|
||
real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
|
||
{
|
||
int i;
|
||
|
||
if (a->cl != b->cl)
|
||
return false;
|
||
if (a->sign != b->sign)
|
||
return false;
|
||
|
||
switch (a->cl)
|
||
{
|
||
case rvc_zero:
|
||
case rvc_inf:
|
||
return true;
|
||
|
||
case rvc_normal:
|
||
if (a->decimal != b->decimal)
|
||
return false;
|
||
if (REAL_EXP (a) != REAL_EXP (b))
|
||
return false;
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (a->signalling != b->signalling)
|
||
return false;
|
||
/* The significand is ignored for canonical NaNs. */
|
||
if (a->canonical || b->canonical)
|
||
return a->canonical == b->canonical;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
if (a->sig[i] != b->sig[i])
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Try to change R into its exact multiplicative inverse in format FMT.
|
||
Return true if successful. */
|
||
|
||
bool
|
||
exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
|
||
{
|
||
const REAL_VALUE_TYPE *one = real_digit (1);
|
||
REAL_VALUE_TYPE u;
|
||
int i;
|
||
|
||
if (r->cl != rvc_normal)
|
||
return false;
|
||
|
||
/* Check for a power of two: all significand bits zero except the MSB. */
|
||
for (i = 0; i < SIGSZ-1; ++i)
|
||
if (r->sig[i] != 0)
|
||
return false;
|
||
if (r->sig[SIGSZ-1] != SIG_MSB)
|
||
return false;
|
||
|
||
/* Find the inverse and truncate to the required format. */
|
||
do_divide (&u, one, r);
|
||
real_convert (&u, fmt, &u);
|
||
|
||
/* The rounding may have overflowed. */
|
||
if (u.cl != rvc_normal)
|
||
return false;
|
||
for (i = 0; i < SIGSZ-1; ++i)
|
||
if (u.sig[i] != 0)
|
||
return false;
|
||
if (u.sig[SIGSZ-1] != SIG_MSB)
|
||
return false;
|
||
|
||
*r = u;
|
||
return true;
|
||
}
|
||
|
||
/* Return true if arithmetic on values in IMODE that were promoted
|
||
from values in TMODE is equivalent to direct arithmetic on values
|
||
in TMODE. */
|
||
|
||
bool
|
||
real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
|
||
{
|
||
const struct real_format *tfmt, *ifmt;
|
||
tfmt = REAL_MODE_FORMAT (tmode);
|
||
ifmt = REAL_MODE_FORMAT (imode);
|
||
/* These conditions are conservative rather than trying to catch the
|
||
exact boundary conditions; the main case to allow is IEEE float
|
||
and double. */
|
||
return (ifmt->b == tfmt->b
|
||
&& ifmt->p > 2 * tfmt->p
|
||
&& ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
|
||
&& ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
|
||
&& ifmt->emax > 2 * tfmt->emax + 2
|
||
&& ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
|
||
&& ifmt->round_towards_zero == tfmt->round_towards_zero
|
||
&& (ifmt->has_sign_dependent_rounding
|
||
== tfmt->has_sign_dependent_rounding)
|
||
&& ifmt->has_nans >= tfmt->has_nans
|
||
&& ifmt->has_inf >= tfmt->has_inf
|
||
&& ifmt->has_signed_zero >= tfmt->has_signed_zero
|
||
&& !MODE_COMPOSITE_P (tmode)
|
||
&& !MODE_COMPOSITE_P (imode));
|
||
}
|
||
|
||
/* Render R as an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
real_to_integer (const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned HOST_WIDE_INT i;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
underflow:
|
||
return 0;
|
||
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
overflow:
|
||
i = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
|
||
if (!r->sign)
|
||
i--;
|
||
return i;
|
||
|
||
case rvc_normal:
|
||
if (r->decimal)
|
||
return decimal_real_to_integer (r);
|
||
|
||
if (REAL_EXP (r) <= 0)
|
||
goto underflow;
|
||
/* Only force overflow for unsigned overflow. Signed overflow is
|
||
undefined, so it doesn't matter what we return, and some callers
|
||
expect to be able to use this routine for both signed and
|
||
unsigned conversions. */
|
||
if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
|
||
goto overflow;
|
||
|
||
if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
|
||
i = r->sig[SIGSZ-1];
|
||
else
|
||
{
|
||
gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
|
||
i = r->sig[SIGSZ-1];
|
||
i = i << (HOST_BITS_PER_LONG - 1) << 1;
|
||
i |= r->sig[SIGSZ-2];
|
||
}
|
||
|
||
i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
|
||
|
||
if (r->sign)
|
||
i = -i;
|
||
return i;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Likewise, but producing a wide-int of PRECISION. If the value cannot
|
||
be represented in precision, *FAIL is set to TRUE. */
|
||
|
||
wide_int
|
||
real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
|
||
{
|
||
HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
|
||
int exp;
|
||
int words, w;
|
||
wide_int result;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
underflow:
|
||
return wi::zero (precision);
|
||
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
overflow:
|
||
*fail = true;
|
||
|
||
if (r->sign)
|
||
return wi::set_bit_in_zero (precision - 1, precision);
|
||
else
|
||
return ~wi::set_bit_in_zero (precision - 1, precision);
|
||
|
||
case rvc_normal:
|
||
if (r->decimal)
|
||
return decimal_real_to_integer (r, fail, precision);
|
||
|
||
exp = REAL_EXP (r);
|
||
if (exp <= 0)
|
||
goto underflow;
|
||
/* Only force overflow for unsigned overflow. Signed overflow is
|
||
undefined, so it doesn't matter what we return, and some callers
|
||
expect to be able to use this routine for both signed and
|
||
unsigned conversions. */
|
||
if (exp > precision)
|
||
goto overflow;
|
||
|
||
/* Put the significand into a wide_int that has precision W, which
|
||
is the smallest HWI-multiple that has at least PRECISION bits.
|
||
This ensures that the top bit of the significand is in the
|
||
top bit of the wide_int. */
|
||
words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
|
||
w = words * HOST_BITS_PER_WIDE_INT;
|
||
|
||
#if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
|
||
for (int i = 0; i < words; i++)
|
||
{
|
||
int j = SIGSZ - words + i;
|
||
val[i] = (j < 0) ? 0 : r->sig[j];
|
||
}
|
||
#else
|
||
gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
|
||
for (int i = 0; i < words; i++)
|
||
{
|
||
int j = SIGSZ - (words * 2) + (i * 2);
|
||
if (j < 0)
|
||
val[i] = 0;
|
||
else
|
||
val[i] = r->sig[j];
|
||
j += 1;
|
||
if (j >= 0)
|
||
val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
|
||
}
|
||
#endif
|
||
/* Shift the value into place and truncate to the desired precision. */
|
||
result = wide_int::from_array (val, words, w);
|
||
result = wi::lrshift (result, w - exp);
|
||
result = wide_int::from (result, precision, UNSIGNED);
|
||
|
||
if (r->sign)
|
||
return -result;
|
||
else
|
||
return result;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* A subroutine of real_to_decimal. Compute the quotient and remainder
|
||
of NUM / DEN. Return the quotient and place the remainder in NUM.
|
||
It is expected that NUM / DEN are close enough that the quotient is
|
||
small. */
|
||
|
||
static unsigned long
|
||
rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
|
||
{
|
||
unsigned long q, msb;
|
||
int expn = REAL_EXP (num), expd = REAL_EXP (den);
|
||
|
||
if (expn < expd)
|
||
return 0;
|
||
|
||
q = msb = 0;
|
||
goto start;
|
||
do
|
||
{
|
||
msb = num->sig[SIGSZ-1] & SIG_MSB;
|
||
q <<= 1;
|
||
lshift_significand_1 (num, num);
|
||
start:
|
||
if (msb || cmp_significands (num, den) >= 0)
|
||
{
|
||
sub_significands (num, num, den, 0);
|
||
q |= 1;
|
||
}
|
||
}
|
||
while (--expn >= expd);
|
||
|
||
SET_REAL_EXP (num, expd);
|
||
normalize (num);
|
||
|
||
return q;
|
||
}
|
||
|
||
/* Render R as a decimal floating point constant. Emit DIGITS significant
|
||
digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
|
||
maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
|
||
zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
|
||
to a string that, when parsed back in mode MODE, yields the same value. */
|
||
|
||
#define M_LOG10_2 0.30102999566398119521
|
||
|
||
void
|
||
real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
|
||
size_t buf_size, size_t digits,
|
||
int crop_trailing_zeros, machine_mode mode)
|
||
{
|
||
const struct real_format *fmt = NULL;
|
||
const REAL_VALUE_TYPE *one, *ten;
|
||
REAL_VALUE_TYPE r, pten, u, v;
|
||
int dec_exp, cmp_one, digit;
|
||
size_t max_digits;
|
||
char *p, *first, *last;
|
||
bool sign;
|
||
bool round_up;
|
||
|
||
if (mode != VOIDmode)
|
||
{
|
||
fmt = REAL_MODE_FORMAT (mode);
|
||
gcc_assert (fmt);
|
||
}
|
||
|
||
r = *r_orig;
|
||
switch (r.cl)
|
||
{
|
||
case rvc_zero:
|
||
strcpy (str, (r.sign ? "-0.0" : "0.0"));
|
||
return;
|
||
case rvc_normal:
|
||
break;
|
||
case rvc_inf:
|
||
strcpy (str, (r.sign ? "-Inf" : "+Inf"));
|
||
return;
|
||
case rvc_nan:
|
||
/* ??? Print the significand as well, if not canonical? */
|
||
sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
|
||
(r_orig->signalling ? 'S' : 'Q'));
|
||
return;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (r.decimal)
|
||
{
|
||
decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
|
||
return;
|
||
}
|
||
|
||
/* Bound the number of digits printed by the size of the representation. */
|
||
max_digits = SIGNIFICAND_BITS * M_LOG10_2;
|
||
if (digits == 0 || digits > max_digits)
|
||
digits = max_digits;
|
||
|
||
/* Estimate the decimal exponent, and compute the length of the string it
|
||
will print as. Be conservative and add one to account for possible
|
||
overflow or rounding error. */
|
||
dec_exp = REAL_EXP (&r) * M_LOG10_2;
|
||
for (max_digits = 1; dec_exp ; max_digits++)
|
||
dec_exp /= 10;
|
||
|
||
/* Bound the number of digits printed by the size of the output buffer. */
|
||
max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
|
||
gcc_assert (max_digits <= buf_size);
|
||
if (digits > max_digits)
|
||
digits = max_digits;
|
||
|
||
one = real_digit (1);
|
||
ten = ten_to_ptwo (0);
|
||
|
||
sign = r.sign;
|
||
r.sign = 0;
|
||
|
||
dec_exp = 0;
|
||
pten = *one;
|
||
|
||
cmp_one = do_compare (&r, one, 0);
|
||
if (cmp_one > 0)
|
||
{
|
||
int m;
|
||
|
||
/* Number is greater than one. Convert significand to an integer
|
||
and strip trailing decimal zeros. */
|
||
|
||
u = r;
|
||
SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
|
||
|
||
/* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
|
||
m = floor_log2 (max_digits);
|
||
|
||
/* Iterate over the bits of the possible powers of 10 that might
|
||
be present in U and eliminate them. That is, if we find that
|
||
10**2**M divides U evenly, keep the division and increase
|
||
DEC_EXP by 2**M. */
|
||
do
|
||
{
|
||
REAL_VALUE_TYPE t;
|
||
|
||
do_divide (&t, &u, ten_to_ptwo (m));
|
||
do_fix_trunc (&v, &t);
|
||
if (cmp_significands (&v, &t) == 0)
|
||
{
|
||
u = t;
|
||
dec_exp += 1 << m;
|
||
}
|
||
}
|
||
while (--m >= 0);
|
||
|
||
/* Revert the scaling to integer that we performed earlier. */
|
||
SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
|
||
- (SIGNIFICAND_BITS - 1));
|
||
r = u;
|
||
|
||
/* Find power of 10. Do this by dividing out 10**2**M when
|
||
this is larger than the current remainder. Fill PTEN with
|
||
the power of 10 that we compute. */
|
||
if (REAL_EXP (&r) > 0)
|
||
{
|
||
m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
|
||
do
|
||
{
|
||
const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
|
||
if (do_compare (&u, ptentwo, 0) >= 0)
|
||
{
|
||
do_divide (&u, &u, ptentwo);
|
||
do_multiply (&pten, &pten, ptentwo);
|
||
dec_exp += 1 << m;
|
||
}
|
||
}
|
||
while (--m >= 0);
|
||
}
|
||
else
|
||
/* We managed to divide off enough tens in the above reduction
|
||
loop that we've now got a negative exponent. Fall into the
|
||
less-than-one code to compute the proper value for PTEN. */
|
||
cmp_one = -1;
|
||
}
|
||
if (cmp_one < 0)
|
||
{
|
||
int m;
|
||
|
||
/* Number is less than one. Pad significand with leading
|
||
decimal zeros. */
|
||
|
||
v = r;
|
||
while (1)
|
||
{
|
||
/* Stop if we'd shift bits off the bottom. */
|
||
if (v.sig[0] & 7)
|
||
break;
|
||
|
||
do_multiply (&u, &v, ten);
|
||
|
||
/* Stop if we're now >= 1 or zero. */
|
||
if (REAL_EXP (&u) > 0 || u.cl == rvc_zero)
|
||
break;
|
||
|
||
v = u;
|
||
dec_exp -= 1;
|
||
}
|
||
r = v;
|
||
|
||
/* Find power of 10. Do this by multiplying in P=10**2**M when
|
||
the current remainder is smaller than 1/P. Fill PTEN with the
|
||
power of 10 that we compute. */
|
||
m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
|
||
do
|
||
{
|
||
const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
|
||
const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
|
||
|
||
if (do_compare (&v, ptenmtwo, 0) <= 0)
|
||
{
|
||
do_multiply (&v, &v, ptentwo);
|
||
do_multiply (&pten, &pten, ptentwo);
|
||
dec_exp -= 1 << m;
|
||
}
|
||
}
|
||
while (--m >= 0);
|
||
|
||
/* Invert the positive power of 10 that we've collected so far. */
|
||
do_divide (&pten, one, &pten);
|
||
}
|
||
|
||
p = str;
|
||
if (sign)
|
||
*p++ = '-';
|
||
first = p++;
|
||
|
||
/* At this point, PTEN should contain the nearest power of 10 smaller
|
||
than R, such that this division produces the first digit.
