Projet_SETI_RISC-V/riscv-gnu-toolchain/gcc/libgo/go/crypto/elliptic/internal/fiat/generate.go
2023-03-06 14:48:14 +01:00

330 lines
9.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
package main
import (
"bytes"
"go/format"
"io"
"log"
"os"
"os/exec"
"text/template"
)
var curves = []struct {
Element string
Prime string
Prefix string
FiatType string
BytesLen int
}{
{
Element: "P224Element",
Prime: "2^224 - 2^96 + 1",
Prefix: "p224",
FiatType: "[4]uint64",
BytesLen: 28,
},
// The 32-bit pure Go P-256 in crypto/elliptic is still faster than the
// autogenerated code here, regrettably.
// {
// Element: "P256Element",
// Prime: "2^256 - 2^224 + 2^192 + 2^96 - 1",
// Prefix: "p256",
// FiatType: "[4]uint64",
// BytesLen: 32,
// },
{
Element: "P384Element",
Prime: "2^384 - 2^128 - 2^96 + 2^32 - 1",
Prefix: "p384",
FiatType: "[6]uint64",
BytesLen: 48,
},
// Note that unsaturated_solinas would be about 2x faster than
// word_by_word_montgomery for P-521, but this curve is used rarely enough
// that it's not worth carrying unsaturated_solinas support for it.
{
Element: "P521Element",
Prime: "2^521 - 1",
Prefix: "p521",
FiatType: "[9]uint64",
BytesLen: 66,
},
}
func main() {
t := template.Must(template.New("montgomery").Parse(tmplWrapper))
tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmplAddchainFile.Name())
if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
log.Fatal(err)
}
if err := tmplAddchainFile.Close(); err != nil {
log.Fatal(err)
}
for _, c := range curves {
log.Printf("Generating %s.go...", c.Prefix)
f, err := os.Create(c.Prefix + ".go")
if err != nil {
log.Fatal(err)
}
if err := t.Execute(f, c); err != nil {
log.Fatal(err)
}
if err := f.Close(); err != nil {
log.Fatal(err)
}
log.Printf("Generating %s_fiat64.go...", c.Prefix)
cmd := exec.Command("docker", "run", "--rm", "--entrypoint", "word_by_word_montgomery",
"fiat-crypto:v0.0.9", "--lang", "Go", "--no-wide-int", "--cmovznz-by-mul",
"--relax-primitive-carry-to-bitwidth", "32,64", "--internal-static",
"--public-function-case", "camelCase", "--public-type-case", "camelCase",
"--private-function-case", "camelCase", "--private-type-case", "camelCase",
"--doc-text-before-function-name", "", "--doc-newline-before-package-declaration",
"--doc-prepend-header", "Code generated by Fiat Cryptography. DO NOT EDIT.",
"--package-name", "fiat", "--no-prefix-fiat", c.Prefix, "64", c.Prime,
"mul", "square", "add", "sub", "one", "from_montgomery", "to_montgomery",
"selectznz", "to_bytes", "from_bytes")
cmd.Stderr = os.Stderr
out, err := cmd.Output()
if err != nil {
log.Fatal(err)
}
out, err = format.Source(out)
if err != nil {
log.Fatal(err)
}
if err := os.WriteFile(c.Prefix+"_fiat64.go", out, 0644); err != nil {
log.Fatal(err)
}
log.Printf("Generating %s_invert.go...", c.Prefix)
f, err = os.CreateTemp("", "addchain-"+c.Prefix)
if err != nil {
log.Fatal(err)
}
defer os.Remove(f.Name())
cmd = exec.Command("addchain", "search", c.Prime+" - 2")
cmd.Stderr = os.Stderr
cmd.Stdout = f
if err := cmd.Run(); err != nil {
log.Fatal(err)
}
if err := f.Close(); err != nil {
log.Fatal(err)
}
cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), f.Name())
cmd.Stderr = os.Stderr
out, err = cmd.Output()
if err != nil {
log.Fatal(err)
}
out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
out, err = format.Source(out)
if err != nil {
log.Fatal(err)
}
if err := os.WriteFile(c.Prefix+"_invert.go", out, 0644); err != nil {
log.Fatal(err)
}
}
}
const tmplWrapper = `// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate.go. DO NOT EDIT.
package fiat
import (
"crypto/subtle"
"errors"
)
// {{ .Element }} is an integer modulo {{ .Prime }}.
//
// The zero value is a valid zero element.
type {{ .Element }} struct {
// Values are represented internally always in the Montgomery domain, and
// converted in Bytes and SetBytes.
x {{ .Prefix }}MontgomeryDomainFieldElement
}
const {{ .Prefix }}ElementLen = {{ .BytesLen }}
type {{ .Prefix }}UntypedFieldElement = {{ .FiatType }}
// One sets e = 1, and returns e.
func (e *{{ .Element }}) One() *{{ .Element }} {
{{ .Prefix }}SetOne(&e.x)
return e
}
// Equal returns 1 if e == t, and zero otherwise.
func (e *{{ .Element }}) Equal(t *{{ .Element }}) int {
eBytes := e.Bytes()
tBytes := t.Bytes()
return subtle.ConstantTimeCompare(eBytes, tBytes)
}
var {{ .Prefix }}ZeroEncoding = new({{ .Element }}).Bytes()
// IsZero returns 1 if e == 0, and zero otherwise.
