1842 lines
49 KiB
C++
1842 lines
49 KiB
C++
/* Constant folding for calls to built-in and internal functions.
|
|
Copyright (C) 1988-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "realmpfr.h"
|
|
#include "tree.h"
|
|
#include "stor-layout.h"
|
|
#include "options.h"
|
|
#include "fold-const.h"
|
|
#include "fold-const-call.h"
|
|
#include "case-cfn-macros.h"
|
|
#include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
|
|
#include "builtins.h"
|
|
#include "gimple-expr.h"
|
|
#include "tree-vector-builder.h"
|
|
|
|
/* Functions that test for certain constant types, abstracting away the
|
|
decision about whether to check for overflow. */
|
|
|
|
static inline bool
|
|
integer_cst_p (tree t)
|
|
{
|
|
return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
|
|
}
|
|
|
|
static inline bool
|
|
real_cst_p (tree t)
|
|
{
|
|
return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
|
|
}
|
|
|
|
static inline bool
|
|
complex_cst_p (tree t)
|
|
{
|
|
return TREE_CODE (t) == COMPLEX_CST;
|
|
}
|
|
|
|
/* Return true if ARG is a size_type_node constant.
|
|
Store it in *SIZE_OUT if so. */
|
|
|
|
static inline bool
|
|
size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out)
|
|
{
|
|
if (types_compatible_p (size_type_node, TREE_TYPE (t))
|
|
&& integer_cst_p (t)
|
|
&& tree_fits_uhwi_p (t))
|
|
{
|
|
*size_out = tree_to_uhwi (t);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* RES is the result of a comparison in which < 0 means "less", 0 means
|
|
"equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
|
|
return it in type TYPE. */
|
|
|
|
tree
|
|
build_cmp_result (tree type, int res)
|
|
{
|
|
return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
|
|
}
|
|
|
|
/* M is the result of trying to constant-fold an expression (starting
|
|
with clear MPFR flags) and INEXACT says whether the result in M is
|
|
exact or inexact. Return true if M can be used as a constant-folded
|
|
result in format FORMAT, storing the value in *RESULT if so. */
|
|
|
|
static bool
|
|
do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
|
|
const real_format *format)
|
|
{
|
|
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
|
|
overflow/underflow occurred. If -frounding-math, proceed iff the
|
|
result of calling FUNC was exact. */
|
|
if (!mpfr_number_p (m)
|
|
|| mpfr_overflow_p ()
|
|
|| mpfr_underflow_p ()
|
|
|| (flag_rounding_math && inexact))
|
|
return false;
|
|
|
|
REAL_VALUE_TYPE tmp;
|
|
real_from_mpfr (&tmp, m, format, MPFR_RNDN);
|
|
|
|
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
|
|
If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
|
|
underflowed in the conversion. */
|
|
if (!real_isfinite (&tmp)
|
|
|| ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
|
|
return false;
|
|
|
|
real_convert (result, format, &tmp);
|
|
return real_identical (result, &tmp);
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = f (*ARG)
|
|
|
|
in format FORMAT, given that FUNC is the MPFR implementation of f.
|
|
Return true on success. */
|
|
|
|
static bool
|
|
do_mpfr_arg1 (real_value *result,
|
|
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
|
|
const real_value *arg, const real_format *format)
|
|
{
|
|
/* To proceed, MPFR must exactly represent the target floating point
|
|
format, which only happens when the target base equals two. */
|
|
if (format->b != 2 || !real_isfinite (arg))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
|
|
mpfr_t m;
|
|
|
|
mpfr_init2 (m, prec);
|
|
mpfr_from_real (m, arg, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m, m, rnd);
|
|
bool ok = do_mpfr_ckconv (result, m, inexact, format);
|
|
mpfr_clear (m);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT_SIN = sin (*ARG);
|
|
*RESULT_COS = cos (*ARG);
|
|
|
|
for format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
|
|
const real_value *arg, const real_format *format)
|
|
{
|
|
/* To proceed, MPFR must exactly represent the target floating point
|
|
format, which only happens when the target base equals two. */
|
|
if (format->b != 2 || !real_isfinite (arg))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
|
|
mpfr_t m, ms, mc;
|
|
|
|
mpfr_inits2 (prec, m, ms, mc, NULL);
|
|
mpfr_from_real (m, arg, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
|
|
bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
|
|
&& do_mpfr_ckconv (result_cos, mc, inexact, format));
|
|
mpfr_clears (m, ms, mc, NULL);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = f (*ARG0, *ARG1)
|
|
|
|
in format FORMAT, given that FUNC is the MPFR implementation of f.
|
|
Return true on success. */
|
|
|
|
static bool
|
|
do_mpfr_arg2 (real_value *result,
|
|
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
|
|
const real_value *arg0, const real_value *arg1,
|
|
const real_format *format)
|
|
{
|
|
/* To proceed, MPFR must exactly represent the target floating point
|
|
format, which only happens when the target base equals two. */
|
|
if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
|
|
mpfr_t m0, m1;
|
|
|
|
mpfr_inits2 (prec, m0, m1, NULL);
|
|
mpfr_from_real (m0, arg0, MPFR_RNDN);
|
|
mpfr_from_real (m1, arg1, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m0, m0, m1, rnd);
|
|
bool ok = do_mpfr_ckconv (result, m0, inexact, format);
|
|
mpfr_clears (m0, m1, NULL);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = f (ARG0, *ARG1)
|
|
|
|
in format FORMAT, given that FUNC is the MPFR implementation of f.
|
|
Return true on success. */
|
|
|
|
static bool
|
|
do_mpfr_arg2 (real_value *result,
|
|
int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t),
|
|
const wide_int_ref &arg0, const real_value *arg1,
|
|
const real_format *format)
|
|
{
|
|
if (format->b != 2 || !real_isfinite (arg1))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
|
|
mpfr_t m;
|
|
|
|
mpfr_init2 (m, prec);
|
|
mpfr_from_real (m, arg1, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m, arg0.to_shwi (), m, rnd);
|
|
bool ok = do_mpfr_ckconv (result, m, inexact, format);
|
|
mpfr_clear (m);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = f (*ARG0, *ARG1, *ARG2)
|
|
|
|
in format FORMAT, given that FUNC is the MPFR implementation of f.
