368 lines
11 KiB
Go
368 lines
11 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
|
|
// defined in FIPS 186-4 and SEC 1, Version 2.0.
|
|
//
|
|
// Signatures generated by this package are not deterministic, but entropy is
|
|
// mixed with the private key and the message, achieving the same level of
|
|
// security in case of randomness source failure.
|
|
package ecdsa
|
|
|
|
// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
|
|
// That standard is not freely available, which is a problem in an open source
|
|
// implementation, because not only the implementer, but also any maintainer,
|
|
// contributor, reviewer, auditor, and learner needs access to it. Instead, this
|
|
// package references and follows the equivalent [SEC 1, Version 2.0].
|
|
//
|
|
// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
|
// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/elliptic"
|
|
"crypto/internal/randutil"
|
|
"crypto/sha512"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
|
|
"golang.org/x/crypto/cryptobyte"
|
|
"golang.org/x/crypto/cryptobyte/asn1"
|
|
)
|
|
|
|
// A invertible implements fast inverse in GF(N).
|
|
type invertible interface {
|
|
// Inverse returns the inverse of k mod Params().N.
|
|
Inverse(k *big.Int) *big.Int
|
|
}
|
|
|
|
// A combinedMult implements fast combined multiplication for verification.
|
|
type combinedMult interface {
|
|
// CombinedMult returns [s1]G + [s2]P where G is the generator.
|
|
CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
|
|
}
|
|
|
|
const (
|
|
aesIV = "IV for ECDSA CTR"
|
|
)
|
|
|
|
// PublicKey represents an ECDSA public key.
|
|
type PublicKey struct {
|
|
elliptic.Curve
|
|
X, Y *big.Int
|
|
}
|
|
|
|
// Any methods implemented on PublicKey might need to also be implemented on
|
|
// PrivateKey, as the latter embeds the former and will expose its methods.
|
|
|
|
// Equal reports whether pub and x have the same value.
|
|
//
|
|
// Two keys are only considered to have the same value if they have the same Curve value.
|
|
// Note that for example elliptic.P256() and elliptic.P256().Params() are different
|
|
// values, as the latter is a generic not constant time implementation.
|
|
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
|
|
xx, ok := x.(*PublicKey)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 &&
|
|
// Standard library Curve implementations are singletons, so this check
|
|
// will work for those. Other Curves might be equivalent even if not
|
|
// singletons, but there is no definitive way to check for that, and
|
|
// better to err on the side of safety.
|
|
pub.Curve == xx.Curve
|
|
}
|
|
|
|
// PrivateKey represents an ECDSA private key.
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
D *big.Int
|
|
}
|
|
|
|
// Public returns the public key corresponding to priv.
|
|
func (priv *PrivateKey) Public() crypto.PublicKey {
|
|
return &priv.PublicKey
|
|
}
|
|
|
|
// Equal reports whether priv and x have the same value.
|
|
//
|
|
// See PublicKey.Equal for details on how Curve is compared.
|
|
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
|
|
xx, ok := x.(*PrivateKey)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
|
|
}
|
|
|
|
// Sign signs digest with priv, reading randomness from rand. The opts argument
|
|
// is not currently used but, in keeping with the crypto.Signer interface,
|
|
// should be the hash function used to digest the message.
|
|
//
|
|
// This method implements crypto.Signer, which is an interface to support keys
|
|
// where the private part is kept in, for example, a hardware module. Common
|
|
// uses can use the SignASN1 function in this package directly.
|
|
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
r, s, err := Sign(rand, priv, digest)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
b.AddASN1BigInt(r)
|
|
b.AddASN1BigInt(s)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
var one = new(big.Int).SetInt64(1)
|
|
|
|
// randFieldElement returns a random element of the order of the given
|
|
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
params := c.Params()
|
|
// Note that for P-521 this will actually be 63 bits more than the order, as
|
|
// division rounds down, but the extra bit is inconsequential.
|
|
b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
|
|
_, err = io.ReadFull(rand, b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
k = new(big.Int).SetBytes(b)
|
|
n := new(big.Int).Sub(params.N, one)
|
|
k.Mod(k, n)
|
|
k.Add(k, one)
|
|
return
|
|
}
|
|
|
|
// GenerateKey generates a public and private key pair.
|
|
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
|
|
k, err := randFieldElement(c, rand)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
priv := new(PrivateKey)
|
|
priv.PublicKey.Curve = c
|
|
priv.D = k
|
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
|
return priv, nil
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
|
|
// we use the left-most bits of the hash to match the bit-length of the order of
|
|
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
|
|
// (exponentiation modulo P - 2, per Euler's theorem). This has better
|
|
// constant-time properties than Euclid's method (implemented in
|
|
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
|
|
// itself isn't strictly constant-time so it's not perfect.
|
|
func fermatInverse(k, N *big.Int) *big.Int {
|
|
two := big.NewInt(2)
|
|
nMinus2 := new(big.Int).Sub(N, two)
|
|
return new(big.Int).Exp(k, nMinus2, N)
|
|
}
|
|
|
|
var errZeroParam = errors.New("zero parameter")
|
|
|
|
// Sign signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the signature as a pair of integers. Most applications should use
|
|
// SignASN1 instead of dealing directly with r, s.