|
||
|
||
Using a divide-step primitive that returns the complete integral
|
||
remainder avoids the rounding error that would be produced if
|
||
we were to use do_divide here and then simply multiply by 10 for
|
||
each subsequent digit. */
|
||
|
||
digit = rtd_divmod (&r, &pten);
|
||
|
||
/* Be prepared for error in that division via underflow ... */
|
||
if (digit == 0 && cmp_significand_0 (&r))
|
||
{
|
||
/* Multiply by 10 and try again. */
|
||
do_multiply (&r, &r, ten);
|
||
digit = rtd_divmod (&r, &pten);
|
||
dec_exp -= 1;
|
||
gcc_assert (digit != 0);
|
||
}
|
||
|
||
/* ... or overflow. */
|
||
if (digit == 10)
|
||
{
|
||
*p++ = '1';
|
||
if (--digits > 0)
|
||
*p++ = '0';
|
||
dec_exp += 1;
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (digit <= 10);
|
||
*p++ = digit + '0';
|
||
}
|
||
|
||
/* Generate subsequent digits. */
|
||
while (--digits > 0)
|
||
{
|
||
do_multiply (&r, &r, ten);
|
||
digit = rtd_divmod (&r, &pten);
|
||
*p++ = digit + '0';
|
||
}
|
||
last = p;
|
||
|
||
/* Generate one more digit with which to do rounding. */
|
||
do_multiply (&r, &r, ten);
|
||
digit = rtd_divmod (&r, &pten);
|
||
|
||
/* Round the result. */
|
||
if (fmt && fmt->round_towards_zero)
|
||
{
|
||
/* If the format uses round towards zero when parsing the string
|
||
back in, we need to always round away from zero here. */
|
||
if (cmp_significand_0 (&r))
|
||
digit++;
|
||
round_up = digit > 0;
|
||
}
|
||
else
|
||
{
|
||
if (digit == 5)
|
||
{
|
||
/* Round to nearest. If R is nonzero there are additional
|
||
nonzero digits to be extracted. */
|
||
if (cmp_significand_0 (&r))
|
||
digit++;
|
||
/* Round to even. */
|
||
else if ((p[-1] - '0') & 1)
|
||
digit++;
|
||
}
|
||
|
||
round_up = digit > 5;
|
||
}
|
||
|
||
if (round_up)
|
||
{
|
||
while (p > first)
|
||
{
|
||
digit = *--p;
|
||
if (digit == '9')
|
||
*p = '0';
|
||
else
|
||
{
|
||
*p = digit + 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Carry out of the first digit. This means we had all 9's and
|
||
now have all 0's. "Prepend" a 1 by overwriting the first 0. */
|
||
if (p == first)
|
||
{
|
||
first[1] = '1';
|
||
dec_exp++;
|
||
}
|
||
}
|
||
|
||
/* Insert the decimal point. */
|
||
first[0] = first[1];
|
||
first[1] = '.';
|
||
|
||
/* If requested, drop trailing zeros. Never crop past "1.0". */
|
||
if (crop_trailing_zeros)
|
||
while (last > first + 3 && last[-1] == '0')
|
||
last--;
|
||
|
||
/* Append the exponent. */
|
||
sprintf (last, "e%+d", dec_exp);
|
||
|
||
/* Verify that we can read the original value back in. */
|
||
if (flag_checking && mode != VOIDmode)
|
||
{
|
||
real_from_string (&r, str);
|
||
real_convert (&r, mode, &r);
|
||
gcc_assert (real_identical (&r, r_orig));
|
||
}
|
||
}
|
||
|
||
/* Likewise, except always uses round-to-nearest. */
|
||
|
||
void
|
||
real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
|
||
size_t digits, int crop_trailing_zeros)
|
||
{
|
||
real_to_decimal_for_mode (str, r_orig, buf_size,
|
||
digits, crop_trailing_zeros, VOIDmode);
|
||
}
|
||
|
||
/* Render R as a hexadecimal floating point constant. Emit DIGITS
|
||
significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
|
||
choose the maximum for the representation. If CROP_TRAILING_ZEROS,
|
||
strip trailing zeros. */
|
||
|
||
void
|
||
real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
|
||
size_t digits, int crop_trailing_zeros)
|
||
{
|
||
int i, j, exp = REAL_EXP (r);
|
||
char *p, *first;
|
||
char exp_buf[16];
|
||
size_t max_digits;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
exp = 0;
|
||
break;
|
||
case rvc_normal:
|
||
break;
|
||
case rvc_inf:
|
||
strcpy (str, (r->sign ? "-Inf" : "+Inf"));
|
||
return;
|
||
case rvc_nan:
|
||
/* ??? Print the significand as well, if not canonical? */
|
||
sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
|
||
(r->signalling ? 'S' : 'Q'));
|
||
return;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (r->decimal)
|
||
{
|
||
/* Hexadecimal format for decimal floats is not interesting. */
|
||
strcpy (str, "N/A");
|
||
return;
|
||
}
|
||
|
||
if (digits == 0)
|
||
digits = SIGNIFICAND_BITS / 4;
|
||
|
||
/* Bound the number of digits printed by the size of the output buffer. */
|
||
|
||
sprintf (exp_buf, "p%+d", exp);
|
||
max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
|
||
gcc_assert (max_digits <= buf_size);
|
||
if (digits > max_digits)
|
||
digits = max_digits;
|
||
|
||
p = str;
|
||
if (r->sign)
|
||
*p++ = '-';
|
||
*p++ = '0';
|
||
*p++ = 'x';
|
||
*p++ = '0';
|
||
*p++ = '.';
|
||
first = p;
|
||
|
||
for (i = SIGSZ - 1; i >= 0; --i)
|
||
for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
|
||
{
|
||
*p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
|
||
if (--digits == 0)
|
||
goto out;
|
||
}
|
||
|
||
out:
|
||
if (crop_trailing_zeros)
|
||
while (p > first + 1 && p[-1] == '0')
|
||
p--;
|
||
|
||
sprintf (p, "p%+d", exp);
|
||
}
|
||
|
||
/* Initialize R from a decimal or hexadecimal string. The string is
|
||
assumed to have been syntax checked already. Return -1 if the
|
||
value underflows, +1 if overflows, and 0 otherwise. */
|
||
|
||
int
|
||
real_from_string (REAL_VALUE_TYPE *r, const char *str)
|
||
{
|
||
int exp = 0;
|
||
bool sign = false;
|
||
|
||
get_zero (r, 0);
|
||
|
||
if (*str == '-')
|
||
{
|
||
sign = true;
|
||
str++;
|
||
}
|
||
else if (*str == '+')
|
||
str++;
|
||
|
||
if (startswith (str, "QNaN"))
|
||
{
|
||
get_canonical_qnan (r, sign);
|
||
return 0;
|
||
}
|
||
else if (startswith (str, "SNaN"))
|
||
{
|
||
get_canonical_snan (r, sign);
|
||
return 0;
|
||
}
|
||
else if (startswith (str, "Inf"))
|
||
{
|
||
get_inf (r, sign);
|
||
return 0;
|
||
}
|
||
|
||
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
|
||
{
|
||
/* Hexadecimal floating point. */
|
||
int pos = SIGNIFICAND_BITS - 4, d;
|
||
|
||
str += 2;
|
||
|
||
while (*str == '0')
|
||
str++;
|
||
while (1)
|
||
{
|
||
d = hex_value (*str);
|
||
if (d == _hex_bad)
|
||
break;
|
||
if (pos >= 0)
|
||
{
|
||
r->sig[pos / HOST_BITS_PER_LONG]
|
||
|= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
|
||
pos -= 4;
|
||
}
|
||
else if (d)
|
||
/* Ensure correct rounding by setting last bit if there is
|
||
a subsequent nonzero digit. */
|
||
r->sig[0] |= 1;
|
||
exp += 4;
|
||
str++;
|
||
}
|
||
if (*str == '.')
|
||
{
|
||
str++;
|
||
if (pos == SIGNIFICAND_BITS - 4)
|
||
{
|
||
while (*str == '0')
|
||
str++, exp -= 4;
|
||
}
|
||
while (1)
|
||
{
|
||
d = hex_value (*str);
|
||
if (d == _hex_bad)
|
||
break;
|
||
if (pos >= 0)
|
||
{
|
||
r->sig[pos / HOST_BITS_PER_LONG]
|
||
|= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
|
||
pos -= 4;
|
||
}
|
||
else if (d)
|
||
/* Ensure correct rounding by setting last bit if there is
|
||
a subsequent nonzero digit. */
|
||
r->sig[0] |= 1;
|
||
str++;
|
||
}
|
||
}
|
||
|
||
/* If the mantissa is zero, ignore the exponent. */
|
||
if (!cmp_significand_0 (r))
|
||
goto is_a_zero;
|
||
|
||
if (*str == 'p' || *str == 'P')
|
||
{
|
||
bool exp_neg = false;
|
||
|
||
str++;
|
||
if (*str == '-')
|
||
{
|
||
exp_neg = true;
|
||
str++;
|
||
}
|
||
else if (*str == '+')
|
||
str++;
|
||
|
||
d = 0;
|
||
while (ISDIGIT (*str))
|
||
{
|
||
d *= 10;
|
||
d += *str - '0';
|
||
if (d > MAX_EXP)
|
||
{
|
||
/* Overflowed the exponent. */
|
||
if (exp_neg)
|
||
goto underflow;
|
||
else
|
||
goto overflow;
|
||
}
|
||
str++;
|
||
}
|
||
if (exp_neg)
|
||
d = -d;
|
||
|
||
exp += d;
|
||
}
|
||
|
||
r->cl = rvc_normal;
|
||
SET_REAL_EXP (r, exp);
|
||
|
||
normalize (r);
|
||
}
|
||
else
|
||
{
|
||
/* Decimal floating point. */
|
||
const char *cstr = str;
|
||
mpfr_t m;
|
||
bool inexact;
|
||
|
||
while (*cstr == '0')
|
||
cstr++;
|
||
if (*cstr == '.')