|
|
Return true on success. */
|
|
|
|
static bool
|
|
do_mpfr_arg3 (real_value *result,
|
|
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
|
|
mpfr_srcptr, mpfr_rnd_t),
|
|
const real_value *arg0, const real_value *arg1,
|
|
const real_value *arg2, const real_format *format)
|
|
{
|
|
/* To proceed, MPFR must exactly represent the target floating point
|
|
format, which only happens when the target base equals two. */
|
|
if (format->b != 2
|
|
|| !real_isfinite (arg0)
|
|
|| !real_isfinite (arg1)
|
|
|| !real_isfinite (arg2))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
|
|
mpfr_t m0, m1, m2;
|
|
|
|
mpfr_inits2 (prec, m0, m1, m2, NULL);
|
|
mpfr_from_real (m0, arg0, MPFR_RNDN);
|
|
mpfr_from_real (m1, arg1, MPFR_RNDN);
|
|
mpfr_from_real (m2, arg2, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m0, m0, m1, m2, rnd);
|
|
bool ok = do_mpfr_ckconv (result, m0, inexact, format);
|
|
mpfr_clears (m0, m1, m2, NULL);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* M is the result of trying to constant-fold an expression (starting
|
|
with clear MPFR flags) and INEXACT says whether the result in M is
|
|
exact or inexact. Return true if M can be used as a constant-folded
|
|
result in which the real and imaginary parts have format FORMAT.
|
|
Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
|
|
|
|
static bool
|
|
do_mpc_ckconv (real_value *result_real, real_value *result_imag,
|
|
mpc_srcptr m, bool inexact, const real_format *format)
|
|
{
|
|
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
|
|
overflow/underflow occurred. If -frounding-math, proceed iff the
|
|
result of calling FUNC was exact. */
|
|
if (!mpfr_number_p (mpc_realref (m))
|
|
|| !mpfr_number_p (mpc_imagref (m))
|
|
|| mpfr_overflow_p ()
|
|
|| mpfr_underflow_p ()
|
|
|| (flag_rounding_math && inexact))
|
|
return false;
|
|
|
|
REAL_VALUE_TYPE tmp_real, tmp_imag;
|
|
real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN);
|
|
real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN);
|
|
|
|
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
|
|
If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
|
|
underflowed in the conversion. */
|
|
if (!real_isfinite (&tmp_real)
|
|
|| !real_isfinite (&tmp_imag)
|
|
|| (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
|
|
|| (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
|
|
return false;
|
|
|
|
real_convert (result_real, format, &tmp_real);
|
|
real_convert (result_imag, format, &tmp_imag);
|
|
|
|
return (real_identical (result_real, &tmp_real)
|
|
&& real_identical (result_imag, &tmp_imag));
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
RESULT = f (ARG)
|
|
|
|
in format FORMAT, given that FUNC is the mpc implementation of f.
|
|
Return true on success. Both RESULT and ARG are represented as
|
|
real and imaginary pairs. */
|
|
|
|
static bool
|
|
do_mpc_arg1 (real_value *result_real, real_value *result_imag,
|
|
int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
|
|
const real_value *arg_real, const real_value *arg_imag,
|
|
const real_format *format)
|
|
{
|
|
/* To proceed, MPFR must exactly represent the target floating point
|
|
format, which only happens when the target base equals two. */
|
|
if (format->b != 2
|
|
|| !real_isfinite (arg_real)
|
|
|| !real_isfinite (arg_imag))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
|
|
mpc_t m;
|
|
|
|
mpc_init2 (m, prec);
|
|
mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN);
|
|
mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m, m, crnd);
|
|
bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
|
|
mpc_clear (m);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
RESULT = f (ARG0, ARG1)
|
|
|
|
in format FORMAT, given that FUNC is the mpc implementation of f.
|
|
Return true on success. RESULT, ARG0 and ARG1 are represented as
|
|
real and imaginary pairs. */
|
|
|
|
static bool
|
|
do_mpc_arg2 (real_value *result_real, real_value *result_imag,
|
|
int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
|
|
const real_value *arg0_real, const real_value *arg0_imag,
|
|
const real_value *arg1_real, const real_value *arg1_imag,
|
|
const real_format *format)
|
|
{
|
|
if (!real_isfinite (arg0_real)
|
|
|| !real_isfinite (arg0_imag)
|
|
|| !real_isfinite (arg1_real)
|
|
|| !real_isfinite (arg1_imag))
|
|
return false;
|
|
|
|
int prec = format->p;
|
|
mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
|
|
mpc_t m0, m1;
|
|
|
|
mpc_init2 (m0, prec);
|
|
mpc_init2 (m1, prec);
|
|
mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN);
|
|
mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN);
|
|
mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN);
|
|
mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN);
|
|
mpfr_clear_flags ();
|
|
bool inexact = func (m0, m0, m1, crnd);
|
|
bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
|
|
mpc_clear (m0);
|
|
mpc_clear (m1);
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = logb (*ARG)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_logb (real_value *result, const real_value *arg,
|
|
const real_format *format)
|
|
{
|
|
switch (arg->cl)
|
|
{
|
|
case rvc_nan:
|
|
/* If arg is +-NaN, then return it. */
|
|
*result = *arg;
|
|
return true;
|
|
|
|
case rvc_inf:
|
|
/* If arg is +-Inf, then return +Inf. */
|
|
*result = *arg;
|
|
result->sign = 0;
|
|
return true;
|
|
|
|
case rvc_zero:
|
|
/* Zero may set errno and/or raise an exception. */
|
|
return false;
|
|
|
|
case rvc_normal:
|
|
/* For normal numbers, proceed iff radix == 2. In GCC,
|
|
normalized significands are in the range [0.5, 1.0). We
|
|
want the exponent as if they were [1.0, 2.0) so get the
|
|
exponent and subtract 1. */
|
|
if (format->b == 2)
|
|
{
|
|
real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = significand (*ARG)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_significand (real_value *result, const real_value *arg,
|
|
const real_format *format)
|
|
{
|
|
switch (arg->cl)
|
|
{
|
|
case rvc_zero:
|
|
case rvc_nan:
|
|
case rvc_inf:
|
|
/* If arg is +-0, +-Inf or +-NaN, then return it. */
|
|
*result = *arg;
|
|
return true;
|
|
|
|
case rvc_normal:
|
|
/* For normal numbers, proceed iff radix == 2. */
|
|
if (format->b == 2)
|
|
{
|
|
*result = *arg;
|
|
/* In GCC, normalized significands are in the range [0.5, 1.0).
