Projet_SETI_RISC-V/riscv-gnu-toolchain/gcc/libgcc/config/xtensa/ieee754-sf.S
2023-03-06 14:48:14 +01:00

1933 lines
40 KiB
ArmAsm

/* IEEE-754 single-precision functions for Xtensa
Copyright (C) 2006-2022 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif
/* Warning! The branch displacements for some Xtensa branch instructions
are quite small, and this code has been carefully laid out to keep
branch targets in range. If you change anything, be sure to check that
the assembler is not relaxing anything to branch over a jump. */
#ifdef L_negsf2
.align 4
.global __negsf2
.type __negsf2, @function
__negsf2:
leaf_entry sp, 16
movi a4, 0x80000000
xor a2, a2, a4
leaf_return
#endif /* L_negsf2 */
#ifdef L_addsubsf3
.literal_position
/* Addition */
__addsf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
.Ladd_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall a3, a6, .Ladd_return_nan_or_inf
/* If x is a NaN, return it. Otherwise, return y. */
slli a7, a2, 9
bnez a7, .Ladd_return_nan
.Ladd_ynan_or_inf:
/* Return y. */
mov a2, a3
.Ladd_return_nan_or_inf:
slli a7, a2, 9
bnez a7, .Ladd_return_nan
leaf_return
.Ladd_return_nan:
movi a6, 0x400000 /* make it a quiet NaN */
or a2, a2, a6
leaf_return
.Ladd_opposite_signs:
/* Operand signs differ. Do a subtraction. */
slli a7, a6, 8
xor a3, a3, a7
j .Lsub_same_sign
.align 4
.global __addsf3
.type __addsf3, @function
__addsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
/* Check if the two operands have the same sign. */
xor a7, a2, a3
bltz a7, .Ladd_opposite_signs
.Ladd_same_sign:
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
ball a2, a6, .Ladd_xnan_or_inf
ball a3, a6, .Ladd_ynan_or_inf
/* Compare the exponents. The smaller operand will be shifted
right by the exponent difference and added to the larger
one. */
extui a7, a2, 23, 9
extui a8, a3, 23, 9
bltu a7, a8, .Ladd_shiftx
.Ladd_shifty:
/* Check if the smaller (or equal) exponent is zero. */
bnone a3, a6, .Ladd_yexpzero
/* Replace y sign/exponent with 0x008. */
or a3, a3, a6
slli a3, a3, 8
srli a3, a3, 8
.Ladd_yexpdiff:
/* Compute the exponent difference. */
sub a10, a7, a8
/* Exponent difference > 32 -- just return the bigger value. */
bgeui a10, 32, 1f
/* Shift y right by the exponent difference. Any bits that are
shifted out of y are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, a3, a9
srl a3, a3
/* Do the addition. */
add a2, a2, a3
/* Check if the add overflowed into the exponent. */
extui a10, a2, 23, 9
beq a10, a7, .Ladd_round
mov a8, a7
j .Ladd_carry
.Ladd_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0", and increment the apparent exponent
because subnormals behave as if they had the minimum (nonzero)
exponent. Test for the case when both exponents are zero. */
slli a3, a3, 9
srli a3, a3, 9
bnone a2, a6, .Ladd_bothexpzero
addi a8, a8, 1
j .Ladd_yexpdiff
.Ladd_bothexpzero:
/* Both exponents are zero. Handle this as a special case. There
is no need to shift or round, and the normal code for handling
a carry into the exponent field will not work because it
assumes there is an implicit "1.0" that needs to be added. */
add a2, a2, a3
1: leaf_return
.Ladd_xexpzero:
/* Same as "yexpzero" except skip handling the case when both
exponents are zero. */
slli a2, a2, 9
srli a2, a2, 9
addi a7, a7, 1
j .Ladd_xexpdiff
.Ladd_shiftx:
/* Same thing as the "shifty" code, but with x and y swapped. Also,
because the exponent difference is always nonzero in this version,
the shift sequence can use SLL and skip loading a constant zero. */
bnone a2, a6, .Ladd_xexpzero
or a2, a2, a6
slli a2, a2, 8
srli a2, a2, 8
.Ladd_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Ladd_returny
ssr a10
sll a9, a2
srl a2, a2
add a2, a2, a3
/* Check if the add overflowed into the exponent. */
extui a10, a2, 23, 9
bne a10, a8, .Ladd_carry
.Ladd_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi a2, a2, 1
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
.Ladd_returny:
mov a2, a3
leaf_return
.Ladd_carry:
/* The addition has overflowed into the exponent field, so the
value needs to be renormalized. The mantissa of the result
can be recovered by subtracting the original exponent and
adding 0x800000 (which is the explicit "1.0" for the
mantissa of the non-shifted operand -- the "1.0" for the
shifted operand was already added). The mantissa can then
be shifted right by one bit. The explicit "1.0" of the
shifted mantissa then needs to be replaced by the exponent,
incremented by one to account for the normalizing shift.