|
||
{
|
||
cstr++;
|
||
while (*cstr == '0')
|
||
cstr++;
|
||
}
|
||
|
||
/* If the mantissa is zero, ignore the exponent. */
|
||
if (!ISDIGIT (*cstr))
|
||
goto is_a_zero;
|
||
|
||
/* Nonzero value, possibly overflowing or underflowing. */
|
||
mpfr_init2 (m, SIGNIFICAND_BITS);
|
||
inexact = mpfr_strtofr (m, str, NULL, 10, MPFR_RNDZ);
|
||
/* The result should never be a NaN, and because the rounding is
|
||
toward zero should never be an infinity. */
|
||
gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
|
||
if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
|
||
{
|
||
mpfr_clear (m);
|
||
goto underflow;
|
||
}
|
||
else if (mpfr_get_exp (m) > MAX_EXP - 4)
|
||
{
|
||
mpfr_clear (m);
|
||
goto overflow;
|
||
}
|
||
else
|
||
{
|
||
real_from_mpfr (r, m, NULL_TREE, MPFR_RNDZ);
|
||
/* 1 to 3 bits may have been shifted off (with a sticky bit)
|
||
because the hex digits used in real_from_mpfr did not
|
||
start with a digit 8 to f, but the exponent bounds above
|
||
should have avoided underflow or overflow. */
|
||
gcc_assert (r->cl == rvc_normal);
|
||
/* Set a sticky bit if mpfr_strtofr was inexact. */
|
||
r->sig[0] |= inexact;
|
||
mpfr_clear (m);
|
||
}
|
||
}
|
||
|
||
r->sign = sign;
|
||
return 0;
|
||
|
||
is_a_zero:
|
||
get_zero (r, sign);
|
||
return 0;
|
||
|
||
underflow:
|
||
get_zero (r, sign);
|
||
return -1;
|
||
|
||
overflow:
|
||
get_inf (r, sign);
|
||
return 1;
|
||
}
|
||
|
||
/* Legacy. Similar, but return the result directly. */
|
||
|
||
REAL_VALUE_TYPE
|
||
real_from_string2 (const char *s, format_helper fmt)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
|
||
real_from_string (&r, s);
|
||
if (fmt)
|
||
real_convert (&r, fmt, &r);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Initialize R from string S and desired format FMT. */
|
||
|
||
void
|
||
real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
|
||
{
|
||
if (fmt.decimal_p ())
|
||
decimal_real_from_string (r, s);
|
||
else
|
||
real_from_string (r, s);
|
||
|
||
if (fmt)
|
||
real_convert (r, fmt, r);
|
||
}
|
||
|
||
/* Initialize R from the wide_int VAL_IN. Round it to format FMT if
|
||
FMT is nonnull. */
|
||
|
||
void
|
||
real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const wide_int_ref &val_in, signop sgn)
|
||
{
|
||
if (val_in == 0)
|
||
get_zero (r, 0);
|
||
else
|
||
{
|
||
unsigned int len = val_in.get_precision ();
|
||
int i, j, e = 0;
|
||
int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
|
||
const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
|
||
* HOST_BITS_PER_WIDE_INT);
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
r->cl = rvc_normal;
|
||
r->sign = wi::neg_p (val_in, sgn);
|
||
|
||
/* We have to ensure we can negate the largest negative number. */
|
||
wide_int val = wide_int::from (val_in, maxbitlen, sgn);
|
||
|
||
if (r->sign)
|
||
val = -val;
|
||
|
||
/* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
|
||
won't work with precisions that are not a multiple of
|
||
HOST_BITS_PER_WIDE_INT. */
|
||
len += HOST_BITS_PER_WIDE_INT - 1;
|
||
|
||
/* Ensure we can represent the largest negative number. */
|
||
len += 1;
|
||
|
||
len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
|
||
|
||
/* Cap the size to the size allowed by real.h. */
|
||
if (len > realmax)
|
||
{
|
||
HOST_WIDE_INT cnt_l_z;
|
||
cnt_l_z = wi::clz (val);
|
||
|
||
if (maxbitlen - cnt_l_z > realmax)
|
||
{
|
||
e = maxbitlen - cnt_l_z - realmax;
|
||
|
||
/* This value is too large, we must shift it right to
|
||
preserve all the bits we can, and then bump the
|
||
exponent up by that amount. */
|
||
val = wi::lrshift (val, e);
|
||
}
|
||
len = realmax;
|
||
}
|
||
|
||
/* Clear out top bits so elt will work with precisions that aren't
|
||
a multiple of HOST_BITS_PER_WIDE_INT. */
|
||
val = wide_int::from (val, len, sgn);
|
||
len = len / HOST_BITS_PER_WIDE_INT;
|
||
|
||
SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
|
||
|
||
j = SIGSZ - 1;
|
||
if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
|
||
for (i = len - 1; i >= 0; i--)
|
||
{
|
||
r->sig[j--] = val.elt (i);
|
||
if (j < 0)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
|
||
for (i = len - 1; i >= 0; i--)
|
||
{
|
||
HOST_WIDE_INT e = val.elt (i);
|
||
r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
|
||
if (j < 0)
|
||
break;
|
||
r->sig[j--] = e;
|
||
if (j < 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
normalize (r);
|
||
}
|
||
|
||
if (fmt.decimal_p ())
|
||
decimal_from_integer (r);
|
||
if (fmt)
|
||
real_convert (r, fmt, r);
|
||
}
|
||
|
||
/* Render R, an integral value, as a floating point constant with no
|
||
specified exponent. */
|
||
|
||
static void
|
||
decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
|
||
size_t buf_size)
|
||
{
|
||
int dec_exp, digit, digits;
|
||
REAL_VALUE_TYPE r, pten;
|
||
char *p;
|
||
bool sign;
|
||
|
||
r = *r_orig;
|
||
|
||
if (r.cl == rvc_zero)
|
||
{
|
||
strcpy (str, "0.");
|
||
return;
|
||
}
|
||
|
||
sign = r.sign;
|
||
r.sign = 0;
|
||
|
||
dec_exp = REAL_EXP (&r) * M_LOG10_2;
|
||
digits = dec_exp + 1;
|
||
gcc_assert ((digits + 2) < (int)buf_size);
|
||
|
||
pten = *real_digit (1);
|
||
times_pten (&pten, dec_exp);
|
||
|
||
p = str;
|
||
if (sign)
|
||
*p++ = '-';
|
||
|
||
digit = rtd_divmod (&r, &pten);
|
||
gcc_assert (digit >= 0 && digit <= 9);
|
||
*p++ = digit + '0';
|
||
while (--digits > 0)
|
||
{
|
||
times_pten (&r, 1);
|
||
digit = rtd_divmod (&r, &pten);
|
||
*p++ = digit + '0';
|
||
}
|
||
*p++ = '.';
|
||
*p++ = '\0';
|
||
}
|
||
|
||
/* Convert a real with an integral value to decimal float. */
|
||
|
||
static void
|
||
decimal_from_integer (REAL_VALUE_TYPE *r)
|
||
{
|
||
char str[256];
|
||
|
||
decimal_integer_string (str, r, sizeof (str) - 1);
|
||
decimal_real_from_string (r, str);
|
||
}
|
||
|
||
/* Returns 10**2**N. */
|
||
|
||
static const REAL_VALUE_TYPE *
|
||
ten_to_ptwo (int n)
|
||
{
|
||
static REAL_VALUE_TYPE tens[EXP_BITS];
|
||
|
||
gcc_assert (n >= 0);
|
||
gcc_assert (n < EXP_BITS);
|
||
|
||
if (tens[n].cl == rvc_zero)
|
||
{
|
||
if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
|
||
{
|
||
HOST_WIDE_INT t = 10;
|
||
int i;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
t *= t;
|
||
|
||
real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
|
||
}
|
||
else
|
||
{
|
||
const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
|
||
do_multiply (&tens[n], t, t);
|
||
}
|
||
}
|
||
|
||
return &tens[n];
|
||
}
|
||
|
||
/* Returns 10**(-2**N). */
|
||
|
||
static const REAL_VALUE_TYPE *
|
||
ten_to_mptwo (int n)
|
||
{
|
||
static REAL_VALUE_TYPE tens[EXP_BITS];
|
||
|
||
gcc_assert (n >= 0);
|
||
gcc_assert (n < EXP_BITS);
|
||
|
||
if (tens[n].cl == rvc_zero)
|
||
do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
|
||
|
||
return &tens[n];
|
||
}
|
||
|
||
/* Returns N. */
|
||
|
||
static const REAL_VALUE_TYPE *
|
||
real_digit (int n)
|
||
{
|
||
static REAL_VALUE_TYPE num[10];
|
||
|
||
gcc_assert (n >= 0);
|
||
gcc_assert (n <= 9);
|
||
|
||
if (n > 0 && num[n].cl == rvc_zero)
|
||
real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
|
||
|
||
return &num[n];
|
||
}
|
||
|
||
/* Multiply R by 10**EXP. */
|
||
|
||
static void
|
||
times_pten (REAL_VALUE_TYPE *r, int exp)
|
||
{
|
||
REAL_VALUE_TYPE pten, *rr;
|
||
bool negative = (exp < 0);
|
||
int i;
|
||
|
||
if (negative)
|
||
{
|
||
exp = -exp;
|
||
pten = *real_digit (1);
|
||
rr = &pten;
|
||
}
|
||
else
|
||
rr = r;
|
||
|
||
for (i = 0; exp > 0; ++i, exp >>= 1)
|
||
if (exp & 1)
|
||
do_multiply (rr, rr, ten_to_ptwo (i));
|
||
|
||
if (negative)
|
||
do_divide (r, r, &pten);
|
||
}
|
||
|
||
/* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
|
||
|
||
const REAL_VALUE_TYPE *
|
||
dconst_e_ptr (void)
|
||
{
|
||
static REAL_VALUE_TYPE value;
|
||
|
||
/* Initialize mathematical constants for constant folding builtins.
|
||
These constants need to be given to at least 160 bits precision. */
|
||
if (value.cl == rvc_zero)
|
||
{
|
||
mpfr_t m;
|
||
mpfr_init2 (m, SIGNIFICAND_BITS);
|
||
mpfr_set_ui (m, 1, MPFR_RNDN);
|
||
mpfr_exp (m, m, MPFR_RNDN);
|
||
real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
|
||
mpfr_clear (m);
|
||
|
||
}
|
||
return &value;
|
||
}
|
||
|
||
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
|
||
|
||
#define CACHED_FRACTION(NAME, N) \
|
||
const REAL_VALUE_TYPE * \
|
||
NAME (void) \
|
||
{ \
|
||
static REAL_VALUE_TYPE value; \
|
||
\
|
||
/* Initialize mathematical constants for constant folding builtins. \
|
||
These constants need to be given to at least 160 bits \
|
||
precision. */ \
|
||
if (value.cl == rvc_zero) \
|
||
real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
|
||
return &value; \
|
||
}
|
||
|
||
CACHED_FRACTION (dconst_third_ptr, 3)
|
||
CACHED_FRACTION (dconst_quarter_ptr, 4)
|
||
CACHED_FRACTION (dconst_sixth_ptr, 6)
|
||
CACHED_FRACTION (dconst_ninth_ptr, 9)
|
||
|
||
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
|
||
|
||
const REAL_VALUE_TYPE *
|
||
dconst_sqrt2_ptr (void)
|
||
{
|
||
static REAL_VALUE_TYPE value;
|
||
|
||
/* Initialize mathematical constants for constant folding builtins.
|
||
These constants need to be given to at least 160 bits precision. */
|
||
if (value.cl == rvc_zero)
|
||
{
|
||
mpfr_t m;
|
||
mpfr_init2 (m, SIGNIFICAND_BITS);
|
||
mpfr_sqrt_ui (m, 2, MPFR_RNDN);
|
||
real_from_mpfr (&value, m, NULL_TREE, MPFR_RNDN);
|
||
mpfr_clear (m);
|
||
}
|
||
return &value;
|
||
}
|
||
|
||
/* Fills R with +Inf. */
|
||
|
||
void
|
||
real_inf (REAL_VALUE_TYPE *r)
|
||
{
|
||
get_inf (r, 0);
|
||
}
|
||
|
||
/* Fills R with a NaN whose significand is described by STR. If QUIET,
|
||
we force a QNaN, else we force an SNaN. The string, if not empty,
|
||
is parsed as a number and placed in the significand. Return true
|
||
if the string was successfully parsed. */
|
||
|
||
bool
|
||
real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
|
||
format_helper fmt)
|
||
{
|
||
if (*str == 0)
|
||
{
|
||
if (quiet)
|
||
get_canonical_qnan (r, 0);
|
||
else
|
||
get_canonical_snan (r, 0);
|
||
}
|
||
else
|
||
{
|
||
int base = 10, d;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
r->cl = rvc_nan;
|
||
|
||
/* Parse akin to strtol into the significand of R. */
|
||
|
||
while (ISSPACE (*str))
|
||
str++;
|
||
if (*str == '-')
|
||
str++;
|
||
else if (*str == '+')
|
||
str++;
|
||
if (*str == '0')
|
||
{
|
||
str++;
|
||
if (*str == 'x' || *str == 'X')
|
||
{
|
||
base = 16;
|
||
str++;
|
||
}
|
||
else
|
||
base = 8;
|
||
}
|
||
|
||
while ((d = hex_value (*str)) < base)
|
||
{
|
||
REAL_VALUE_TYPE u;
|
||
|
||
switch (base)
|
||
{
|
||
case 8:
|
||
lshift_significand (r, r, 3);
|
||
break;
|
||
case 16:
|
||
lshift_significand (r, r, 4);
|
||
break;
|
||
case 10:
|
||
lshift_significand_1 (&u, r);
|
||
lshift_significand (r, r, 3);
|
||
add_significands (r, r, &u);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
get_zero (&u, 0);
|
||
u.sig[0] = d;
|
||
add_significands (r, r, &u);
|
||
|
||
str++;
|
||
}
|
||
|
||
/* Must have consumed the entire string for success. */
|
||
if (*str != 0)
|
||
return false;
|
||
|
||
/* Shift the significand into place such that the bits
|
||
are in the most significant bits for the format. */
|
||
lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
|
||
|
||
/* Our MSB is always unset for NaNs. */
|
||
r->sig[SIGSZ-1] &= ~SIG_MSB;
|
||
|
||
/* Force quiet or signaling NaN. */
|
||
r->signalling = !quiet;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Fills R with the largest finite value representable in mode MODE.