|
|
We want them to be [1.0, 2.0) so set the exponent to 1. */
|
|
SET_REAL_EXP (result, 1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = f (*ARG)
|
|
|
|
where FORMAT is the format of *ARG and PRECISION is the number of
|
|
significant bits in the result. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_conversion (wide_int *result,
|
|
void (*fn) (real_value *, format_helper,
|
|
const real_value *),
|
|
const real_value *arg, unsigned int precision,
|
|
const real_format *format)
|
|
{
|
|
if (!real_isfinite (arg))
|
|
return false;
|
|
|
|
real_value rounded;
|
|
fn (&rounded, format, arg);
|
|
|
|
bool fail = false;
|
|
*result = real_to_integer (&rounded, &fail, precision);
|
|
return !fail;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = pow (*ARG0, *ARG1)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_pow (real_value *result, const real_value *arg0,
|
|
const real_value *arg1, const real_format *format)
|
|
{
|
|
if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
|
|
return true;
|
|
|
|
/* Check for an integer exponent. */
|
|
REAL_VALUE_TYPE cint1;
|
|
HOST_WIDE_INT n1 = real_to_integer (arg1);
|
|
real_from_integer (&cint1, VOIDmode, n1, SIGNED);
|
|
/* Attempt to evaluate pow at compile-time, unless this should
|
|
raise an exception. */
|
|
if (real_identical (arg1, &cint1)
|
|
&& (n1 > 0
|
|
|| (!flag_trapping_math && !flag_errno_math)
|
|
|| !real_equal (arg0, &dconst0)))
|
|
{
|
|
bool inexact = real_powi (result, format, arg0, n1);
|
|
/* Avoid the folding if flag_signaling_nans is on. */
|
|
if (flag_unsafe_math_optimizations
|
|
|| (!inexact
|
|
&& !(flag_signaling_nans
|
|
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = nextafter (*ARG0, *ARG1)
|
|
|
|
or
|
|
|
|
*RESULT = nexttoward (*ARG0, *ARG1)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_nextafter (real_value *result, const real_value *arg0,
|
|
const real_value *arg1, const real_format *format)
|
|
{
|
|
if (REAL_VALUE_ISSIGNALING_NAN (*arg0)
|
|
|| REAL_VALUE_ISSIGNALING_NAN (*arg1))
|
|
return false;
|
|
|
|
/* Don't handle composite modes, nor decimal, nor modes without
|
|
inf or denorm at least for now. */
|
|
if (format->pnan < format->p
|
|
|| format->b == 10
|
|
|| !format->has_inf
|
|
|| !format->has_denorm)
|
|
return false;
|
|
|
|
if (real_nextafter (result, format, arg0, arg1)
|
|
/* If raising underflow or overflow and setting errno to ERANGE,
|
|
fail if we care about those side-effects. */
|
|
&& (flag_trapping_math || flag_errno_math))
|
|
return false;
|
|
/* Similarly for nextafter (0, 1) raising underflow. */
|
|
else if (flag_trapping_math
|
|
&& arg0->cl == rvc_zero
|
|
&& result->cl != rvc_zero)
|
|
return false;
|
|
|
|
real_convert (result, format, result);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = ldexp (*ARG0, ARG1)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
|
|
const wide_int_ref &arg1,
|
|
const real_format *format)
|
|
{
|
|
/* Bound the maximum adjustment to twice the range of the
|
|
mode's valid exponents. Use abs to ensure the range is
|
|
positive as a sanity check. */
|
|
int max_exp_adj = 2 * labs (format->emax - format->emin);
|
|
|
|
/* The requested adjustment must be inside this range. This
|
|
is a preliminary cap to avoid things like overflow, we
|
|
may still fail to compute the result for other reasons. */
|
|
if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
|
|
return false;
|
|
|
|
/* Don't perform operation if we honor signaling NaNs and
|
|
operand is a signaling NaN. */
|
|
if (!flag_unsafe_math_optimizations
|
|
&& flag_signaling_nans
|
|
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))
|
|
return false;
|
|
|
|
REAL_VALUE_TYPE initial_result;
|
|
real_ldexp (&initial_result, arg0, arg1.to_shwi ());
|
|
|
|
/* Ensure we didn't overflow. */
|
|
if (real_isinf (&initial_result))
|
|
return false;
|
|
|
|
/* Only proceed if the target mode can hold the
|
|
resulting value. */
|
|
*result = real_value_truncate (format, initial_result);
|
|
return real_equal (&initial_result, result);
|
|
}
|
|
|
|
/* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
|
|
return type TYPE. QUIET is true if a quiet rather than signalling
|
|
NaN is required. */
|
|
|
|
static tree
|
|
fold_const_builtin_nan (tree type, tree arg, bool quiet)
|
|
{
|
|
REAL_VALUE_TYPE real;
|
|
const char *str = c_getstr (arg);
|
|
if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
|
|
return build_real (type, real);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */
|
|
|
|
static tree
|
|
fold_const_reduction (tree type, tree arg, tree_code code)
|
|
{
|
|
unsigned HOST_WIDE_INT nelts;
|
|
if (TREE_CODE (arg) != VECTOR_CST
|
|
|| !VECTOR_CST_NELTS (arg).is_constant (&nelts))
|
|
return NULL_TREE;
|
|
|
|
tree res = VECTOR_CST_ELT (arg, 0);
|
|
for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++)
|
|
{
|
|
res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i));
|
|
if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
|
|
return NULL_TREE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */
|
|
|
|
static tree
|
|
fold_const_vec_convert (tree ret_type, tree arg)
|
|
{
|
|
enum tree_code code = NOP_EXPR;
|
|
tree arg_type = TREE_TYPE (arg);
|
|
if (TREE_CODE (arg) != VECTOR_CST)
|
|
return NULL_TREE;
|
|
|
|
gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
|
|
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
|
|
code = FIX_TRUNC_EXPR;
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
|
|
code = FLOAT_EXPR;
|
|
|
|
/* We can't handle steps directly when extending, since the
|
|
values need to wrap at the original precision first. */
|
|
bool step_ok_p
|
|
= (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
|
|
&& (TYPE_PRECISION (TREE_TYPE (ret_type))
|
|
<= TYPE_PRECISION (TREE_TYPE (arg_type))));
|
|
tree_vector_builder elts;
|
|
if (!elts.new_unary_operation (ret_type, arg, step_ok_p))
|
|
return NULL_TREE;
|
|
|
|
unsigned int count = elts.encoded_nelts ();
|
|