func (e *{{ .Element }}) IsZero() int {
eBytes := e.Bytes()
return subtle.ConstantTimeCompare(eBytes, {{ .Prefix }}ZeroEncoding)
}
// Set sets e = t, and returns e.
func (e *{{ .Element }}) Set(t *{{ .Element }}) *{{ .Element }} {
e.x = t.x
return e
}
// Bytes returns the {{ .BytesLen }}-byte big-endian encoding of e.
func (e *{{ .Element }}) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [{{ .Prefix }}ElementLen]byte
return e.bytes(&out)
}
func (e *{{ .Element }}) bytes(out *[{{ .Prefix }}ElementLen]byte) []byte {
var tmp {{ .Prefix }}NonMontgomeryDomainFieldElement
{{ .Prefix }}FromMontgomery(&tmp, &e.x)
{{ .Prefix }}ToBytes(out, (*{{ .Prefix }}UntypedFieldElement)(&tmp))
{{ .Prefix }}InvertEndianness(out[:])
return out[:]
}
// {{ .Prefix }}MinusOneEncoding is the encoding of -1 mod p, so p - 1, the
// highest canonical encoding. It is used by SetBytes to check for non-canonical
// encodings such as p + k, 2p + k, etc.
var {{ .Prefix }}MinusOneEncoding = new({{ .Element }}).Sub(
new({{ .Element }}), new({{ .Element }}).One()).Bytes()
// SetBytes sets e = v, where v is a big-endian {{ .BytesLen }}-byte encoding, and returns e.
// If v is not {{ .BytesLen }} bytes or it encodes a value higher than {{ .Prime }},
// SetBytes returns nil and an error, and e is unchanged.
func (e *{{ .Element }}) SetBytes(v []byte) (*{{ .Element }}, error) {
if len(v) != {{ .Prefix }}ElementLen {
return nil, errors.New("invalid {{ .Element }} encoding")
}
for i := range v {
if v[i] < {{ .Prefix }}MinusOneEncoding[i] {
break
}
if v[i] > {{ .Prefix }}MinusOneEncoding[i] {
return nil, errors.New("invalid {{ .Element }} encoding")
}
}
var in [{{ .Prefix }}ElementLen]byte
copy(in[:], v)
{{ .Prefix }}InvertEndianness(in[:])
var tmp {{ .Prefix }}NonMontgomeryDomainFieldElement
{{ .Prefix }}FromBytes((*{{ .Prefix }}UntypedFieldElement)(&tmp), &in)
{{ .Prefix }}ToMontgomery(&e.x, &tmp)
return e, nil
}
// Add sets e = t1 + t2, and returns e.
func (e *{{ .Element }}) Add(t1, t2 *{{ .Element }}) *{{ .Element }} {
{{ .Prefix }}Add(&e.x, &t1.x, &t2.x)
return e
}
// Sub sets e = t1 - t2, and returns e.
func (e *{{ .Element }}) Sub(t1, t2 *{{ .Element }}) *{{ .Element }} {
{{ .Prefix }}Sub(&e.x, &t1.x, &t2.x)
return e
}
// Mul sets e = t1 * t2, and returns e.
func (e *{{ .Element }}) Mul(t1, t2 *{{ .Element }}) *{{ .Element }} {
{{ .Prefix }}Mul(&e.x, &t1.x, &t2.x)
return e
}
// Square sets e = t * t, and returns e.
func (e *{{ .Element }}) Square(t *{{ .Element }}) *{{ .Element }} {
{{ .Prefix }}Square(&e.x, &t.x)
return e
}
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *{{ .Element }}) Select(a, b *{{ .Element }}, cond int) *{{ .Element }} {
{{ .Prefix }}Selectznz((*{{ .Prefix }}UntypedFieldElement)(&v.x), {{ .Prefix }}Uint1(cond),
(*{{ .Prefix }}UntypedFieldElement)(&b.x), (*{{ .Prefix }}UntypedFieldElement)(&a.x))
return v
}
func {{ .Prefix }}InvertEndianness(v []byte) {
for i := 0; i < len(v)/2; i++ {
v[i], v[len(v)-1-i] = v[len(v)-1-i], v[i]
}
}
`
const tmplAddchain = `// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by {{ .Meta.Name }}. DO NOT EDIT.
package fiat
// Invert sets e = 1/x, and returns e.
//
// If x == 0, Invert returns e = 0.
func (e *Element) Invert(x *Element) *Element {
// Inversion is implemented as exponentiation with exponent p 2.
// The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
// following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
//
{{- range lines (format .Script) }}
// {{ . }}
{{- end }}
//
var z = new(Element).Set(e)
{{- range .Program.Temporaries }}
var {{ . }} = new(Element)
{{- end }}
{{ range $i := .Program.Instructions -}}
{{- with add $i.Op }}
{{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
{{- end -}}
{{- with double $i.Op }}
{{ $i.Output }}.Square({{ .X }})
{{- end -}}
{{- with shift $i.Op -}}
{{- $first := 0 -}}
{{- if ne $i.Output.Identifier .X.Identifier }}
{{ $i.Output }}.Square({{ .X }})
{{- $first = 1 -}}
{{- end }}
for s := {{ $first }}; s < {{ .S }}; s++ {
{{ $i.Output }}.Square({{ $i.Output }})
}
{{- end -}}
{{- end }}
return e.Set(z)
}
`