|
||
If SIGN is nonzero, R is set to the most negative finite value. */
|
||
|
||
void
|
||
real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
|
||
{
|
||
const struct real_format *fmt;
|
||
int np2;
|
||
|
||
fmt = REAL_MODE_FORMAT (mode);
|
||
gcc_assert (fmt);
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (fmt->b == 10)
|
||
decimal_real_maxval (r, sign, mode);
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, fmt->emax);
|
||
|
||
np2 = SIGNIFICAND_BITS - fmt->p;
|
||
memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
|
||
clear_significand_below (r, np2);
|
||
|
||
if (fmt->pnan < fmt->p)
|
||
/* This is an IBM extended double format made up of two IEEE
|
||
doubles. The value of the long double is the sum of the
|
||
values of the two parts. The most significant part is
|
||
required to be the value of the long double rounded to the
|
||
nearest double. Rounding means we need a slightly smaller
|
||
value for LDBL_MAX. */
|
||
clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
|
||
}
|
||
}
|
||
|
||
/* Fills R with 2**N. */
|
||
|
||
void
|
||
real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
|
||
{
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
n++;
|
||
if (n > MAX_EXP)
|
||
r->cl = rvc_inf;
|
||
else if (n < -MAX_EXP)
|
||
;
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
SET_REAL_EXP (r, n);
|
||
r->sig[SIGSZ-1] = SIG_MSB;
|
||
}
|
||
if (fmt.decimal_p ())
|
||
decimal_real_convert (r, fmt, r);
|
||
}
|
||
|
||
|
||
static void
|
||
round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
|
||
{
|
||
int p2, np2, i, w;
|
||
int emin2m1, emax2;
|
||
bool round_up = false;
|
||
|
||
if (r->decimal)
|
||
{
|
||
if (fmt->b == 10)
|
||
{
|
||
decimal_round_for_format (fmt, r);
|
||
return;
|
||
}
|
||
/* FIXME. We can come here via fp_easy_constant
|
||
(e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
|
||
investigated whether this convert needs to be here, or
|
||
something else is missing. */
|
||
decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
|
||
}
|
||
|
||
p2 = fmt->p;
|
||
emin2m1 = fmt->emin - 1;
|
||
emax2 = fmt->emax;
|
||
|
||
np2 = SIGNIFICAND_BITS - p2;
|
||
switch (r->cl)
|
||
{
|
||
underflow:
|
||
get_zero (r, r->sign);
|
||
/* FALLTHRU */
|
||
case rvc_zero:
|
||
if (!fmt->has_signed_zero)
|
||
r->sign = 0;
|
||
return;
|
||
|
||
overflow:
|
||
get_inf (r, r->sign);
|
||
case rvc_inf:
|
||
return;
|
||
|
||
case rvc_nan:
|
||
clear_significand_below (r, np2);
|
||
return;
|
||
|
||
case rvc_normal:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Check the range of the exponent. If we're out of range,
|
||
either underflow or overflow. */
|
||
if (REAL_EXP (r) > emax2)
|
||
goto overflow;
|
||
else if (REAL_EXP (r) <= emin2m1)
|
||
{
|
||
int diff;
|
||
|
||
if (!fmt->has_denorm)
|
||
{
|
||
/* Don't underflow completely until we've had a chance to round. */
|
||
if (REAL_EXP (r) < emin2m1)
|
||
goto underflow;
|
||
}
|
||
else
|
||
{
|
||
diff = emin2m1 - REAL_EXP (r) + 1;
|
||
if (diff > p2)
|
||
goto underflow;
|
||
|
||
/* De-normalize the significand. */
|
||
r->sig[0] |= sticky_rshift_significand (r, r, diff);
|
||
SET_REAL_EXP (r, REAL_EXP (r) + diff);
|
||
}
|
||
}
|
||
|
||
if (!fmt->round_towards_zero)
|
||
{
|
||
/* There are P2 true significand bits, followed by one guard bit,
|
||
followed by one sticky bit, followed by stuff. Fold nonzero
|
||
stuff into the sticky bit. */
|
||
unsigned long sticky;
|
||
bool guard, lsb;
|
||
|
||
sticky = 0;
|
||
for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
|
||
sticky |= r->sig[i];
|
||
sticky |= r->sig[w]
|
||
& (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
|
||
|
||
guard = test_significand_bit (r, np2 - 1);
|
||
lsb = test_significand_bit (r, np2);
|
||
|
||
/* Round to even. */
|
||
round_up = guard && (sticky || lsb);
|
||
}
|
||
|
||
if (round_up)
|
||
{
|
||
REAL_VALUE_TYPE u;
|
||
get_zero (&u, 0);
|
||
set_significand_bit (&u, np2);
|
||
|
||
if (add_significands (r, r, &u))
|
||
{
|
||
/* Overflow. Means the significand had been all ones, and
|
||
is now all zeros. Need to increase the exponent, and
|
||
possibly re-normalize it. */
|
||
SET_REAL_EXP (r, REAL_EXP (r) + 1);
|
||
if (REAL_EXP (r) > emax2)
|
||
goto overflow;
|
||
r->sig[SIGSZ-1] = SIG_MSB;
|
||
}
|
||
}
|
||
|
||
/* Catch underflow that we deferred until after rounding. */
|
||
if (REAL_EXP (r) <= emin2m1)
|
||
goto underflow;
|
||
|
||
/* Clear out trailing garbage. */
|
||
clear_significand_below (r, np2);
|
||
}
|
||
|
||
/* Extend or truncate to a new format. */
|
||
|
||
void
|
||
real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *a)
|
||
{
|
||
*r = *a;
|
||
|
||
if (a->decimal || fmt->b == 10)
|
||
decimal_real_convert (r, fmt, a);
|
||
|
||
round_for_format (fmt, r);
|
||
|
||
/* Make resulting NaN value to be qNaN. The caller has the
|
||
responsibility to avoid the operation if flag_signaling_nans
|
||
is on. */
|
||
if (r->cl == rvc_nan)
|
||
r->signalling = 0;
|
||
|
||
/* round_for_format de-normalizes denormals. Undo just that part. */
|
||
if (r->cl == rvc_normal)
|
||
normalize (r);
|
||
}
|
||
|
||
/* Legacy. Likewise, except return the struct directly. */
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
real_convert (&r, fmt, &a);
|
||
return r;
|
||
}
|
||
|
||
/* Return true if truncating to FMT is exact. */
|
||
|
||
bool
|
||
exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
|
||
{
|
||
REAL_VALUE_TYPE t;
|
||
int emin2m1;
|
||
|
||
/* Don't allow conversion to denormals. */
|
||
emin2m1 = fmt->emin - 1;
|
||
if (REAL_EXP (a) <= emin2m1)
|
||
return false;
|
||
|
||
/* After conversion to the new format, the value must be identical. */
|
||
real_convert (&t, fmt, a);
|
||
return real_identical (&t, a);
|
||
}
|
||
|
||
/* Write R to the given target format. Place the words of the result
|
||
in target word order in BUF. There are always 32 bits in each
|
||
long, no matter the size of the host long.
|
||
|
||
Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
|
||
|
||
long
|
||
real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
|
||
format_helper fmt)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long buf1;
|
||
|
||
r = *r_orig;
|
||
round_for_format (fmt, &r);
|
||
|
||
if (!buf)
|
||
buf = &buf1;
|
||
(*fmt->encode) (fmt, buf, &r);
|
||
|
||
return *buf;
|
||
}
|
||
|
||
/* Read R from the given target format. Read the words of the result
|
||
in target word order in BUF. There are always 32 bits in each
|
||
long, no matter the size of the host long. */
|
||
|
||
void
|
||
real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
|
||
{
|
||
(*fmt->decode) (fmt, r, buf);
|
||
}
|
||
|
||
/* Return the number of bits of the largest binary value that the
|
||
significand of FMT will hold. */
|
||
/* ??? Legacy. Should get access to real_format directly. */
|
||
|
||
int
|
||
significand_size (format_helper fmt)
|
||
{
|
||
if (fmt == NULL)
|
||
return 0;
|
||
|
||
if (fmt->b == 10)
|
||
{
|
||
/* Return the size in bits of the largest binary value that can be
|
||
held by the decimal coefficient for this format. This is one more
|
||
than the number of bits required to hold the largest coefficient
|
||
of this format. */
|
||
double log2_10 = 3.3219281;
|
||
return fmt->p * log2_10;
|
||
}
|
||
return fmt->p;
|
||
}
|
||
|
||
/* Return a hash value for the given real value. */
|
||
/* ??? The "unsigned int" return value is intended to be hashval_t,
|
||
but I didn't want to pull hashtab.h into real.h. */
|
||
|
||
unsigned int
|
||
real_hash (const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned int h;
|
||
size_t i;
|
||
|
||
h = r->cl | (r->sign << 2);
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
case rvc_inf:
|
||
return h;
|
||
|
||
case rvc_normal:
|
||
h |= (unsigned int)REAL_EXP (r) << 3;
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (r->signalling)
|
||
h ^= (unsigned int)-1;
|
||
if (r->canonical)
|
||
return h;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (sizeof (unsigned long) > sizeof (unsigned int))
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
{
|
||
unsigned long s = r->sig[i];
|
||
h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
|
||
}
|
||
else
|
||
for (i = 0; i < SIGSZ; ++i)
|
||
h ^= r->sig[i];
|
||
|
||
return h;
|
||
}
|
||
|
||
/* IEEE single-precision format. */
|
||
|
||
static void encode_ieee_single (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_ieee_single (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_ieee_single (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image, sig, exp;
|
||
unsigned long sign = r->sign;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
|
||
image = sign << 31;
|
||
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
image |= 255 << 23;
|
||
else
|
||
image |= 0x7fffffff;
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
if (r->canonical)
|
||
sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
sig &= ~(1 << 22);
|
||
else
|
||
sig |= 1 << 22;
|
||
if (sig == 0)
|
||
sig = 1 << 21;
|
||
|
||
image |= 255 << 23;
|
||
image |= sig;
|
||
}
|
||
else
|
||
image |= 0x7fffffff;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
|
||
whereas the intermediate representation is 0.F x 2**exp.
|
||
Which means we're off by one. */
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
exp = REAL_EXP (r) + 127 - 1;
|
||
image |= exp << 23;
|
||
image |= sig;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
buf[0] = image;
|
||
}
|
||
|
||
static void
|
||
decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image = buf[0] & 0xffffffff;
|
||
bool sign = (image >> 31) & 1;
|
||
int exp = (image >> 23) & 0xff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
image <<= HOST_BITS_PER_LONG - 24;
|
||
image &= ~SIG_MSB;
|
||
|
||
if (exp == 0)
|
||
{
|
||
if (image && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, -126);
|
||
r->sig[SIGSZ-1] = image << 1;
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
if (image)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
|
||
^ fmt->qnan_msb_set);
|
||
r->sig[SIGSZ-1] = image;
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 127 + 1);
|
||
r->sig[SIGSZ-1] = image | SIG_MSB;
|
||
}
|
||
}
|
||
|
||
const struct real_format ieee_single_format =
|
||
{
|
||
encode_ieee_single,
|
||
decode_ieee_single,
|
||
2,
|
||
24,
|
||
24,
|
||
-125,
|
||
128,
|
||
31,
|
||
31,
|
||
32,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_single"
|
||
};
|
||
|
||
const struct real_format mips_single_format =
|
||
{
|
||
encode_ieee_single,
|
||
decode_ieee_single,
|
||
2,
|
||
24,
|
||
24,
|
||
-125,
|
||
128,
|
||
31,
|
||
31,
|
||
32,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
true,
|
||
"mips_single"
|
||
};
|
||
|
||
const struct real_format motorola_single_format =
|
||
{
|
||
encode_ieee_single,
|
||
decode_ieee_single,
|
||
2,
|
||
24,
|
||
24,
|
||
-125,
|
||
128,
|
||
31,
|
||
31,
|
||
32,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
"motorola_single"
|
||
};
|
||
|
||
/* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
|
||
single precision with the following differences:
|
||
- Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
|
||
are generated.
|
||
- NaNs are not supported.
|
||
- The range of non-zero numbers in binary is
|
||
(001)[1.]000...000 to (255)[1.]111...111.
|
||
- Denormals can be represented, but are treated as +0.0 when
|
||
used as an operand and are never generated as a result.
|
||
- -0.0 can be represented, but a zero result is always +0.0.
|
||
- the only supported rounding mode is trunction (towards zero). */
|
||
const struct real_format spu_single_format =
|
||
{
|
||
encode_ieee_single,
|
||
decode_ieee_single,
|
||
2,
|
||
24,
|
||
24,
|
||
-125,
|
||
129,
|
||
31,
|
||
31,
|
||
0,
|
||
true,
|
||
false,
|
||
false,
|
||
false,
|
||
true,
|
||
true,
|
||
false,
|
||
false,
|
||
"spu_single"
|
||
};
|
||
|
||
/* IEEE double-precision format. */
|
||
|
||
static void encode_ieee_double (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_ieee_double (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_ieee_double (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
|
||
unsigned long sign = r->sign;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
|
||
image_hi = sign << 31;
|
||
image_lo = 0;
|
||
|
||
if (HOST_BITS_PER_LONG == 64)
|
||
{
|
||
sig_hi = r->sig[SIGSZ-1];
|
||
sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
|
||
sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
|
||
}
|
||
else
|
||
{
|
||
sig_hi = r->sig[SIGSZ-1];
|
||
sig_lo = r->sig[SIGSZ-2];
|
||
sig_lo = (sig_hi << 21) | (sig_lo >> 11);
|
||
sig_hi = (sig_hi >> 11) & 0xfffff;
|
||
}
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
image_hi |= 2047 << 20;
|
||
else
|
||
{
|
||
image_hi |= 0x7fffffff;
|
||
image_lo = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
if (r->canonical)
|
||
{
|
||
if (fmt->canonical_nan_lsbs_set)
|
||
{
|
||
sig_hi = (1 << 19) - 1;
|
||
sig_lo = 0xffffffff;
|
||
}
|
||
else
|
||
{
|
||
sig_hi = 0;
|
||
sig_lo = 0;
|
||
}
|
||
}
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
sig_hi &= ~(1 << 19);
|
||
else
|
||
sig_hi |= 1 << 19;
|
||
if (sig_hi == 0 && sig_lo == 0)
|
||
sig_hi = 1 << 18;
|
||
|
||
image_hi |= 2047 << 20;
|
||
image_hi |= sig_hi;
|
||
image_lo = sig_lo;
|
||
}
|
||
else
|
||
{
|
||
image_hi |= 0x7fffffff;
|
||
image_lo = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
|
||
whereas the intermediate representation is 0.F x 2**exp.