for (unsigned int i = 0; i < count; ++i)
|
|
{
|
|
tree elt = fold_unary (code, TREE_TYPE (ret_type),
|
|
VECTOR_CST_ELT (arg, i));
|
|
if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
|
|
return NULL_TREE;
|
|
elts.quick_push (elt);
|
|
}
|
|
|
|
return elts.build ();
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... })
|
|
|
|
Return the value on success and null on failure. */
|
|
|
|
static tree
|
|
fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1)
|
|
{
|
|
if (known_ge (arg0, arg1))
|
|
return build_zero_cst (type);
|
|
|
|
if (maybe_ge (arg0, arg1))
|
|
return NULL_TREE;
|
|
|
|
poly_uint64 diff = arg1 - arg0;
|
|
poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
|
|
if (known_ge (diff, nelts))
|
|
return build_all_ones_cst (type);
|
|
|
|
unsigned HOST_WIDE_INT const_diff;
|
|
if (known_le (diff, nelts) && diff.is_constant (&const_diff))
|
|
{
|
|
tree minus_one = build_minus_one_cst (TREE_TYPE (type));
|
|
tree zero = build_zero_cst (TREE_TYPE (type));
|
|
return build_vector_a_then_b (type, const_diff, minus_one, zero);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (*ARG)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_ss (real_value *result, combined_fn fn,
|
|
const real_value *arg, const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_SQRT:
|
|
CASE_CFN_SQRT_FN:
|
|
return (real_compare (GE_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
|
|
|
|
CASE_CFN_CBRT:
|
|
return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
|
|
|
|
CASE_CFN_ASIN:
|
|
return (real_compare (GE_EXPR, arg, &dconstm1)
|
|
&& real_compare (LE_EXPR, arg, &dconst1)
|
|
&& do_mpfr_arg1 (result, mpfr_asin, arg, format));
|
|
|
|
CASE_CFN_ACOS:
|
|
return (real_compare (GE_EXPR, arg, &dconstm1)
|
|
&& real_compare (LE_EXPR, arg, &dconst1)
|
|
&& do_mpfr_arg1 (result, mpfr_acos, arg, format));
|
|
|
|
CASE_CFN_ATAN:
|
|
return do_mpfr_arg1 (result, mpfr_atan, arg, format);
|
|
|
|
CASE_CFN_ASINH:
|
|
return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
|
|
|
|
CASE_CFN_ACOSH:
|
|
return (real_compare (GE_EXPR, arg, &dconst1)
|
|
&& do_mpfr_arg1 (result, mpfr_acosh, arg, format));
|
|
|
|
CASE_CFN_ATANH:
|
|
return (real_compare (GE_EXPR, arg, &dconstm1)
|
|
&& real_compare (LE_EXPR, arg, &dconst1)
|
|
&& do_mpfr_arg1 (result, mpfr_atanh, arg, format));
|
|
|
|
CASE_CFN_SIN:
|
|
return do_mpfr_arg1 (result, mpfr_sin, arg, format);
|
|
|
|
CASE_CFN_COS:
|
|
return do_mpfr_arg1 (result, mpfr_cos, arg, format);
|
|
|
|
CASE_CFN_TAN:
|
|
return do_mpfr_arg1 (result, mpfr_tan, arg, format);
|
|
|
|
CASE_CFN_SINH:
|
|
return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
|
|
|
|
CASE_CFN_COSH:
|
|
return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
|
|
|
|
CASE_CFN_TANH:
|
|
return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
|
|
|
|
CASE_CFN_ERF:
|
|
return do_mpfr_arg1 (result, mpfr_erf, arg, format);
|
|
|
|
CASE_CFN_ERFC:
|
|
return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
|
|
|
|
CASE_CFN_TGAMMA:
|
|
return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
|
|
|
|
CASE_CFN_EXP:
|
|
return do_mpfr_arg1 (result, mpfr_exp, arg, format);
|
|
|
|
CASE_CFN_EXP2:
|
|
return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
|
|
|
|
CASE_CFN_EXP10:
|
|
CASE_CFN_POW10:
|
|
return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
|
|
|
|
CASE_CFN_EXPM1:
|
|
return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
|
|
|
|
CASE_CFN_LOG:
|
|
return (real_compare (GT_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_log, arg, format));
|
|
|
|
CASE_CFN_LOG2:
|
|
return (real_compare (GT_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_log2, arg, format));
|
|
|
|
CASE_CFN_LOG10:
|
|
return (real_compare (GT_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_log10, arg, format));
|
|
|
|
CASE_CFN_LOG1P:
|
|
return (real_compare (GT_EXPR, arg, &dconstm1)
|
|
&& do_mpfr_arg1 (result, mpfr_log1p, arg, format));
|
|
|
|
CASE_CFN_J0:
|
|
return do_mpfr_arg1 (result, mpfr_j0, arg, format);
|
|
|
|
CASE_CFN_J1:
|
|
return do_mpfr_arg1 (result, mpfr_j1, arg, format);
|
|
|
|
CASE_CFN_Y0:
|
|
return (real_compare (GT_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_y0, arg, format));
|
|
|
|
CASE_CFN_Y1:
|
|
return (real_compare (GT_EXPR, arg, &dconst0)
|
|
&& do_mpfr_arg1 (result, mpfr_y1, arg, format));
|
|
|
|
CASE_CFN_FLOOR:
|
|
CASE_CFN_FLOOR_FN:
|
|
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
|
|
{
|
|
real_floor (result, format, arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_CEIL:
|
|
CASE_CFN_CEIL_FN:
|
|
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
|
|
{
|
|
real_ceil (result, format, arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_TRUNC:
|
|
CASE_CFN_TRUNC_FN:
|
|
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
|
|
{
|
|
real_trunc (result, format, arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_ROUND:
|
|
CASE_CFN_ROUND_FN:
|
|
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
|
|
{
|
|
real_round (result, format, arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_ROUNDEVEN:
|
|
CASE_CFN_ROUNDEVEN_FN:
|
|
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
|
|
{
|
|
real_roundeven (result, format, arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_LOGB:
|
|
return fold_const_logb (result, arg, format);
|
|
|
|
CASE_CFN_SIGNIFICAND:
|
|
return fold_const_significand (result, arg, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (*ARG)
|
|
|
|
where FORMAT is the format of ARG and PRECISION is the number of
|
|
significant bits in the result. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_ss (wide_int *result, combined_fn fn,
|
|
const real_value *arg, unsigned int precision,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_SIGNBIT:
|
|
if (real_isneg (arg))
|
|
*result = wi::one (precision);
|
|
else
|
|
*result = wi::zero (precision);
|
|
return true;
|
|
|
|
CASE_CFN_ILOGB:
|
|
/* For ilogb we don't know FP_ILOGB0, so only handle normal values.
