Projet_SETI_RISC-V/riscv-gnu-toolchain/gcc/libsanitizer/tsan/tsan_defs.h
2023-03-06 14:48:14 +01:00

235 lines
5.9 KiB
C++

//===-- tsan_defs.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#ifndef TSAN_DEFS_H
#define TSAN_DEFS_H
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "ubsan/ubsan_platform.h"
#ifndef TSAN_VECTORIZE
# define TSAN_VECTORIZE __SSE4_2__
#endif
#if TSAN_VECTORIZE
// <emmintrin.h> transitively includes <stdlib.h>,
// and it's prohibited to include std headers into tsan runtime.
// So we do this dirty trick.
# define _MM_MALLOC_H_INCLUDED
# define __MM_MALLOC_H
# include <emmintrin.h>
# include <smmintrin.h>
# define VECTOR_ALIGNED ALIGNED(16)
typedef __m128i m128;
#else
# define VECTOR_ALIGNED
#endif
// Setup defaults for compile definitions.
#ifndef TSAN_NO_HISTORY
# define TSAN_NO_HISTORY 0
#endif
#ifndef TSAN_CONTAINS_UBSAN
# if CAN_SANITIZE_UB && !SANITIZER_GO
# define TSAN_CONTAINS_UBSAN 1
# else
# define TSAN_CONTAINS_UBSAN 0
# endif
#endif
namespace __tsan {
constexpr uptr kByteBits = 8;
// Thread slot ID.
enum class Sid : u8 {};
constexpr uptr kThreadSlotCount = 256;
constexpr Sid kFreeSid = static_cast<Sid>(255);
// Abstract time unit, vector clock element.
enum class Epoch : u16 {};
constexpr uptr kEpochBits = 14;
constexpr Epoch kEpochZero = static_cast<Epoch>(0);
constexpr Epoch kEpochOver = static_cast<Epoch>(1 << kEpochBits);
const int kClkBits = 42;
const unsigned kMaxTidReuse = (1 << (64 - kClkBits)) - 1;
struct ClockElem {
u64 epoch : kClkBits;
u64 reused : 64 - kClkBits; // tid reuse count
};
struct ClockBlock {
static const uptr kSize = 512;
static const uptr kTableSize = kSize / sizeof(u32);
static const uptr kClockCount = kSize / sizeof(ClockElem);
static const uptr kRefIdx = kTableSize - 1;
static const uptr kBlockIdx = kTableSize - 2;
union {
u32 table[kTableSize];
ClockElem clock[kClockCount];
};
ClockBlock() {
}
};
const int kTidBits = 13;
// Reduce kMaxTid by kClockCount because one slot in ClockBlock table is
// occupied by reference counter, so total number of elements we can store
// in SyncClock is kClockCount * (kTableSize - 1).
const unsigned kMaxTid = (1 << kTidBits) - ClockBlock::kClockCount;
#if !SANITIZER_GO
const unsigned kMaxTidInClock = kMaxTid * 2; // This includes msb 'freed' bit.
#else
const unsigned kMaxTidInClock = kMaxTid; // Go does not track freed memory.
#endif
const uptr kShadowStackSize = 64 * 1024;
// Count of shadow values in a shadow cell.
const uptr kShadowCnt = 4;
// That many user bytes are mapped onto a single shadow cell.
const uptr kShadowCell = 8;
// Single shadow value.
typedef u64 RawShadow;
const uptr kShadowSize = sizeof(RawShadow);
// Shadow memory is kShadowMultiplier times larger than user memory.
const uptr kShadowMultiplier = kShadowSize * kShadowCnt / kShadowCell;
// That many user bytes are mapped onto a single meta shadow cell.
// Must be less or equal to minimal memory allocator alignment.
const uptr kMetaShadowCell = 8;
// Size of a single meta shadow value (u32).
const uptr kMetaShadowSize = 4;
// All addresses and PCs are assumed to be compressable to that many bits.
const uptr kCompressedAddrBits = 44;
#if TSAN_NO_HISTORY
const bool kCollectHistory = false;
#else
const bool kCollectHistory = true;
#endif
// The following "build consistency" machinery ensures that all source files
// are built in the same configuration. Inconsistent builds lead to
// hard to debug crashes.
#if SANITIZER_DEBUG
void build_consistency_debug();
#else
void build_consistency_release();
#endif
static inline void USED build_consistency() {
#if SANITIZER_DEBUG
build_consistency_debug();
#else
build_consistency_release();
#endif
}
template<typename T>
T min(T a, T b) {
return a < b ? a : b;
}
template<typename T>
T max(T a, T b) {
return a > b ? a : b;
}
template<typename T>
T RoundUp(T p, u64 align) {
DCHECK_EQ(align & (align - 1), 0);
return (T)(((u64)p + align - 1) & ~(align - 1));
}
template<typename T>
T RoundDown(T p, u64 align) {
DCHECK_EQ(align & (align - 1), 0);
return (T)((u64)p & ~(align - 1));
}
// Zeroizes high part, returns 'bits' lsb bits.
template<typename T>
T GetLsb(T v, int bits) {
return (T)((u64)v & ((1ull << bits) - 1));
}
struct MD5Hash {
u64 hash[2];
bool operator==(const MD5Hash &other) const;
};
MD5Hash md5_hash(const void *data, uptr size);
struct Processor;
struct ThreadState;
class ThreadContext;
struct Context;
struct ReportStack;
class ReportDesc;
class RegionAlloc;
typedef uptr AccessType;
enum : AccessType {
kAccessWrite = 0,
kAccessRead = 1 << 0,
kAccessAtomic = 1 << 1,
kAccessVptr = 1 << 2, // read or write of an object virtual table pointer
kAccessFree = 1 << 3, // synthetic memory access during memory freeing
kAccessExternalPC = 1 << 4, // access PC can have kExternalPCBit set
};
// Descriptor of user's memory block.
struct MBlock {
u64 siz : 48;
u64 tag : 16;
StackID stk;
Tid tid;
};
COMPILER_CHECK(sizeof(MBlock) == 16);
enum ExternalTag : uptr {
kExternalTagNone = 0,
kExternalTagSwiftModifyingAccess = 1,
kExternalTagFirstUserAvailable = 2,
kExternalTagMax = 1024,
// Don't set kExternalTagMax over 65,536, since MBlock only stores tags
// as 16-bit values, see tsan_defs.h.
};
enum MutexType {
MutexTypeTrace = MutexLastCommon,
MutexTypeReport,
MutexTypeSyncVar,
MutexTypeAnnotations,
MutexTypeAtExit,
MutexTypeFired,
MutexTypeRacy,
MutexTypeGlobalProc,
};
} // namespace __tsan
#endif // TSAN_DEFS_H