|
||
Which means we're off by one. */
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
exp = REAL_EXP (r) + 1023 - 1;
|
||
image_hi |= exp << 20;
|
||
image_hi |= sig_hi;
|
||
image_lo = sig_lo;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
buf[0] = image_hi, buf[1] = image_lo;
|
||
else
|
||
buf[0] = image_lo, buf[1] = image_hi;
|
||
}
|
||
|
||
static void
|
||
decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image_hi, image_lo;
|
||
bool sign;
|
||
int exp;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
image_hi = buf[0], image_lo = buf[1];
|
||
else
|
||
image_lo = buf[0], image_hi = buf[1];
|
||
image_lo &= 0xffffffff;
|
||
image_hi &= 0xffffffff;
|
||
|
||
sign = (image_hi >> 31) & 1;
|
||
exp = (image_hi >> 20) & 0x7ff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
image_hi <<= 32 - 21;
|
||
image_hi |= image_lo >> 21;
|
||
image_hi &= 0x7fffffff;
|
||
image_lo <<= 32 - 21;
|
||
|
||
if (exp == 0)
|
||
{
|
||
if ((image_hi || image_lo) && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, -1022);
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
image_hi = (image_hi << 1) | (image_lo >> 31);
|
||
image_lo <<= 1;
|
||
r->sig[SIGSZ-1] = image_hi;
|
||
r->sig[SIGSZ-2] = image_lo;
|
||
}
|
||
else
|
||
{
|
||
image_hi = (image_hi << 31 << 2) | (image_lo << 1);
|
||
r->sig[SIGSZ-1] = image_hi;
|
||
}
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
if (image_hi || image_lo)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[SIGSZ-1] = image_hi;
|
||
r->sig[SIGSZ-2] = image_lo;
|
||
}
|
||
else
|
||
r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 1023 + 1);
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[SIGSZ-1] = image_hi | SIG_MSB;
|
||
r->sig[SIGSZ-2] = image_lo;
|
||
}
|
||
else
|
||
r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
|
||
}
|
||
}
|
||
|
||
const struct real_format ieee_double_format =
|
||
{
|
||
encode_ieee_double,
|
||
decode_ieee_double,
|
||
2,
|
||
53,
|
||
53,
|
||
-1021,
|
||
1024,
|
||
63,
|
||
63,
|
||
64,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_double"
|
||
};
|
||
|
||
const struct real_format mips_double_format =
|
||
{
|
||
encode_ieee_double,
|
||
decode_ieee_double,
|
||
2,
|
||
53,
|
||
53,
|
||
-1021,
|
||
1024,
|
||
63,
|
||
63,
|
||
64,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
true,
|
||
"mips_double"
|
||
};
|
||
|
||
const struct real_format motorola_double_format =
|
||
{
|
||
encode_ieee_double,
|
||
decode_ieee_double,
|
||
2,
|
||
53,
|
||
53,
|
||
-1021,
|
||
1024,
|
||
63,
|
||
63,
|
||
64,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
"motorola_double"
|
||
};
|
||
|
||
/* IEEE extended real format. This comes in three flavors: Intel's as
|
||
a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
|
||
12- and 16-byte images may be big- or little endian; Motorola's is
|
||
always big endian. */
|
||
|
||
/* Helper subroutine which converts from the internal format to the
|
||
12-byte little-endian Intel format. Functions below adjust this
|
||
for the other possible formats. */
|
||
static void
|
||
encode_ieee_extended (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image_hi, sig_hi, sig_lo;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
|
||
image_hi = r->sign << 15;
|
||
sig_hi = sig_lo = 0;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
{
|
||
image_hi |= 32767;
|
||
|
||
/* Intel requires the explicit integer bit to be set, otherwise
|
||
it considers the value a "pseudo-infinity". Motorola docs
|
||
say it doesn't care. */
|
||
sig_hi = 0x80000000;
|
||
}
|
||
else
|
||
{
|
||
image_hi |= 32767;
|
||
sig_lo = sig_hi = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
image_hi |= 32767;
|
||
if (r->canonical)
|
||
{
|
||
if (fmt->canonical_nan_lsbs_set)
|
||
{
|
||
sig_hi = (1 << 30) - 1;
|
||
sig_lo = 0xffffffff;
|
||
}
|
||
}
|
||
else if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
sig_hi = r->sig[SIGSZ-1];
|
||
sig_lo = r->sig[SIGSZ-2];
|
||
}
|
||
else
|
||
{
|
||
sig_lo = r->sig[SIGSZ-1];
|
||
sig_hi = sig_lo >> 31 >> 1;
|
||
sig_lo &= 0xffffffff;
|
||
}
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
sig_hi &= ~(1 << 30);
|
||
else
|
||
sig_hi |= 1 << 30;
|
||
if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
|
||
sig_hi = 1 << 29;
|
||
|
||
/* Intel requires the explicit integer bit to be set, otherwise
|
||
it considers the value a "pseudo-nan". Motorola docs say it
|
||
doesn't care. */
|
||
sig_hi |= 0x80000000;
|
||
}
|
||
else
|
||
{
|
||
image_hi |= 32767;
|
||
sig_lo = sig_hi = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_normal:
|
||
{
|
||
int exp = REAL_EXP (r);
|
||
|
||
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
|
||
whereas the intermediate representation is 0.F x 2**exp.
|
||
Which means we're off by one.
|
||
|
||
Except for Motorola, which consider exp=0 and explicit
|
||
integer bit set to continue to be normalized. In theory
|
||
this discrepancy has been taken care of by the difference
|
||
in fmt->emin in round_for_format. */
|
||
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
{
|
||
exp += 16383 - 1;
|
||
gcc_assert (exp >= 0);
|
||
}
|
||
image_hi |= exp;
|
||
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
sig_hi = r->sig[SIGSZ-1];
|
||
sig_lo = r->sig[SIGSZ-2];
|
||
}
|
||
else
|
||
{
|
||
sig_lo = r->sig[SIGSZ-1];
|
||
sig_hi = sig_lo >> 31 >> 1;
|
||
sig_lo &= 0xffffffff;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
|
||
}
|
||
|
||
/* Convert from the internal format to the 12-byte Motorola format
|
||
for an IEEE extended real. */
|
||
static void
|
||
encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
long intermed[3];
|
||
encode_ieee_extended (fmt, intermed, r);
|
||
|
||
if (r->cl == rvc_inf)
|
||
/* For infinity clear the explicit integer bit again, so that the
|
||
format matches the canonical infinity generated by the FPU. */
|
||
intermed[1] = 0;
|
||
|
||
/* Motorola chips are assumed always to be big-endian. Also, the
|
||
padding in a Motorola extended real goes between the exponent and
|
||
the mantissa. At this point the mantissa is entirely within
|
||
elements 0 and 1 of intermed, and the exponent entirely within
|
||
element 2, so all we have to do is swap the order around, and
|
||
shift element 2 left 16 bits. */
|
||
buf[0] = intermed[2] << 16;
|
||
buf[1] = intermed[1];
|
||
buf[2] = intermed[0];
|
||
}
|
||
|
||
/* Convert from the internal format to the 12-byte Intel format for
|
||
an IEEE extended real. */
|
||
static void
|
||
encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
{
|
||
/* All the padding in an Intel-format extended real goes at the high
|
||
end, which in this case is after the mantissa, not the exponent.
|
||
Therefore we must shift everything down 16 bits. */
|
||
long intermed[3];
|
||
encode_ieee_extended (fmt, intermed, r);
|
||
buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
|
||
buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
|
||
buf[2] = (intermed[0] << 16);
|
||
}
|
||
else
|
||
/* encode_ieee_extended produces what we want directly. */
|
||
encode_ieee_extended (fmt, buf, r);
|
||
}
|
||
|
||
/* Convert from the internal format to the 16-byte Intel format for
|
||
an IEEE extended real. */
|
||
static void
|
||
encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
/* All the padding in an Intel-format extended real goes at the high end. */
|
||
encode_ieee_extended_intel_96 (fmt, buf, r);
|
||
buf[3] = 0;
|
||
}
|
||
|
||
/* As above, we have a helper function which converts from 12-byte
|
||
little-endian Intel format to internal format. Functions below
|
||
adjust for the other possible formats. */
|
||
static void
|
||
decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image_hi, sig_hi, sig_lo;
|
||
bool sign;
|
||
int exp;
|
||
|
||
sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
|
||
sig_lo &= 0xffffffff;
|
||
sig_hi &= 0xffffffff;
|
||
image_hi &= 0xffffffff;
|
||
|
||
sign = (image_hi >> 15) & 1;
|
||
exp = image_hi & 0x7fff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (exp == 0)
|
||
{
|
||
if ((sig_hi || sig_lo) && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
|
||
/* When the IEEE format contains a hidden bit, we know that
|
||
it's zero at this point, and so shift up the significand
|
||
and decrease the exponent to match. In this case, Motorola
|
||
defines the explicit integer bit to be valid, so we don't
|
||
know whether the msb is set or not. */
|
||
SET_REAL_EXP (r, fmt->emin);
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[SIGSZ-1] = sig_hi;
|
||
r->sig[SIGSZ-2] = sig_lo;
|
||
}
|
||
else
|
||
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
|
||
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
/* See above re "pseudo-infinities" and "pseudo-nans".
|
||
Short summary is that the MSB will likely always be
|
||
set, and that we don't care about it. */
|
||
sig_hi &= 0x7fffffff;
|
||
|
||
if (sig_hi || sig_lo)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[SIGSZ-1] = sig_hi;
|
||
r->sig[SIGSZ-2] = sig_lo;
|
||
}
|
||
else
|
||
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 16383 + 1);
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[SIGSZ-1] = sig_hi;
|
||
r->sig[SIGSZ-2] = sig_lo;
|
||
}
|
||
else
|
||
r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
|
||
}
|
||
}
|
||
|
||
/* Convert from the internal format to the 12-byte Motorola format
|
||
for an IEEE extended real. */
|
||
static void
|
||
decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
long intermed[3];
|
||
|
||
/* Motorola chips are assumed always to be big-endian. Also, the
|
||
padding in a Motorola extended real goes between the exponent and
|
||
the mantissa; remove it. */
|
||
intermed[0] = buf[2];
|
||
intermed[1] = buf[1];
|
||
intermed[2] = (unsigned long)buf[0] >> 16;
|
||
|
||
decode_ieee_extended (fmt, r, intermed);
|
||
}
|
||
|
||
/* Convert from the internal format to the 12-byte Intel format for
|
||
an IEEE extended real. */
|
||
static void
|
||
decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
{
|
||
/* All the padding in an Intel-format extended real goes at the high
|
||
end, which in this case is after the mantissa, not the exponent.
|
||
Therefore we must shift everything up 16 bits. */
|
||
long intermed[3];
|
||
|
||
intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
|
||
intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
|
||
intermed[2] = ((unsigned long)buf[0] >> 16);
|
||
|
||
decode_ieee_extended (fmt, r, intermed);
|
||
}
|
||
else
|
||
/* decode_ieee_extended produces what we want directly. */
|
||
decode_ieee_extended (fmt, r, buf);
|
||
}
|
||
|
||
/* Convert from the internal format to the 16-byte Intel format for
|
||
an IEEE extended real. */
|
||
static void
|
||
decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
/* All the padding in an Intel-format extended real goes at the high end. */
|
||
decode_ieee_extended_intel_96 (fmt, r, buf);
|
||
}
|
||
|
||
const struct real_format ieee_extended_motorola_format =
|
||
{
|
||
encode_ieee_extended_motorola,
|
||
decode_ieee_extended_motorola,
|
||
2,
|
||
64,
|
||
64,
|
||
-16382,
|
||
16384,
|
||
95,
|
||
95,
|
||
0,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
"ieee_extended_motorola"
|
||
};
|
||
|
||
const struct real_format ieee_extended_intel_96_format =
|
||
{
|
||
encode_ieee_extended_intel_96,
|
||
decode_ieee_extended_intel_96,
|
||
2,
|
||
64,
|
||
64,
|
||
-16381,
|
||
16384,
|
||
79,
|
||
79,
|
||
65,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_extended_intel_96"
|
||
};
|
||
|
||
const struct real_format ieee_extended_intel_128_format =
|
||
{
|
||
encode_ieee_extended_intel_128,
|
||
decode_ieee_extended_intel_128,
|
||
2,
|
||
64,
|
||
64,
|
||
-16381,
|
||
16384,
|
||
79,
|
||
79,
|
||
65,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_extended_intel_128"
|
||
};
|
||
|
||
/* The following caters to i386 systems that set the rounding precision
|
||
to 53 bits instead of 64, e.g. FreeBSD. */
|
||
const struct real_format ieee_extended_intel_96_round_53_format =
|
||
{
|
||
encode_ieee_extended_intel_96,
|
||
decode_ieee_extended_intel_96,
|
||
2,
|
||
53,
|
||
53,
|
||
-16381,
|
||
16384,
|
||
79,
|
||
79,
|
||
33,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_extended_intel_96_round_53"
|
||
};
|
||
|
||
/* IBM 128-bit extended precision format: a pair of IEEE double precision
|
||
numbers whose sum is equal to the extended precision value. The number
|
||
with greater magnitude is first. This format has the same magnitude
|
||
range as an IEEE double precision value, but effectively 106 bits of
|
||
significand precision. Infinity and NaN are represented by their IEEE
|
||
double precision value stored in the first number, the second number is
|
||
+0.0 or -0.0 for Infinity and don't-care for NaN. */
|
||
|
||
static void encode_ibm_extended (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_ibm_extended (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_ibm_extended (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
REAL_VALUE_TYPE u, normr, v;
|
||
const struct real_format *base_fmt;
|
||
|
||
base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
|
||
|
||
/* Renormalize R before doing any arithmetic on it. */
|
||
normr = *r;
|
||
if (normr.cl == rvc_normal)
|
||
normalize (&normr);
|
||
|
||
/* u = IEEE double precision portion of significand. */
|
||
u = normr;
|
||
round_for_format (base_fmt, &u);
|
||
encode_ieee_double (base_fmt, &buf[0], &u);
|
||
|
||
if (u.cl == rvc_normal)
|
||
{
|
||
do_add (&v, &normr, &u, 1);
|
||
/* Call round_for_format since we might need to denormalize. */
|
||
round_for_format (base_fmt, &v);
|
||
encode_ieee_double (base_fmt, &buf[2], &v);
|
||
}
|
||
else
|
||
{
|
||
/* Inf, NaN, 0 are all representable as doubles, so the
|
||
least-significant part can be 0.0. */
|
||
buf[2] = 0;
|
||
buf[3] = 0;
|
||
}
|
||
}
|
||
|
||
static void
|
||
decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
REAL_VALUE_TYPE u, v;
|
||
const struct real_format *base_fmt;
|
||
|
||
base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
|
||
decode_ieee_double (base_fmt, &u, &buf[0]);
|
||
|
||
if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
|
||
{
|
||
decode_ieee_double (base_fmt, &v, &buf[2]);
|
||
do_add (r, &u, &v, 0);
|
||
}
|
||
else
|
||
*r = u;
|
||
}
|
||
|
||
const struct real_format ibm_extended_format =
|
||
{
|
||
encode_ibm_extended,
|
||
decode_ibm_extended,
|
||
2,
|
||
53 + 53,
|
||
53,
|
||
-1021 + 53,
|
||
1024,
|
||
127,
|
||
-1,
|
||
0,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ibm_extended"
|
||
};
|
||
|
||
const struct real_format mips_extended_format =
|
||
{
|
||
encode_ibm_extended,
|
||
decode_ibm_extended,
|
||
2,
|
||
53 + 53,
|
||
53,
|
||
-1021 + 53,
|
||
1024,
|
||
127,
|
||
-1,
|
||
0,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
true,
|
||
"mips_extended"
|
||
};
|
||
|
||
|
||
/* IEEE quad precision format. */
|
||
|
||
static void encode_ieee_quad (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_ieee_quad (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_ieee_quad (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image3, image2, image1, image0, exp;
|
||
unsigned long sign = r->sign;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
REAL_VALUE_TYPE u;
|
||
|
||
image3 = sign << 31;
|
||
image2 = 0;
|
||
image1 = 0;
|
||
image0 = 0;
|
||
|
||
rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
image3 |= 32767 << 16;
|
||
else
|
||
{
|
||
image3 |= 0x7fffffff;
|
||
image2 = 0xffffffff;
|
||
image1 = 0xffffffff;
|
||
image0 = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
image3 |= 32767 << 16;
|
||
|
||
if (r->canonical)
|
||
{
|
||
if (fmt->canonical_nan_lsbs_set)
|
||
{
|
||
image3 |= 0x7fff;
|
||
image2 = image1 = image0 = 0xffffffff;
|
||
}
|
||
}
|
||
else if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
image0 = u.sig[0];
|
||
image1 = u.sig[1];
|
||
image2 = u.sig[2];
|
||
image3 |= u.sig[3] & 0xffff;
|
||
}
|
||
else
|
||
{
|
||
image0 = u.sig[0];
|
||
image1 = image0 >> 31 >> 1;
|
||
image2 = u.sig[1];
|
||
image3 |= (image2 >> 31 >> 1) & 0xffff;
|
||
image0 &= 0xffffffff;
|
||
image2 &= 0xffffffff;
|
||
}
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
image3 &= ~0x8000;
|
||
else
|
||
image3 |= 0x8000;
|
||
if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
|
||
image3 |= 0x4000;
|
||
}
|
||
else
|
||
{
|
||
image3 |= 0x7fffffff;
|
||
image2 = 0xffffffff;
|
||
image1 = 0xffffffff;
|
||
image0 = 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
|
||
whereas the intermediate representation is 0.F x 2**exp.