|
|
Proceed iff radix == 2. In GCC, normalized significands are in
|
|
the range [0.5, 1.0). We want the exponent as if they were
|
|
[1.0, 2.0) so get the exponent and subtract 1. */
|
|
if (arg->cl == rvc_normal && format->b == 2)
|
|
{
|
|
*result = wi::shwi (REAL_EXP (arg) - 1, precision);
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
CASE_CFN_ICEIL:
|
|
CASE_CFN_LCEIL:
|
|
CASE_CFN_LLCEIL:
|
|
return fold_const_conversion (result, real_ceil, arg,
|
|
precision, format);
|
|
|
|
CASE_CFN_LFLOOR:
|
|
CASE_CFN_IFLOOR:
|
|
CASE_CFN_LLFLOOR:
|
|
return fold_const_conversion (result, real_floor, arg,
|
|
precision, format);
|
|
|
|
CASE_CFN_IROUND:
|
|
CASE_CFN_LROUND:
|
|
CASE_CFN_LLROUND:
|
|
return fold_const_conversion (result, real_round, arg,
|
|
precision, format);
|
|
|
|
CASE_CFN_IRINT:
|
|
CASE_CFN_LRINT:
|
|
CASE_CFN_LLRINT:
|
|
/* Not yet folded to a constant. */
|
|
return false;
|
|
|
|
CASE_CFN_FINITE:
|
|
case CFN_BUILT_IN_FINITED32:
|
|
case CFN_BUILT_IN_FINITED64:
|
|
case CFN_BUILT_IN_FINITED128:
|
|
case CFN_BUILT_IN_ISFINITE:
|
|
*result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
|
|
return true;
|
|
|
|
CASE_CFN_ISINF:
|
|
case CFN_BUILT_IN_ISINFD32:
|
|
case CFN_BUILT_IN_ISINFD64:
|
|
case CFN_BUILT_IN_ISINFD128:
|
|
if (real_isinf (arg))
|
|
*result = wi::shwi (arg->sign ? -1 : 1, precision);
|
|
else
|
|
*result = wi::shwi (0, precision);
|
|
return true;
|
|
|
|
CASE_CFN_ISNAN:
|
|
case CFN_BUILT_IN_ISNAND32:
|
|
case CFN_BUILT_IN_ISNAND64:
|
|
case CFN_BUILT_IN_ISNAND128:
|
|
*result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (ARG)
|
|
|
|
where ARG_TYPE is the type of ARG and PRECISION is the number of bits
|
|
in the result. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
|
|
unsigned int precision, tree arg_type)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_FFS:
|
|
*result = wi::shwi (wi::ffs (arg), precision);
|
|
return true;
|
|
|
|
CASE_CFN_CLZ:
|
|
{
|
|
int tmp;
|
|
if (wi::ne_p (arg, 0))
|
|
tmp = wi::clz (arg);
|
|
else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
|
|
tmp))
|
|
tmp = TYPE_PRECISION (arg_type);
|
|
*result = wi::shwi (tmp, precision);
|
|
return true;
|
|
}
|
|
|
|
CASE_CFN_CTZ:
|
|
{
|
|
int tmp;
|
|
if (wi::ne_p (arg, 0))
|
|
tmp = wi::ctz (arg);
|
|
else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
|
|
tmp))
|
|
tmp = TYPE_PRECISION (arg_type);
|
|
*result = wi::shwi (tmp, precision);
|
|
return true;
|
|
}
|
|
|
|
CASE_CFN_CLRSB:
|
|
*result = wi::shwi (wi::clrsb (arg), precision);
|
|
return true;
|
|
|
|
CASE_CFN_POPCOUNT:
|
|
*result = wi::shwi (wi::popcount (arg), precision);
|
|
return true;
|
|
|
|
CASE_CFN_PARITY:
|
|
*result = wi::shwi (wi::parity (arg), precision);
|
|
return true;
|
|
|
|
case CFN_BUILT_IN_BSWAP16:
|
|
case CFN_BUILT_IN_BSWAP32:
|
|
case CFN_BUILT_IN_BSWAP64:
|
|
case CFN_BUILT_IN_BSWAP128:
|
|
*result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
RESULT = FN (*ARG)
|
|
|
|
where FORMAT is the format of ARG and of the real and imaginary parts
|
|
of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
|
|
true on success. */
|
|
|
|
static bool
|
|
fold_const_call_cs (real_value *result_real, real_value *result_imag,
|
|
combined_fn fn, const real_value *arg,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_CEXPI:
|
|
/* cexpi(x+yi) = cos(x)+sin(y)*i. */
|
|
return do_mpfr_sincos (result_imag, result_real, arg, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = fn (ARG)
|
|
|
|
where FORMAT is the format of RESULT and of the real and imaginary parts
|
|
of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
|
|
success. */
|
|
|
|
static bool
|
|
fold_const_call_sc (real_value *result, combined_fn fn,
|
|
const real_value *arg_real, const real_value *arg_imag,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_CABS:
|
|
return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
RESULT = fn (ARG)
|
|
|
|
where FORMAT is the format of the real and imaginary parts of RESULT
|
|
(RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
|
|
Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_cc (real_value *result_real, real_value *result_imag,
|
|
combined_fn fn, const real_value *arg_real,
|
|
const real_value *arg_imag, const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_CCOS:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_cos,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CCOSH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CPROJ:
|
|
if (real_isinf (arg_real) || real_isinf (arg_imag))
|
|
{
|
|
real_inf (result_real);
|
|
*result_imag = dconst0;
|
|
result_imag->sign = arg_imag->sign;
|
|
}
|
|
else
|
|
{
|
|
*result_real = *arg_real;
|
|
*result_imag = *arg_imag;
|
|
}
|
|
return true;
|
|
|
|
CASE_CFN_CSIN:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_sin,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CSINH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CTAN:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_tan,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CTANH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CLOG:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_log,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CSQRT:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CASIN:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_asin,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CACOS:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_acos,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CATAN:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_atan,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CASINH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CACOSH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CATANH:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
