Projet_SETI_RISC-V/riscv-gnu-toolchain/gcc/libgo/go/runtime/mgc_gccgo.go
2023-03-06 14:48:14 +01:00

171 lines
4.9 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// gccgo-specific support for GC.
package runtime
import (
"internal/goarch"
"unsafe"
)
// For gccgo, use go:linkname to export compiler-called functions.
//
//go:linkname gcWriteBarrier
// gcRoot is a single GC root: a variable plus a ptrmask.
//go:notinheap
type gcRoot struct {
decl unsafe.Pointer // Pointer to variable.
size uintptr // Size of variable.
ptrdata uintptr // Length of gcdata.
gcdata *uint8 // Pointer mask.
}
// gcRootList is the set of GC roots for a package.
// The next field is used to put this all into a linked list.
// count gives the real length of the array.
type gcRootList struct {
next *gcRootList
count int
roots [1 << 26]gcRoot
}
// roots is the list of GC roots for the program.
// The compiler keeps this variable itself off the list.
var gcRoots *gcRootList
// Slice containing pointers to all reachable gcRoot's sorted by
// starting address (generated at init time from 'gcRoots').
// The compiler also keeps this variable itself off the list.
// The storage backing this slice is allocated via persistentalloc(), the
// idea being that we don't want to treat the slice itself as a global
// variable, since it points to things that don't need to be scanned
// themselves.
var gcRootsIndex []*gcRoot
// rootradixsort performs an in-place radix sort of the 'arr' rootptr slice.
// Note: not a stable sort, however we expect it to be called only on slices
// with no duplicate entries, so this should not matter.
func rootradixsort(arr []*gcRoot, lo, hi int, bit uint) {
// Partition the array into two bins based on the values at the
// specified bit position: 0's bin (grown from the left) and and
// 1's bin (grown from the right). We keep two boundary markers,
// the 0's boundary "zbb" (which grows to the right) and the 1's
// boundary "obb" (which grows to the left). At each step we
// examine the bit for the right-of-ZBB element: if it is zero, we
// leave it in place and move the ZBB to the right. If the bit is
// not zero, then we swap the ZBB and OBB elements and move the
// OBB to the left. When this is done, the two partitions are then
// sorted using the next lower bit.
// 0's bin boundary, initially set to before the first element
zbb := lo - 1
// 1's bin boundary, set to just beyond the last element
obb := hi + 1
// mask to pick up bit of interest
bmask := uintptr(1) << bit
for obb-zbb > 1 {
zbbval := uintptr(arr[zbb+1].decl) & bmask
if zbbval == 0 {
// Move zbb one to the right
zbb++
} else {
// Move obb one to the left and swap
arr[obb-1], arr[zbb+1] = arr[zbb+1], arr[obb-1]
obb--
}
}
if bit != 0 {
// NB: in most cases there is just a single partition to visit
// so if we wanted to reduce stack space we could check for this
// and insert a goto back up to the top.
if zbb-lo > 0 {
rootradixsort(arr, lo, zbb, bit-1)
}
if hi-obb > 0 {
rootradixsort(arr, obb, hi, bit-1)
}
}
}
//go:nowritebarrier
func createGcRootsIndex() {
// Count roots
nroots := 0
gcr := gcRoots
for gcr != nil {
nroots += gcr.count
gcr = gcr.next
}
// Construct the gcRootsIndex slice. Use non-heap storage for the array
// backing the slice.
sp := (*notInHeapSlice)(unsafe.Pointer(&gcRootsIndex))
sp.array = (*notInHeap)(persistentalloc1(goarch.PtrSize*uintptr(nroots), goarch.PtrSize, &memstats.other_sys))
if sp.array == nil {
throw("runtime: cannot allocate memory")
}
sp.len = nroots
sp.cap = nroots
// Populate the roots index slice
gcr = gcRoots
k := 0
for gcr != nil {
for i := 0; i < gcr.count; i++ {
gcRootsIndex[k] = &gcr.roots[i]
k++
}
gcr = gcr.next
}
// Sort it by starting address.
rootradixsort(gcRootsIndex, 0, nroots-1, goarch.PtrSize*8-1)
}
// registerGCRoots is called by compiler-generated code.
//go:linkname registerGCRoots
// registerGCRoots is called by init functions to register the GC
// roots for a package. The init functions are run sequentially at
// the start of the program, so no locking is needed.
func registerGCRoots(r *gcRootList) {
r.next = gcRoots
gcRoots = r
}
// checkPreempt is called when the preempt field in the running G is true.
// It preempts the goroutine if it is safe to do so.
// If preemptscan is true, this scans the stack for the garbage collector
// and carries on.
func checkPreempt() {
gp := getg()
if !gp.preempt || gp != gp.m.curg || !canPreemptM(gp.m) {
return
}
if gp.preemptStop {
mcall(preemptPark)
}
// Act like goroutine called runtime.Gosched.
mcall(gopreempt_m)
}
// gcWriteBarrier implements a write barrier. This is implemented in
// assembly in the gc library, but there is no special advantage to
// doing so with gccgo.
//go:nosplit
//go:nowritebarrier
func gcWriteBarrier(dst *uintptr, src uintptr) {
buf := &getg().m.p.ptr().wbBuf
if !buf.putFast(src, *dst) {
wbBufFlush(dst, src)
}
*dst = src
}