|
||
Which means we're off by one. */
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
exp = REAL_EXP (r) + 16383 - 1;
|
||
image3 |= exp << 16;
|
||
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
image0 = u.sig[0];
|
||
image1 = u.sig[1];
|
||
image2 = u.sig[2];
|
||
image3 |= u.sig[3] & 0xffff;
|
||
}
|
||
else
|
||
{
|
||
image0 = u.sig[0];
|
||
image1 = image0 >> 31 >> 1;
|
||
image2 = u.sig[1];
|
||
image3 |= (image2 >> 31 >> 1) & 0xffff;
|
||
image0 &= 0xffffffff;
|
||
image2 &= 0xffffffff;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
{
|
||
buf[0] = image3;
|
||
buf[1] = image2;
|
||
buf[2] = image1;
|
||
buf[3] = image0;
|
||
}
|
||
else
|
||
{
|
||
buf[0] = image0;
|
||
buf[1] = image1;
|
||
buf[2] = image2;
|
||
buf[3] = image3;
|
||
}
|
||
}
|
||
|
||
static void
|
||
decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image3, image2, image1, image0;
|
||
bool sign;
|
||
int exp;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
{
|
||
image3 = buf[0];
|
||
image2 = buf[1];
|
||
image1 = buf[2];
|
||
image0 = buf[3];
|
||
}
|
||
else
|
||
{
|
||
image0 = buf[0];
|
||
image1 = buf[1];
|
||
image2 = buf[2];
|
||
image3 = buf[3];
|
||
}
|
||
image0 &= 0xffffffff;
|
||
image1 &= 0xffffffff;
|
||
image2 &= 0xffffffff;
|
||
|
||
sign = (image3 >> 31) & 1;
|
||
exp = (image3 >> 16) & 0x7fff;
|
||
image3 &= 0xffff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (exp == 0)
|
||
{
|
||
if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
|
||
SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[0] = image0;
|
||
r->sig[1] = image1;
|
||
r->sig[2] = image2;
|
||
r->sig[3] = image3;
|
||
}
|
||
else
|
||
{
|
||
r->sig[0] = (image1 << 31 << 1) | image0;
|
||
r->sig[1] = (image3 << 31 << 1) | image2;
|
||
}
|
||
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
if (image3 | image2 | image1 | image0)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
|
||
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[0] = image0;
|
||
r->sig[1] = image1;
|
||
r->sig[2] = image2;
|
||
r->sig[3] = image3;
|
||
}
|
||
else
|
||
{
|
||
r->sig[0] = (image1 << 31 << 1) | image0;
|
||
r->sig[1] = (image3 << 31 << 1) | image2;
|
||
}
|
||
lshift_significand (r, r, SIGNIFICAND_BITS - 113);
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 16383 + 1);
|
||
|
||
if (HOST_BITS_PER_LONG == 32)
|
||
{
|
||
r->sig[0] = image0;
|
||
r->sig[1] = image1;
|
||
r->sig[2] = image2;
|
||
r->sig[3] = image3;
|
||
}
|
||
else
|
||
{
|
||
r->sig[0] = (image1 << 31 << 1) | image0;
|
||
r->sig[1] = (image3 << 31 << 1) | image2;
|
||
}
|
||
lshift_significand (r, r, SIGNIFICAND_BITS - 113);
|
||
r->sig[SIGSZ-1] |= SIG_MSB;
|
||
}
|
||
}
|
||
|
||
const struct real_format ieee_quad_format =
|
||
{
|
||
encode_ieee_quad,
|
||
decode_ieee_quad,
|
||
2,
|
||
113,
|
||
113,
|
||
-16381,
|
||
16384,
|
||
127,
|
||
127,
|
||
128,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_quad"
|
||
};
|
||
|
||
const struct real_format mips_quad_format =
|
||
{
|
||
encode_ieee_quad,
|
||
decode_ieee_quad,
|
||
2,
|
||
113,
|
||
113,
|
||
-16381,
|
||
16384,
|
||
127,
|
||
127,
|
||
128,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
true,
|
||
"mips_quad"
|
||
};
|
||
|
||
/* Descriptions of VAX floating point formats can be found beginning at
|
||
|
||
http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
|
||
|
||
The thing to remember is that they're almost IEEE, except for word
|
||
order, exponent bias, and the lack of infinities, nans, and denormals.
|
||
|
||
We don't implement the H_floating format here, simply because neither
|
||
the VAX or Alpha ports use it. */
|
||
|
||
static void encode_vax_f (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_vax_f (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
static void encode_vax_d (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_vax_d (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
static void encode_vax_g (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_vax_g (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long sign, exp, sig, image;
|
||
|
||
sign = r->sign << 15;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
image = 0;
|
||
break;
|
||
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
image = 0xffff7fff | sign;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
|
||
exp = REAL_EXP (r) + 128;
|
||
|
||
image = (sig << 16) & 0xffff0000;
|
||
image |= sign;
|
||
image |= exp << 7;
|
||
image |= sig >> 16;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
buf[0] = image;
|
||
}
|
||
|
||
static void
|
||
decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r, const long *buf)
|
||
{
|
||
unsigned long image = buf[0] & 0xffffffff;
|
||
int exp = (image >> 7) & 0xff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (exp != 0)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = (image >> 15) & 1;
|
||
SET_REAL_EXP (r, exp - 128);
|
||
|
||
image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
|
||
r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
|
||
}
|
||
}
|
||
|
||
static void
|
||
encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image0, image1, sign = r->sign << 15;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
image0 = image1 = 0;
|
||
break;
|
||
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
image0 = 0xffff7fff | sign;
|
||
image1 = 0xffffffff;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Extract the significand into straight hi:lo. */
|
||
if (HOST_BITS_PER_LONG == 64)
|
||
{
|
||
image0 = r->sig[SIGSZ-1];
|
||
image1 = (image0 >> (64 - 56)) & 0xffffffff;
|
||
image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
|
||
}
|
||
else
|
||
{
|
||
image0 = r->sig[SIGSZ-1];
|
||
image1 = r->sig[SIGSZ-2];
|
||
image1 = (image0 << 24) | (image1 >> 8);
|
||
image0 = (image0 >> 8) & 0xffffff;
|
||
}
|
||
|
||
/* Rearrange the half-words of the significand to match the
|
||
external format. */
|
||
image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
|
||
image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
|
||
|
||
/* Add the sign and exponent. */
|
||
image0 |= sign;
|
||
image0 |= (REAL_EXP (r) + 128) << 7;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
buf[0] = image1, buf[1] = image0;
|
||
else
|
||
buf[0] = image0, buf[1] = image1;
|
||
}
|
||
|
||
static void
|
||
decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r, const long *buf)
|
||
{
|
||
unsigned long image0, image1;
|
||
int exp;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
image1 = buf[0], image0 = buf[1];
|
||
else
|
||
image0 = buf[0], image1 = buf[1];
|
||
image0 &= 0xffffffff;
|
||
image1 &= 0xffffffff;
|
||
|
||
exp = (image0 >> 7) & 0xff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (exp != 0)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = (image0 >> 15) & 1;
|
||
SET_REAL_EXP (r, exp - 128);
|
||
|
||
/* Rearrange the half-words of the external format into
|
||
proper ascending order. */
|
||
image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
|
||
image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
|
||
|
||
if (HOST_BITS_PER_LONG == 64)
|
||
{
|
||
image0 = (image0 << 31 << 1) | image1;
|
||
image0 <<= 64 - 56;
|
||
image0 |= SIG_MSB;
|
||
r->sig[SIGSZ-1] = image0;
|
||
}
|
||
else
|
||
{
|
||
r->sig[SIGSZ-1] = image0;
|
||
r->sig[SIGSZ-2] = image1;
|
||
lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
|
||
r->sig[SIGSZ-1] |= SIG_MSB;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image0, image1, sign = r->sign << 15;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
image0 = image1 = 0;
|
||
break;
|
||
|
||
case rvc_inf:
|
||
case rvc_nan:
|
||
image0 = 0xffff7fff | sign;
|
||
image1 = 0xffffffff;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Extract the significand into straight hi:lo. */
|
||
if (HOST_BITS_PER_LONG == 64)
|
||
{
|
||
image0 = r->sig[SIGSZ-1];
|
||
image1 = (image0 >> (64 - 53)) & 0xffffffff;
|
||
image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
|
||
}
|
||
else
|
||
{
|
||
image0 = r->sig[SIGSZ-1];
|
||
image1 = r->sig[SIGSZ-2];
|
||
image1 = (image0 << 21) | (image1 >> 11);
|
||
image0 = (image0 >> 11) & 0xfffff;
|
||
}
|
||
|
||
/* Rearrange the half-words of the significand to match the
|
||
external format. */
|
||
image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
|
||
image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
|
||
|
||
/* Add the sign and exponent. */
|
||
image0 |= sign;
|
||
image0 |= (REAL_EXP (r) + 1024) << 4;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
buf[0] = image1, buf[1] = image0;
|
||
else
|
||
buf[0] = image0, buf[1] = image1;
|
||
}
|
||
|
||
static void
|
||
decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r, const long *buf)
|
||
{
|
||
unsigned long image0, image1;
|
||
int exp;
|
||
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
image1 = buf[0], image0 = buf[1];
|
||
else
|
||
image0 = buf[0], image1 = buf[1];
|
||
image0 &= 0xffffffff;
|
||
image1 &= 0xffffffff;
|
||
|
||
exp = (image0 >> 4) & 0x7ff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
|
||
if (exp != 0)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = (image0 >> 15) & 1;
|
||
SET_REAL_EXP (r, exp - 1024);
|
||
|
||
/* Rearrange the half-words of the external format into
|
||
proper ascending order. */
|
||
image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
|
||
image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
|
||
|
||
if (HOST_BITS_PER_LONG == 64)
|
||
{
|
||
image0 = (image0 << 31 << 1) | image1;
|
||
image0 <<= 64 - 53;
|
||
image0 |= SIG_MSB;
|
||
r->sig[SIGSZ-1] = image0;
|
||
}
|
||
else
|
||
{
|
||
r->sig[SIGSZ-1] = image0;
|
||
r->sig[SIGSZ-2] = image1;
|
||
lshift_significand (r, r, 64 - 53);
|
||
r->sig[SIGSZ-1] |= SIG_MSB;
|
||
}
|
||
}
|
||
}
|
||
|
||
const struct real_format vax_f_format =
|
||
{
|
||
encode_vax_f,
|
||
decode_vax_f,
|
||
2,
|
||
24,
|
||
24,
|
||
-127,
|
||
127,
|
||
15,
|
||
15,
|
||
0,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
"vax_f"
|
||
};
|
||
|
||
const struct real_format vax_d_format =
|
||
{
|
||
encode_vax_d,
|
||
decode_vax_d,
|
||
2,
|
||
56,
|
||
56,
|
||
-127,
|
||
127,
|
||
15,
|
||
15,
|
||
0,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
"vax_d"
|
||
};
|
||
|
||
const struct real_format vax_g_format =
|
||
{
|
||
encode_vax_g,
|
||
decode_vax_g,
|
||
2,
|
||
53,
|
||
53,
|
||
-1023,
|
||
1023,
|
||
15,
|
||
15,
|
||
0,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
false,
|
||
"vax_g"
|
||
};
|
||
|
||
/* Encode real R into a single precision DFP value in BUF. */
|
||
static void
|
||
encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
long *buf ATTRIBUTE_UNUSED,
|
||
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
|
||
{
|
||
encode_decimal32 (fmt, buf, r);
|
||
}
|
||
|
||
/* Decode a single precision DFP value in BUF into a real R. */
|
||
static void
|
||
decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
|
||
const long *buf ATTRIBUTE_UNUSED)
|
||
{
|
||
decode_decimal32 (fmt, r, buf);
|
||
}
|
||
|
||
/* Encode real R into a double precision DFP value in BUF. */
|
||
static void
|
||
encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
long *buf ATTRIBUTE_UNUSED,
|
||
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
|
||
{
|
||
encode_decimal64 (fmt, buf, r);
|
||
}
|
||
|
||
/* Decode a double precision DFP value in BUF into a real R. */
|
||
static void
|
||
decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
|
||
const long *buf ATTRIBUTE_UNUSED)
|
||
{
|
||
decode_decimal64 (fmt, r, buf);
|
||
}
|
||
|
||
/* Encode real R into a quad precision DFP value in BUF. */
|
||
static void
|
||
encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
long *buf ATTRIBUTE_UNUSED,
|
||
const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
|
||
{
|
||
encode_decimal128 (fmt, buf, r);
|
||
}
|
||
|
||
/* Decode a quad precision DFP value in BUF into a real R. */
|
||
static void
|
||
decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
|
||
const long *buf ATTRIBUTE_UNUSED)
|
||
{
|
||
decode_decimal128 (fmt, r, buf);
|
||
}
|
||
|
||
/* Single precision decimal floating point (IEEE 754). */
|
||
const struct real_format decimal_single_format =
|
||
{
|
||
encode_decimal_single,
|
||
decode_decimal_single,
|
||
10,
|
||
7,
|
||
7,
|
||
-94,
|
||
97,
|
||
31,
|
||
31,
|
||
32,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"decimal_single"
|
||
};
|
||
|
||
/* Double precision decimal floating point (IEEE 754). */
|
||
const struct real_format decimal_double_format =
|
||
{
|
||
encode_decimal_double,
|
||
decode_decimal_double,
|
||
10,
|
||
16,
|
||
16,
|
||
-382,
|
||
385,
|
||
63,
|
||
63,
|
||
64,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"decimal_double"
|
||
};
|
||
|
||
/* Quad precision decimal floating point (IEEE 754). */
|
||
const struct real_format decimal_quad_format =
|
||
{
|
||
encode_decimal_quad,
|
||
decode_decimal_quad,
|
||
10,
|
||
34,
|
||
34,
|
||
-6142,
|
||
6145,
|
||
127,
|
||
127,
|
||
128,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"decimal_quad"
|
||
};
|
||
|
||
/* Encode half-precision floats. This routine is used both for the IEEE
|
||
ARM alternative encodings. */
|
||
static void
|
||
encode_ieee_half (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image, sig, exp;
|
||
unsigned long sign = r->sign;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
|
||
image = sign << 15;
|
||
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
image |= 31 << 10;
|
||
else
|
||
image |= 0x7fff;
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
if (r->canonical)
|
||
sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
sig &= ~(1 << 9);
|
||
else
|
||
sig |= 1 << 9;
|
||
if (sig == 0)
|
||
sig = 1 << 8;
|
||
|
||
image |= 31 << 10;
|
||
image |= sig;
|
||
}
|
||
else
|
||
image |= 0x3ff;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
/* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
|
||
whereas the intermediate representation is 0.F x 2**exp.