|
|
arg_real, arg_imag, format);
|
|
|
|
CASE_CFN_CEXP:
|
|
return do_mpc_arg1 (result_real, result_imag, mpc_exp,
|
|
arg_real, arg_imag, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Subroutine of fold_const_call, with the same interface. Handle cases
|
|
where the arguments and result are numerical. */
|
|
|
|
static tree
|
|
fold_const_call_1 (combined_fn fn, tree type, tree arg)
|
|
{
|
|
machine_mode mode = TYPE_MODE (type);
|
|
machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
|
|
|
|
if (integer_cst_p (arg))
|
|
{
|
|
if (SCALAR_INT_MODE_P (mode))
|
|
{
|
|
wide_int result;
|
|
if (fold_const_call_ss (&result, fn, wi::to_wide (arg),
|
|
TYPE_PRECISION (type), TREE_TYPE (arg)))
|
|
return wide_int_to_tree (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (real_cst_p (arg))
|
|
{
|
|
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
|
|
if (mode == arg_mode)
|
|
{
|
|
/* real -> real. */
|
|
REAL_VALUE_TYPE result;
|
|
if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
}
|
|
else if (COMPLEX_MODE_P (mode)
|
|
&& GET_MODE_INNER (mode) == arg_mode)
|
|
{
|
|
/* real -> complex real. */
|
|
REAL_VALUE_TYPE result_real, result_imag;
|
|
if (fold_const_call_cs (&result_real, &result_imag, fn,
|
|
TREE_REAL_CST_PTR (arg),
|
|
REAL_MODE_FORMAT (arg_mode)))
|
|
return build_complex (type,
|
|
build_real (TREE_TYPE (type), result_real),
|
|
build_real (TREE_TYPE (type), result_imag));
|
|
}
|
|
else if (INTEGRAL_TYPE_P (type))
|
|
{
|
|
/* real -> int. */
|
|
wide_int result;
|
|
if (fold_const_call_ss (&result, fn,
|
|
TREE_REAL_CST_PTR (arg),
|
|
TYPE_PRECISION (type),
|
|
REAL_MODE_FORMAT (arg_mode)))
|
|
return wide_int_to_tree (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (complex_cst_p (arg))
|
|
{
|
|
gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
|
|
machine_mode inner_mode = GET_MODE_INNER (arg_mode);
|
|
tree argr = TREE_REALPART (arg);
|
|
tree argi = TREE_IMAGPART (arg);
|
|
if (mode == arg_mode
|
|
&& real_cst_p (argr)
|
|
&& real_cst_p (argi))
|
|
{
|
|
/* complex real -> complex real. */
|
|
REAL_VALUE_TYPE result_real, result_imag;
|
|
if (fold_const_call_cc (&result_real, &result_imag, fn,
|
|
TREE_REAL_CST_PTR (argr),
|
|
TREE_REAL_CST_PTR (argi),
|
|
REAL_MODE_FORMAT (inner_mode)))
|
|
return build_complex (type,
|
|
build_real (TREE_TYPE (type), result_real),
|
|
build_real (TREE_TYPE (type), result_imag));
|
|
}
|
|
if (mode == inner_mode
|
|
&& real_cst_p (argr)
|
|
&& real_cst_p (argi))
|
|
{
|
|
/* complex real -> real. */
|
|
REAL_VALUE_TYPE result;
|
|
if (fold_const_call_sc (&result, fn,
|
|
TREE_REAL_CST_PTR (argr),
|
|
TREE_REAL_CST_PTR (argi),
|
|
REAL_MODE_FORMAT (inner_mode)))
|
|
return build_real (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to fold FN (ARG) to a constant. Return the constant on success,
|
|
otherwise return null. TYPE is the type of the return value. */
|
|
|
|
tree
|
|
fold_const_call (combined_fn fn, tree type, tree arg)
|
|
{
|
|
switch (fn)
|
|
{
|
|
case CFN_BUILT_IN_STRLEN:
|
|
if (const char *str = c_getstr (arg))
|
|
return build_int_cst (type, strlen (str));
|
|
return NULL_TREE;
|
|
|
|
CASE_CFN_NAN:
|
|
CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
|
|
case CFN_BUILT_IN_NAND32:
|
|
case CFN_BUILT_IN_NAND64:
|
|
case CFN_BUILT_IN_NAND128:
|
|
return fold_const_builtin_nan (type, arg, true);
|
|
|
|
CASE_CFN_NANS:
|
|
CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
|
|
case CFN_BUILT_IN_NANSD32:
|
|
case CFN_BUILT_IN_NANSD64:
|
|
case CFN_BUILT_IN_NANSD128:
|
|
return fold_const_builtin_nan (type, arg, false);
|
|
|
|
case CFN_REDUC_PLUS:
|
|
return fold_const_reduction (type, arg, PLUS_EXPR);
|
|
|
|
case CFN_REDUC_MAX:
|
|
return fold_const_reduction (type, arg, MAX_EXPR);
|
|
|
|
case CFN_REDUC_MIN:
|
|
return fold_const_reduction (type, arg, MIN_EXPR);
|
|
|
|
case CFN_REDUC_AND:
|
|
return fold_const_reduction (type, arg, BIT_AND_EXPR);
|
|
|
|
case CFN_REDUC_IOR:
|
|
return fold_const_reduction (type, arg, BIT_IOR_EXPR);
|
|
|
|
case CFN_REDUC_XOR:
|
|
return fold_const_reduction (type, arg, BIT_XOR_EXPR);
|
|
|
|
case CFN_VEC_CONVERT:
|
|
return fold_const_vec_convert (type, arg);
|
|
|
|
default:
|
|
return fold_const_call_1 (fn, type, arg);
|
|
}
|
|
}
|
|
|
|
/* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value
|
|
of type TYPE. */
|
|
|
|
static tree
|
|
fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code)
|
|
{
|
|
if (TREE_CODE (arg1) != VECTOR_CST)
|
|
return NULL_TREE;
|
|
|
|
unsigned HOST_WIDE_INT nelts;
|
|
if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts))
|
|
return NULL_TREE;
|
|
|
|
for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++)
|
|
{
|
|
arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i));
|
|
if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0))
|
|
return NULL_TREE;
|
|
}
|
|
return arg0;
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (*ARG0, *ARG1)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_sss (real_value *result, combined_fn fn,
|
|
const real_value *arg0, const real_value *arg1,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_DREM:
|
|
CASE_CFN_REMAINDER:
|
|
return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
|
|
|
|
CASE_CFN_ATAN2:
|
|
return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
|
|
|
|
CASE_CFN_FDIM:
|
|
return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
|
|
|
|
CASE_CFN_FMOD:
|
|
return do_mpfr_arg2 (result, mpfr_fmod, arg0, arg1, format);
|
|
|
|
CASE_CFN_HYPOT:
|
|
return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
|
|
|
|
CASE_CFN_COPYSIGN:
|
|
CASE_CFN_COPYSIGN_FN:
|
|
*result = *arg0;
|
|
real_copysign (result, arg1);
|
|
return true;
|
|
|
|
CASE_CFN_FMIN:
|
|
CASE_CFN_FMIN_FN:
|
|
return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