|
|
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
randutil.MaybeReadByte(rand)
|
|
|
|
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
|
|
//
|
|
// SHA2-512(priv.D || entropy || hash)[:32]
|
|
//
|
|
// The CSPRNG key is indifferentiable from a random oracle as shown in
|
|
// [Coron], the AES-CTR stream is indifferentiable from a random oracle
|
|
// under standard cryptographic assumptions (see [Larsson] for examples).
|
|
//
|
|
// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
|
|
// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
|
|
|
|
// Get 256 bits of entropy from rand.
|
|
entropy := make([]byte, 32)
|
|
_, err = io.ReadFull(rand, entropy)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Initialize an SHA-512 hash context; digest...
|
|
md := sha512.New()
|
|
md.Write(priv.D.Bytes()) // the private key,
|
|
md.Write(entropy) // the entropy,
|
|
md.Write(hash) // and the input hash;
|
|
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
|
// which is an indifferentiable MAC.
|
|
|
|
// Create an AES-CTR instance to use as a CSPRNG.
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Create a CSPRNG that xors a stream of zeros with
|
|
// the output of the AES-CTR instance.
|
|
csprng := cipher.StreamReader{
|
|
R: zeroReader,
|
|
S: cipher.NewCTR(block, []byte(aesIV)),
|
|
}
|
|
|
|
c := priv.PublicKey.Curve
|
|
return sign(priv, &csprng, c, hash)
|
|
}
|
|
|
|
func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
|
|
// SEC 1, Version 2.0, Section 4.1.3
|
|
N := c.Params().N
|
|
if N.Sign() == 0 {
|
|
return nil, nil, errZeroParam
|
|
}
|
|
var k, kInv *big.Int
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, *csprng)
|
|
if err != nil {
|
|
r = nil
|
|
return
|
|
}
|
|
|
|
if in, ok := priv.Curve.(invertible); ok {
|
|
kInv = in.Inverse(k)
|
|
} else {
|
|
kInv = fermatInverse(k, N) // N != 0
|
|
}
|
|
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
|
|
r.Mod(r, N)
|
|
if r.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
e := hashToInt(hash, c)
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s.Add(s, e)
|
|
s.Mul(s, kInv)
|
|
s.Mod(s, N) // N != 0
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// SignASN1 signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the ASN.1 encoded signature.
|
|
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
|
|
return priv.Sign(rand, hash, nil)
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid. Most applications should
|
|
// use VerifyASN1 instead of dealing directly with r, s.
|
|
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
|
|
c := pub.Curve
|
|
N := c.Params().N
|
|
|
|
if r.Sign() <= 0 || s.Sign() <= 0 {
|
|
return false
|
|
}
|
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
|
return false
|
|
}
|
|
return verify(pub, c, hash, r, s)
|
|
}
|
|
|
|
func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
|
|
// SEC 1, Version 2.0, Section 4.1.4
|
|
e := hashToInt(hash, c)
|
|
var w *big.Int
|
|
N := c.Params().N
|
|
if in, ok := c.(invertible); ok {
|
|
w = in.Inverse(s)
|
|
} else {
|
|
w = new(big.Int).ModInverse(s, N)
|
|
}
|
|
|
|
u1 := e.Mul(e, w)
|
|
u1.Mod(u1, N)
|
|
u2 := w.Mul(r, w)
|
|
u2.Mod(u2, N)
|
|
|
|
// Check if implements S1*g + S2*p
|
|
var x, y *big.Int
|
|
if opt, ok := c.(combinedMult); ok {
|
|
x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
|
|
} else {
|
|
x1, y1 := c.ScalarBaseMult(u1.Bytes())
|
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
|
|
x, y = c.Add(x1, y1, x2, y2)
|
|
}
|
|
|
|
if x.Sign() == 0 && y.Sign() == 0 {
|
|
return false
|
|
}
|
|
x.Mod(x, N)
|
|
return x.Cmp(r) == 0
|
|
}
|
|
|
|
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
|
|
// public key, pub. Its return value records whether the signature is valid.
|
|
func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
|
|
var (
|
|
r, s = &big.Int{}, &big.Int{}
|
|
inner cryptobyte.String
|
|
)
|
|
input := cryptobyte.String(sig)
|
|
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
|
|
!input.Empty() ||
|
|
!inner.ReadASN1Integer(r) ||
|
|
!inner.ReadASN1Integer(s) ||
|
|
!inner.Empty() {
|
|
return false
|
|
}
|
|
return Verify(pub, hash, r, s)
|
|
}
|
|
|
|
type zr struct {
|
|
io.Reader
|
|
}
|
|
|
|
// Read replaces the contents of dst with zeros.
|
|
func (z *zr) Read(dst []byte) (n int, err error) {
|
|
for i := range dst {
|
|
dst[i] = 0
|
|
}
|
|
return len(dst), nil
|
|
}
|
|
|
|
var zeroReader = &zr{}
|