|
||
Which means we're off by one. */
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
exp = REAL_EXP (r) + 15 - 1;
|
||
image |= exp << 10;
|
||
image |= sig;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
buf[0] = image;
|
||
}
|
||
|
||
/* Decode half-precision floats. This routine is used both for the IEEE
|
||
ARM alternative encodings. */
|
||
static void
|
||
decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image = buf[0] & 0xffff;
|
||
bool sign = (image >> 15) & 1;
|
||
int exp = (image >> 10) & 0x1f;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
image <<= HOST_BITS_PER_LONG - 11;
|
||
image &= ~SIG_MSB;
|
||
|
||
if (exp == 0)
|
||
{
|
||
if (image && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, -14);
|
||
r->sig[SIGSZ-1] = image << 1;
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
if (image)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
|
||
^ fmt->qnan_msb_set);
|
||
r->sig[SIGSZ-1] = image;
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 15 + 1);
|
||
r->sig[SIGSZ-1] = image | SIG_MSB;
|
||
}
|
||
}
|
||
|
||
/* Encode arm_bfloat types. */
|
||
static void
|
||
encode_arm_bfloat_half (const struct real_format *fmt, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
unsigned long image, sig, exp;
|
||
unsigned long sign = r->sign;
|
||
bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
|
||
|
||
image = sign << 15;
|
||
sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 8)) & 0x7f;
|
||
|
||
switch (r->cl)
|
||
{
|
||
case rvc_zero:
|
||
break;
|
||
|
||
case rvc_inf:
|
||
if (fmt->has_inf)
|
||
image |= 255 << 7;
|
||
else
|
||
image |= 0x7fff;
|
||
break;
|
||
|
||
case rvc_nan:
|
||
if (fmt->has_nans)
|
||
{
|
||
if (r->canonical)
|
||
sig = (fmt->canonical_nan_lsbs_set ? (1 << 6) - 1 : 0);
|
||
if (r->signalling == fmt->qnan_msb_set)
|
||
sig &= ~(1 << 6);
|
||
else
|
||
sig |= 1 << 6;
|
||
if (sig == 0)
|
||
sig = 1 << 5;
|
||
|
||
image |= 255 << 7;
|
||
image |= sig;
|
||
}
|
||
else
|
||
image |= 0x7fff;
|
||
break;
|
||
|
||
case rvc_normal:
|
||
if (denormal)
|
||
exp = 0;
|
||
else
|
||
exp = REAL_EXP (r) + 127 - 1;
|
||
image |= exp << 7;
|
||
image |= sig;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
buf[0] = image;
|
||
}
|
||
|
||
/* Decode arm_bfloat types. */
|
||
static void
|
||
decode_arm_bfloat_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
|
||
const long *buf)
|
||
{
|
||
unsigned long image = buf[0] & 0xffff;
|
||
bool sign = (image >> 15) & 1;
|
||
int exp = (image >> 7) & 0xff;
|
||
|
||
memset (r, 0, sizeof (*r));
|
||
image <<= HOST_BITS_PER_LONG - 8;
|
||
image &= ~SIG_MSB;
|
||
|
||
if (exp == 0)
|
||
{
|
||
if (image && fmt->has_denorm)
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, -126);
|
||
r->sig[SIGSZ-1] = image << 1;
|
||
normalize (r);
|
||
}
|
||
else if (fmt->has_signed_zero)
|
||
r->sign = sign;
|
||
}
|
||
else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
|
||
{
|
||
if (image)
|
||
{
|
||
r->cl = rvc_nan;
|
||
r->sign = sign;
|
||
r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
|
||
^ fmt->qnan_msb_set);
|
||
r->sig[SIGSZ-1] = image;
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_inf;
|
||
r->sign = sign;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r->cl = rvc_normal;
|
||
r->sign = sign;
|
||
SET_REAL_EXP (r, exp - 127 + 1);
|
||
r->sig[SIGSZ-1] = image | SIG_MSB;
|
||
}
|
||
}
|
||
|
||
/* Half-precision format, as specified in IEEE 754R. */
|
||
const struct real_format ieee_half_format =
|
||
{
|
||
encode_ieee_half,
|
||
decode_ieee_half,
|
||
2,
|
||
11,
|
||
11,
|
||
-13,
|
||
16,
|
||
15,
|
||
15,
|
||
16,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"ieee_half"
|
||
};
|
||
|
||
/* ARM's alternative half-precision format, similar to IEEE but with
|
||
no reserved exponent value for NaNs and infinities; rather, it just
|
||
extends the range of exponents by one. */
|
||
const struct real_format arm_half_format =
|
||
{
|
||
encode_ieee_half,
|
||
decode_ieee_half,
|
||
2,
|
||
11,
|
||
11,
|
||
-13,
|
||
17,
|
||
15,
|
||
15,
|
||
0,
|
||
false,
|
||
true,
|
||
false,
|
||
false,
|
||
true,
|
||
true,
|
||
false,
|
||
false,
|
||
"arm_half"
|
||
};
|
||
|
||
/* ARM Bfloat half-precision format. This format resembles a truncated
|
||
(16-bit) version of the 32-bit IEEE 754 single-precision floating-point
|
||
format. */
|
||
const struct real_format arm_bfloat_half_format =
|
||
{
|
||
encode_arm_bfloat_half,
|
||
decode_arm_bfloat_half,
|
||
2,
|
||
8,
|
||
8,
|
||
-125,
|
||
128,
|
||
15,
|
||
15,
|
||
0,
|
||
false,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
true,
|
||
false,
|
||
"arm_bfloat_half"
|
||
};
|
||
|
||
|
||
/* A synthetic "format" for internal arithmetic. It's the size of the
|
||
internal significand minus the two bits needed for proper rounding.
|
||
The encode and decode routines exist only to satisfy our paranoia
|
||
harness. */
|
||
|
||
static void encode_internal (const struct real_format *fmt,
|
||
long *, const REAL_VALUE_TYPE *);
|
||
static void decode_internal (const struct real_format *,
|
||
REAL_VALUE_TYPE *, const long *);
|
||
|
||
static void
|
||
encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
|
||
const REAL_VALUE_TYPE *r)
|
||
{
|
||
memcpy (buf, r, sizeof (*r));
|
||
}
|
||
|
||
static void
|
||
decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
|
||
REAL_VALUE_TYPE *r, const long *buf)
|
||
{
|
||
memcpy (r, buf, sizeof (*r));
|
||
}
|
||
|
||
const struct real_format real_internal_format =
|
||
{
|
||
encode_internal,
|
||
decode_internal,
|
||
2,
|
||
SIGNIFICAND_BITS - 2,
|
||
SIGNIFICAND_BITS - 2,
|
||
-MAX_EXP,
|
||
MAX_EXP,
|
||
-1,
|
||
-1,
|
||
0,
|
||
false,
|
||
false,
|
||
true,
|
||
true,
|
||
false,
|
||
true,
|
||
true,
|
||
false,
|
||
"real_internal"
|
||
};
|
||
|
||
/* Calculate X raised to the integer exponent N in format FMT and store
|
||
the result in R. Return true if the result may be inexact due to
|
||
loss of precision. The algorithm is the classic "left-to-right binary
|
||
method" described in section 4.6.3 of Donald Knuth's "Seminumerical
|
||
Algorithms", "The Art of Computer Programming", Volume 2. */
|
||
|
||
bool
|
||
real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
|
||
{
|
||
unsigned HOST_WIDE_INT bit;
|
||
REAL_VALUE_TYPE t;
|
||
bool inexact = false;
|
||
bool init = false;
|
||
bool neg;
|
||
int i;
|
||
|
||
if (n == 0)
|
||
{
|
||
*r = dconst1;
|
||
return false;
|
||
}
|
||
else if (n < 0)
|
||
{
|
||
/* Don't worry about overflow, from now on n is unsigned. */
|
||
neg = true;
|
||
n = -n;
|
||
}
|
||
else
|
||
neg = false;
|
||
|
||
t = *x;
|
||
bit = HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1);
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
|
||
{
|
||
if (init)
|
||
{
|
||
inexact |= do_multiply (&t, &t, &t);
|
||
if (n & bit)
|
||
inexact |= do_multiply (&t, &t, x);
|
||
}
|
||
else if (n & bit)
|
||
init = true;
|
||
bit >>= 1;
|
||
}
|
||
|
||
if (neg)
|
||
inexact |= do_divide (&t, &dconst1, &t);
|
||
|
||
real_convert (r, fmt, &t);
|
||
return inexact;
|
||
}
|
||
|
||
/* Round X to the nearest integer not larger in absolute value, i.e.