|
|
|
|
CASE_CFN_FMAX:
|
|
CASE_CFN_FMAX_FN:
|
|
return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
|
|
|
|
CASE_CFN_POW:
|
|
return fold_const_pow (result, arg0, arg1, format);
|
|
|
|
CASE_CFN_NEXTAFTER:
|
|
CASE_CFN_NEXTTOWARD:
|
|
return fold_const_nextafter (result, arg0, arg1, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (*ARG0, ARG1)
|
|
|
|
where FORMAT is the format of *RESULT and *ARG0. Return true on
|
|
success. */
|
|
|
|
static bool
|
|
fold_const_call_sss (real_value *result, combined_fn fn,
|
|
const real_value *arg0, const wide_int_ref &arg1,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_LDEXP:
|
|
return fold_const_builtin_load_exponent (result, arg0, arg1, format);
|
|
|
|
CASE_CFN_SCALBN:
|
|
CASE_CFN_SCALBLN:
|
|
return (format->b == 2
|
|
&& fold_const_builtin_load_exponent (result, arg0, arg1,
|
|
format));
|
|
|
|
CASE_CFN_POWI:
|
|
/* Avoid the folding if flag_signaling_nans is on and
|
|
operand is a signaling NaN. */
|
|
if (!flag_unsafe_math_optimizations
|
|
&& flag_signaling_nans
|
|
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))
|
|
return false;
|
|
|
|
real_powi (result, format, arg0, arg1.to_shwi ());
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (ARG0, *ARG1)
|
|
|
|
where FORMAT is the format of *RESULT and *ARG1. Return true on
|
|
success. */
|
|
|
|
static bool
|
|
fold_const_call_sss (real_value *result, combined_fn fn,
|
|
const wide_int_ref &arg0, const real_value *arg1,
|
|
const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_JN:
|
|
return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
|
|
|
|
CASE_CFN_YN:
|
|
return (real_compare (GT_EXPR, arg1, &dconst0)
|
|
&& do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
RESULT = fn (ARG0, ARG1)
|
|
|
|
where FORMAT is the format of the real and imaginary parts of RESULT
|
|
(RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
|
|
and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_ccc (real_value *result_real, real_value *result_imag,
|
|
combined_fn fn, const real_value *arg0_real,
|
|
const real_value *arg0_imag, const real_value *arg1_real,
|
|
const real_value *arg1_imag, const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_CPOW:
|
|
return do_mpc_arg2 (result_real, result_imag, mpc_pow,
|
|
arg0_real, arg0_imag, arg1_real, arg1_imag, format);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Subroutine of fold_const_call, with the same interface. Handle cases
|
|
where the arguments and result are numerical. */
|
|
|
|
static tree
|
|
fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
|
|
{
|
|
machine_mode mode = TYPE_MODE (type);
|
|
machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
|
|
machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
|
|
|
|
if (mode == arg0_mode
|
|
&& real_cst_p (arg0)
|
|
&& real_cst_p (arg1))
|
|
{
|
|
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
|
|
REAL_VALUE_TYPE result;
|
|
if (arg0_mode == arg1_mode)
|
|
{
|
|
/* real, real -> real. */
|
|
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
|
|
TREE_REAL_CST_PTR (arg1),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
}
|
|
else if (arg1_mode == TYPE_MODE (long_double_type_node))
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_NEXTTOWARD:
|
|
/* real, long double -> real. */
|
|
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
|
|
TREE_REAL_CST_PTR (arg1),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (real_cst_p (arg0)
|
|
&& integer_cst_p (arg1))
|
|
{
|
|
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
|
|
if (mode == arg0_mode)
|
|
{
|
|
/* real, int -> real. */
|
|
REAL_VALUE_TYPE result;
|
|
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
|
|
wi::to_wide (arg1),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (integer_cst_p (arg0)
|
|
&& real_cst_p (arg1))
|
|
{
|
|
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
|
|
if (mode == arg1_mode)
|
|
{
|
|
/* int, real -> real. */
|
|
REAL_VALUE_TYPE result;
|
|
if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
|
|
TREE_REAL_CST_PTR (arg1),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (arg0_mode == arg1_mode
|
|
&& complex_cst_p (arg0)
|
|
&& complex_cst_p (arg1))
|
|
{
|
|
gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
|
|
machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
|
|
tree arg0r = TREE_REALPART (arg0);
|
|
tree arg0i = TREE_IMAGPART (arg0);
|
|
tree arg1r = TREE_REALPART (arg1);
|
|
tree arg1i = TREE_IMAGPART (arg1);
|
|
if (mode == arg0_mode
|
|
&& real_cst_p (arg0r)
|
|
&& real_cst_p (arg0i)
|
|
&& real_cst_p (arg1r)
|
|
&& real_cst_p (arg1i))
|
|
{
|
|
/* complex real, complex real -> complex real. */
|
|
REAL_VALUE_TYPE result_real, result_imag;
|
|
if (fold_const_call_ccc (&result_real, &result_imag, fn,
|
|
TREE_REAL_CST_PTR (arg0r),
|
|
TREE_REAL_CST_PTR (arg0i),
|
|
TREE_REAL_CST_PTR (arg1r),
|
|
TREE_REAL_CST_PTR (arg1i),
|
|
REAL_MODE_FORMAT (inner_mode)))
|
|
return build_complex (type,
|
|
build_real (TREE_TYPE (type), result_real),
|
|
build_real (TREE_TYPE (type), result_imag));
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
|
|
otherwise return null. TYPE is the type of the return value. */
|
|
|
|
tree
|
|
fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
|
|
{
|
|
const char *p0, *p1;
|
|
char c;
|
|
switch (fn)
|
|
{
|
|
case CFN_BUILT_IN_STRSPN:
|
|
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
|
|
return build_int_cst (type, strspn (p0, p1));
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_STRCSPN:
|
|
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
|
|
return build_int_cst (type, strcspn (p0, p1));
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_STRCMP:
|
|
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
|
|