|
||
towards zero, placing the result in R in format FMT. */
|
||
|
||
void
|
||
real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x)
|
||
{
|
||
do_fix_trunc (r, x);
|
||
if (fmt)
|
||
real_convert (r, fmt, r);
|
||
}
|
||
|
||
/* Round X to the largest integer not greater in value, i.e. round
|
||
down, placing the result in R in format FMT. */
|
||
|
||
void
|
||
real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x)
|
||
{
|
||
REAL_VALUE_TYPE t;
|
||
|
||
do_fix_trunc (&t, x);
|
||
if (! real_identical (&t, x) && x->sign)
|
||
do_add (&t, &t, &dconstm1, 0);
|
||
if (fmt)
|
||
real_convert (r, fmt, &t);
|
||
else
|
||
*r = t;
|
||
}
|
||
|
||
/* Round X to the smallest integer not less then argument, i.e. round
|
||
up, placing the result in R in format FMT. */
|
||
|
||
void
|
||
real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x)
|
||
{
|
||
REAL_VALUE_TYPE t;
|
||
|
||
do_fix_trunc (&t, x);
|
||
if (! real_identical (&t, x) && ! x->sign)
|
||
do_add (&t, &t, &dconst1, 0);
|
||
if (fmt)
|
||
real_convert (r, fmt, &t);
|
||
else
|
||
*r = t;
|
||
}
|
||
|
||
/* Round X to the nearest integer, but round halfway cases away from
|
||
zero. */
|
||
|
||
void
|
||
real_round (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x)
|
||
{
|
||
do_add (r, x, &dconsthalf, x->sign);
|
||
do_fix_trunc (r, r);
|
||
if (fmt)
|
||
real_convert (r, fmt, r);
|
||
}
|
||
|
||
/* Return true (including 0) if integer part of R is even, else return
|
||
false. The function is not valid for rvc_inf and rvc_nan classes. */
|
||
|
||
static bool
|
||
is_even (REAL_VALUE_TYPE *r)
|
||
{
|
||
gcc_assert (r->cl != rvc_inf);
|
||
gcc_assert (r->cl != rvc_nan);
|
||
|
||
if (r->cl == rvc_zero)
|
||
return true;
|
||
|
||
/* For (-1,1), number is even. */
|
||
if (REAL_EXP (r) <= 0)
|
||
return true;
|
||
|
||
/* Check lowest bit, if not set, return true. */
|
||
else if (REAL_EXP (r) <= SIGNIFICAND_BITS)
|
||
{
|
||
unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r);
|
||
int w = n / HOST_BITS_PER_LONG;
|
||
|
||
unsigned long num = ((unsigned long)1 << (n % HOST_BITS_PER_LONG));
|
||
|
||
if ((r->sig[w] & num) == 0)
|
||
return true;
|
||
}
|
||
else
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if R is halfway between two integers, else return
|
||
false. */
|
||
|
||
static bool
|
||
is_halfway_below (const REAL_VALUE_TYPE *r)
|
||
{
|
||
if (r->cl != rvc_normal)
|
||
return false;
|
||
|
||
/* For numbers (-0.5,0) and (0,0.5). */
|
||
if (REAL_EXP (r) < 0)
|
||
return false;
|
||
|
||
else if (REAL_EXP (r) < SIGNIFICAND_BITS)
|
||
{
|
||
unsigned int n = SIGNIFICAND_BITS - REAL_EXP (r) - 1;
|
||
int w = n / HOST_BITS_PER_LONG;
|
||
|
||
for (int i = 0; i < w; ++i)
|
||
if (r->sig[i] != 0)
|
||
return false;
|
||
|
||
unsigned long num = 1UL << (n % HOST_BITS_PER_LONG);
|
||
|
||
if ((r->sig[w] & num) != 0 && (r->sig[w] & (num - 1)) == 0)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Round X to nearest integer, rounding halfway cases towards even. */
|
||
|
||
void
|
||
real_roundeven (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x)
|
||
{
|
||
if (is_halfway_below (x))
|
||
{
|
||
/* Special case as -0.5 rounds to -0.0 and
|
||
similarly +0.5 rounds to +0.0. */
|
||
if (REAL_EXP (x) == 0)
|
||
{
|
||
*r = *x;
|
||
clear_significand_below (r, SIGNIFICAND_BITS);
|
||
}
|
||
else
|
||
{
|
||
do_add (r, x, &dconsthalf, x->sign);
|
||
if (!is_even (r))
|
||
do_add (r, r, &dconstm1, x->sign);
|
||
}
|
||
if (fmt)
|
||
real_convert (r, fmt, r);
|
||
}
|
||
else
|
||
real_round (r, fmt, x);
|
||
}
|
||
|
||
/* Set the sign of R to the sign of X. */
|
||
|
||
void
|
||
real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
|
||
{
|
||
r->sign = x->sign;
|
||
}
|
||
|
||
/* Check whether the real constant value given is an integer.
|
||
Returns false for signaling NaN. */
|
||
|
||
bool
|
||
real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
|
||
{
|
||
REAL_VALUE_TYPE cint;
|
||
|
||
real_trunc (&cint, fmt, c);
|
||
return real_identical (c, &cint);
|
||
}
|
||
|
||
/* Check whether C is an integer that fits in a HOST_WIDE_INT,
|
||
storing it in *INT_OUT if so. */
|
||
|
||
bool
|
||
real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
|
||
{
|
||
REAL_VALUE_TYPE cint;
|
||
|
||
HOST_WIDE_INT n = real_to_integer (c);
|
||
real_from_integer (&cint, VOIDmode, n, SIGNED);
|
||
if (real_identical (c, &cint))
|
||
{
|
||
*int_out = n;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
|
||
underflow or overflow needs to be raised. */
|
||
|
||
bool
|
||
real_nextafter (REAL_VALUE_TYPE *r, format_helper fmt,
|
||
const REAL_VALUE_TYPE *x, const REAL_VALUE_TYPE *y)
|
||
{
|
||
int cmp = do_compare (x, y, 2);
|
||
/* If either operand is NaN, return qNaN. */
|
||
if (cmp == 2)
|
||
{
|
||
get_canonical_qnan (r, 0);
|
||
return false;
|
||
}
|
||
/* If x == y, return y cast to target type. */
|
||
if (cmp == 0)
|
||
{
|
||
real_convert (r, fmt, y);
|
||
return false;
|
||
}
|
||
|
||
if (x->cl == rvc_zero)
|
||
{
|
||
get_zero (r, y->sign);
|
||
r->cl = rvc_normal;
|
||
SET_REAL_EXP (r, fmt->emin - fmt->p + 1);
|
||
r->sig[SIGSZ - 1] = SIG_MSB;
|
||
return false;
|
||
}
|
||
|
||
int np2 = SIGNIFICAND_BITS - fmt->p;
|
||
/* For denormals adjust np2 correspondingly. */
|
||
if (x->cl == rvc_normal && REAL_EXP (x) < fmt->emin)
|
||
np2 += fmt->emin - REAL_EXP (x);
|
||
|
||
REAL_VALUE_TYPE u;
|
||
get_zero (r, x->sign);
|
||
get_zero (&u, 0);
|
||
set_significand_bit (&u, np2);
|
||
r->cl = rvc_normal;
|
||
SET_REAL_EXP (r, REAL_EXP (x));
|
||
|
||
if (x->cl == rvc_inf)
|
||
{
|
||
bool borrow = sub_significands (r, r, &u, 0);
|
||
gcc_assert (borrow);
|
||
SET_REAL_EXP (r, fmt->emax);
|
||
}
|
||
else if (cmp == (x->sign ? 1 : -1))
|
||
{
|
||
if (add_significands (r, x, &u))
|
||
{
|
||
/* Overflow. Means the significand had been all ones, and
|
||
is now all zeros. Need to increase the exponent, and
|
||
possibly re-normalize it. */
|
||
SET_REAL_EXP (r, REAL_EXP (r) + 1);
|
||
if (REAL_EXP (r) > fmt->emax)
|
||
{
|
||
get_inf (r, x->sign);
|
||
return true;
|
||
}
|
||
r->sig[SIGSZ - 1] = SIG_MSB;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (REAL_EXP (x) > fmt->emin && x->sig[SIGSZ - 1] == SIG_MSB)
|
||
{
|
||
int i;
|
||
for (i = SIGSZ - 2; i >= 0; i--)
|
||
if (x->sig[i])
|
||
break;
|
||
if (i < 0)
|
||
{
|
||
/* When mantissa is 1.0, we need to subtract only
|
||
half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
|
||
rather than 1.0 - __DBL_EPSILON__. */
|
||
clear_significand_bit (&u, np2);
|
||
np2--;
|
||
set_significand_bit (&u, np2);
|
||
}
|
||
}
|
||
sub_significands (r, x, &u, 0);
|
||
}
|
||
|
||
/* Clear out trailing garbage. */
|
||
clear_significand_below (r, np2);
|
||
normalize (r);
|
||
if (REAL_EXP (r) <= fmt->emin - fmt->p)
|
||
{
|
||
get_zero (r, x->sign);
|
||
return true;
|
||
}
|
||
return r->cl == rvc_zero || REAL_EXP (r) < fmt->emin;
|
||
}
|
||
|
||
/* Write into BUF the maximum representable finite floating-point
|
||
number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
|
||
float string. LEN is the size of BUF, and the buffer must be large
|
||
enough to contain the resulting string. If NORM_MAX, instead write
|
||
the maximum representable finite normalized floating-point number,
|
||
defined to be such that all choices of digits for that exponent are
|
||
representable in the format (this only makes a difference for IBM
|
||
long double). */
|
||
|
||
void
|
||
get_max_float (const struct real_format *fmt, char *buf, size_t len,
|
||
bool norm_max)
|
||
{
|
||
int i, n;
|
||
char *p;
|
||
bool is_ibm_extended = fmt->pnan < fmt->p;
|
||
|
||
strcpy (buf, "0x0.");
|
||
n = fmt->p;
|
||
for (i = 0, p = buf + 4; i + 3 < n; i += 4)
|
||
*p++ = 'f';
|
||
if (i < n)
|
||
*p++ = "08ce"[n - i];
|
||
sprintf (p, "p%d",
|
||
(is_ibm_extended && norm_max) ? fmt->emax - 1 : fmt->emax);
|
||
if (is_ibm_extended && !norm_max)
|
||
{
|
||
/* This is an IBM extended double format made up of two IEEE
|
||
doubles. The value of the long double is the sum of the
|
||
values of the two parts. The most significant part is
|
||
required to be the value of the long double rounded to the
|
||
nearest double. Rounding means we need a slightly smaller
|
||
value for LDBL_MAX. */
|
||
buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
|
||
}
|
||
|
||
gcc_assert (strlen (buf) < len);
|
||
}
|
||
|
||
/* True if all values of integral type can be represented
|
||
by this floating-point type exactly. */
|
||
|
||
bool format_helper::can_represent_integral_type_p (tree type) const
|
||
{
|
||
gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type));
|
||
|
||
/* INT?_MIN is power-of-two so it takes
|
||
only one mantissa bit. */
|
||
bool signed_p = TYPE_SIGN (type) == SIGNED;
|
||
return TYPE_PRECISION (type) - signed_p <= significand_size (*this);
|
||
}
|
||
|
||
/* True if mode M has a NaN representation and
|
||
the treatment of NaN operands is important. */
|
||
|
||
bool
|
||
HONOR_NANS (machine_mode m)
|
||
{
|
||
return MODE_HAS_NANS (m) && !flag_finite_math_only;
|
||
}
|
||
|
||
bool
|
||
HONOR_NANS (const_tree t)
|
||
{
|
||
return HONOR_NANS (element_mode (t));
|
||
}
|
||
|
||
bool
|
||
HONOR_NANS (const_rtx x)
|
||
{
|
||
return HONOR_NANS (GET_MODE (x));
|
||
}
|
||
|
||
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
|
||
|
||
bool
|
||
HONOR_SNANS (machine_mode m)
|
||
{
|
||
return flag_signaling_nans && HONOR_NANS (m);
|
||
}
|
||
|
||
bool
|
||
HONOR_SNANS (const_tree t)
|
||
{
|
||
return HONOR_SNANS (element_mode (t));
|
||
}
|
||
|
||
bool
|
||
HONOR_SNANS (const_rtx x)
|
||
{
|
||
return HONOR_SNANS (GET_MODE (x));
|
||
}
|
||
|
||
/* As for HONOR_NANS, but true if the mode can represent infinity and
|
||
the treatment of infinite values is important. */
|
||
|
||
bool
|
||
HONOR_INFINITIES (machine_mode m)
|
||
{
|
||
return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
|
||
}
|
||
|
||
bool
|
||
HONOR_INFINITIES (const_tree t)
|
||
{
|
||
return HONOR_INFINITIES (element_mode (t));
|
||
}
|
||
|
||
bool
|
||
HONOR_INFINITIES (const_rtx x)
|
||
{
|
||
return HONOR_INFINITIES (GET_MODE (x));
|
||
}
|
||
|
||
/* Like HONOR_NANS, but true if the given mode distinguishes between
|
||
positive and negative zero, and the sign of zero is important. */
|
||
|
||
bool
|
||
HONOR_SIGNED_ZEROS (machine_mode m)
|
||
{
|
||
return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
|
||
}
|
||
|
||
bool
|
||
HONOR_SIGNED_ZEROS (const_tree t)
|
||
{
|
||
return HONOR_SIGNED_ZEROS (element_mode (t));
|
||
}
|
||
|
||
bool
|
||
HONOR_SIGNED_ZEROS (const_rtx x)
|
||
{
|
||
return HONOR_SIGNED_ZEROS (GET_MODE (x));
|
||
}
|
||
|
||
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
|
||
and the rounding mode is important. */
|
||
|
||
bool
|
||
HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
|
||
{
|
||
return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
|
||
}
|
||
|
||
bool
|
||
HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
|
||
{
|
||
return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
|
||
}
|
||
|
||
bool
|
||
HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
|
||
{
|
||
return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));
|
||
}
|
||
|
||
/* Fills r with the largest value such that 1 + r*r won't overflow.
|
||
This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
|
||
|
||
void
|
||
build_sinatan_real (REAL_VALUE_TYPE * r, tree type)
|
||
{
|
||
REAL_VALUE_TYPE maxval;
|
||
mpfr_t mpfr_const1, mpfr_c, mpfr_maxval;
|
||
machine_mode mode = TYPE_MODE (type);
|
||
const struct real_format * fmt = REAL_MODE_FORMAT (mode);
|
||
|
||
real_maxval (&maxval, 0, mode);
|
||
|
||
mpfr_inits (mpfr_const1, mpfr_c, mpfr_maxval, NULL);
|
||
|
||
mpfr_from_real (mpfr_const1, &dconst1, MPFR_RNDN);
|
||
mpfr_from_real (mpfr_maxval, &maxval, MPFR_RNDN);
|
||
|
||
mpfr_sub (mpfr_c, mpfr_maxval, mpfr_const1, MPFR_RNDN);
|
||
mpfr_sqrt (mpfr_c, mpfr_c, MPFR_RNDZ);
|
||
|
||
real_from_mpfr (r, mpfr_c, fmt, MPFR_RNDZ);
|
||
|
||
mpfr_clears (mpfr_const1, mpfr_c, mpfr_maxval, NULL);
|
||
}
|