return build_cmp_result (type, strcmp (p0, p1));
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_STRCASECMP:
|
|
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
|
|
{
|
|
int r = strcmp (p0, p1);
|
|
if (r == 0)
|
|
return build_cmp_result (type, r);
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_INDEX:
|
|
case CFN_BUILT_IN_STRCHR:
|
|
if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
|
|
{
|
|
const char *r = strchr (p0, c);
|
|
if (r == NULL)
|
|
return build_int_cst (type, 0);
|
|
return fold_convert (type,
|
|
fold_build_pointer_plus_hwi (arg0, r - p0));
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_RINDEX:
|
|
case CFN_BUILT_IN_STRRCHR:
|
|
if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
|
|
{
|
|
const char *r = strrchr (p0, c);
|
|
if (r == NULL)
|
|
return build_int_cst (type, 0);
|
|
return fold_convert (type,
|
|
fold_build_pointer_plus_hwi (arg0, r - p0));
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_STRSTR:
|
|
if ((p1 = c_getstr (arg1)))
|
|
{
|
|
if ((p0 = c_getstr (arg0)))
|
|
{
|
|
const char *r = strstr (p0, p1);
|
|
if (r == NULL)
|
|
return build_int_cst (type, 0);
|
|
return fold_convert (type,
|
|
fold_build_pointer_plus_hwi (arg0, r - p0));
|
|
}
|
|
if (*p1 == '\0')
|
|
return fold_convert (type, arg0);
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case CFN_FOLD_LEFT_PLUS:
|
|
return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR);
|
|
|
|
default:
|
|
return fold_const_call_1 (fn, type, arg0, arg1);
|
|
}
|
|
}
|
|
|
|
/* Try to evaluate:
|
|
|
|
*RESULT = FN (*ARG0, *ARG1, *ARG2)
|
|
|
|
in format FORMAT. Return true on success. */
|
|
|
|
static bool
|
|
fold_const_call_ssss (real_value *result, combined_fn fn,
|
|
const real_value *arg0, const real_value *arg1,
|
|
const real_value *arg2, const real_format *format)
|
|
{
|
|
switch (fn)
|
|
{
|
|
CASE_CFN_FMA:
|
|
CASE_CFN_FMA_FN:
|
|
return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
|
|
|
|
case CFN_FMS:
|
|
{
|
|
real_value new_arg2 = real_value_negate (arg2);
|
|
return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format);
|
|
}
|
|
|
|
case CFN_FNMA:
|
|
{
|
|
real_value new_arg0 = real_value_negate (arg0);
|
|
return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format);
|
|
}
|
|
|
|
case CFN_FNMS:
|
|
{
|
|
real_value new_arg0 = real_value_negate (arg0);
|
|
real_value new_arg2 = real_value_negate (arg2);
|
|
return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1,
|
|
&new_arg2, format);
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Subroutine of fold_const_call, with the same interface. Handle cases
|
|
where the arguments and result are numerical. */
|
|
|
|
static tree
|
|
fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
|
|
{
|
|
machine_mode mode = TYPE_MODE (type);
|
|
machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
|
|
machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
|
|
machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
|
|
|
|
if (arg0_mode == arg1_mode
|
|
&& arg0_mode == arg2_mode
|
|
&& real_cst_p (arg0)
|
|
&& real_cst_p (arg1)
|
|
&& real_cst_p (arg2))
|
|
{
|
|
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
|
|
if (mode == arg0_mode)
|
|
{
|
|
/* real, real, real -> real. */
|
|
REAL_VALUE_TYPE result;
|
|
if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
|
|
TREE_REAL_CST_PTR (arg1),
|
|
TREE_REAL_CST_PTR (arg2),
|
|
REAL_MODE_FORMAT (mode)))
|
|
return build_real (type, result);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
|
|
success, otherwise return null. TYPE is the type of the return value. */
|
|
|
|
tree
|
|
fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
|
|
{
|
|
const char *p0, *p1;
|
|
char c;
|
|
unsigned HOST_WIDE_INT s0, s1, s2 = 0;
|
|
switch (fn)
|
|
{
|
|
case CFN_BUILT_IN_STRNCMP:
|
|
if (!size_t_cst_p (arg2, &s2))
|
|
return NULL_TREE;
|
|
if (s2 == 0
|
|
&& !TREE_SIDE_EFFECTS (arg0)
|
|
&& !TREE_SIDE_EFFECTS (arg1))
|
|
return build_int_cst (type, 0);
|
|
else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
|
|
return build_int_cst (type, strncmp (p0, p1, MIN (s2, SIZE_MAX)));
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_STRNCASECMP:
|
|
if (!size_t_cst_p (arg2, &s2))
|
|
return NULL_TREE;
|
|
if (s2 == 0
|
|
&& !TREE_SIDE_EFFECTS (arg0)
|
|
&& !TREE_SIDE_EFFECTS (arg1))
|
|
return build_int_cst (type, 0);
|
|
else if ((p0 = c_getstr (arg0))
|
|
&& (p1 = c_getstr (arg1))
|
|
&& strncmp (p0, p1, MIN (s2, SIZE_MAX)) == 0)
|
|
return build_int_cst (type, 0);
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_BCMP:
|
|
case CFN_BUILT_IN_MEMCMP:
|
|
if (!size_t_cst_p (arg2, &s2))
|
|
return NULL_TREE;
|
|
if (s2 == 0
|
|
&& !TREE_SIDE_EFFECTS (arg0)
|
|
&& !TREE_SIDE_EFFECTS (arg1))
|
|
return build_int_cst (type, 0);
|
|
if ((p0 = getbyterep (arg0, &s0))
|
|
&& (p1 = getbyterep (arg1, &s1))
|
|
&& s2 <= s0
|
|
&& s2 <= s1)
|
|
return build_cmp_result (type, memcmp (p0, p1, s2));
|
|
return NULL_TREE;
|
|
|
|
case CFN_BUILT_IN_MEMCHR:
|
|
if (!size_t_cst_p (arg2, &s2))
|
|
return NULL_TREE;
|
|
if (s2 == 0
|
|
&& !TREE_SIDE_EFFECTS (arg0)
|
|
&& !TREE_SIDE_EFFECTS (arg1))
|
|
return build_int_cst (type, 0);
|
|
if ((p0 = getbyterep (arg0, &s0))
|
|
&& s2 <= s0
|
|
&& target_char_cst_p (arg1, &c))
|
|
{
|
|
const char *r = (const char *) memchr (p0, c, s2);
|
|
if (r == NULL)
|
|
return build_int_cst (type, 0);
|
|
return fold_convert (type,
|
|
fold_build_pointer_plus_hwi (arg0, r - p0));
|
|
}
|
|
return NULL_TREE;
|
|
|
|
case CFN_WHILE_ULT:
|
|
{
|
|
poly_uint64 parg0, parg1;
|
|
if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1))
|
|
return fold_while_ult (type, parg0, parg1);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
default:
|
|
return fold_const_call_1 (fn, type, arg0, arg1, arg2);
|
|
}
|
|
}
|