It is faster to combine these operations: do the shift first
and combine the additions and subtractions. If x is the
original exponent, the result is:
shifted mantissa - (x << 22) + (1 << 22) + (x << 23)
or:
shifted mantissa + ((x + 1) << 22)
Note that the exponent is incremented here by leaving the
explicit "1.0" of the mantissa in the exponent field. */
/* Shift x right by one bit. Save the lsb. */
mov a10, a2
srli a2, a2, 1
/* See explanation above. The original exponent is in a8. */
addi a8, a8, 1
slli a8, a8, 22
add a2, a2, a8
/* Return an Infinity if the exponent overflowed. */
ball a2, a6, .Ladd_infinity
/* Same thing as the "round" code except the msb of the leftover
fraction is bit 0 of a10, with the rest of the fraction in a9. */
bbci.l a10, 0, 1f
addi a2, a2, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
.Ladd_infinity:
/* Clear the mantissa. */
srli a2, a2, 23
slli a2, a2, 23
/* The sign bit may have been lost in a carry-out. Put it back. */
slli a8, a8, 1
or a2, a2, a8
leaf_return
.Ladd_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
/* Subtraction */
__subsf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
.Lsub_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall a3, a6, .Lsub_return_nan_or_inf
/* Both x and y are either NaN or Inf, so the result is NaN. */
.Lsub_return_nan:
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
leaf_return
.Lsub_ynan_or_inf:
/* Negate y and return it. */
slli a7, a6, 8
xor a2, a3, a7
.Lsub_return_nan_or_inf:
slli a7, a2, 9
bnez a7, .Lsub_return_nan
leaf_return
.Lsub_opposite_signs:
/* Operand signs differ. Do an addition. */
slli a7, a6, 8
xor a3, a3, a7
j .Ladd_same_sign
.align 4
.global __subsf3
.type __subsf3, @function
__subsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
/* Check if the two operands have the same sign. */
xor a7, a2, a3
bltz a7, .Lsub_opposite_signs
.Lsub_same_sign:
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
ball a2, a6, .Lsub_xnan_or_inf
ball a3, a6, .Lsub_ynan_or_inf
/* Compare the operands. In contrast to addition, the entire
value matters here. */
extui a7, a2, 23, 8
extui a8, a3, 23, 8
bltu a2, a3, .Lsub_xsmaller
.Lsub_ysmaller:
/* Check if the smaller (or equal) exponent is zero. */
bnone a3, a6, .Lsub_yexpzero
/* Replace y sign/exponent with 0x008. */
or a3, a3, a6
slli a3, a3, 8
srli a3, a3, 8
.Lsub_yexpdiff:
/* Compute the exponent difference. */
sub a10, a7, a8
/* Exponent difference > 32 -- just return the bigger value. */
bgeui a10, 32, 1f
/* Shift y right by the exponent difference. Any bits that are
shifted out of y are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, a3, a9
srl a3, a3
sub a2, a2, a3
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from a2. */
neg a9, a9
addi a10, a2, -1
movnez a2, a10, a9
/* Check if the subtract underflowed into the exponent. */
extui a10, a2, 23, 8
beq a10, a7, .Lsub_round
j .Lsub_borrow
.Lsub_yexpzero:
/* Return zero if the inputs are equal. (For the non-subnormal
case, subtracting the "1.0" will cause a borrow from the exponent
and this case can be detected when handling the borrow.) */
beq a2, a3, .Lsub_return_zero
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0". Unless x is also a subnormal, increment
y's apparent exponent because subnormals behave as if they had
the minimum (nonzero) exponent. */
slli a3, a3, 9
srli a3, a3, 9
bnone a2, a6, .Lsub_yexpdiff
addi a8, a8, 1
j .Lsub_yexpdiff
.Lsub_returny:
/* Negate and return y. */
slli a7, a6, 8
xor a2, a3, a7
1: leaf_return
.Lsub_xsmaller:
/* Same thing as the "ysmaller" code, but with x and y swapped and
with y negated. */
bnone a2, a6, .Lsub_xexpzero
or a2, a2, a6
slli a2, a2, 8
srli a2, a2, 8
.Lsub_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Lsub_returny
ssr a10
movi a9, 0
src a9, a2, a9
srl a2, a2
/* Negate y. */
slli a11, a6, 8
xor a3, a3, a11
sub a2, a3, a2
neg a9, a9
addi a10, a2, -1
movnez a2, a10, a9
/* Check if the subtract underflowed into the exponent. */
extui a10, a2, 23, 8
bne a10, a8, .Lsub_borrow
.Lsub_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi a2, a2, 1
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Lsub_exactlyhalf
1: leaf_return
.Lsub_xexpzero:
/* Same as "yexpzero". */
beq a2, a3, .Lsub_return_zero
slli a2, a2, 9
srli a2, a2, 9
bnone a3, a6, .Lsub_xexpdiff
addi a7, a7, 1
j .Lsub_xexpdiff
.Lsub_return_zero:
movi a2, 0
leaf_return
.Lsub_borrow:
/* The subtraction has underflowed into the exponent field, so the
value needs to be renormalized. Shift the mantissa left as
needed to remove any leading zeros and adjust the exponent
accordingly. If the exponent is not large enough to remove
all the leading zeros, the result will be a subnormal value. */
slli a8, a2, 9
beqz a8, .Lsub_xzero
do_nsau a6, a8, a7, a11
srli a8, a8, 9
bge a6, a10, .Lsub_subnormal
addi a6, a6, 1
.Lsub_normalize_shift:
/* Shift the mantissa (a8/a9) left by a6. */
ssl a6
src a8, a8, a9
sll a9, a9
/* Combine the shifted mantissa with the sign and exponent,
decrementing the exponent by a6. (The exponent has already
been decremented by one due to the borrow from the subtraction,
but adding the mantissa will increment the exponent by one.) */
srli a2, a2, 23
sub a2, a2, a6
slli a2, a2, 23
add a2, a2, a8
j .Lsub_round
.Lsub_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
.Lsub_xzero:
/* If there was a borrow from the exponent, and the mantissa and
guard digits are all zero, then the inputs were equal and the
result should be zero. */
beqz a9, .Lsub_return_zero
/* Only the guard digit is nonzero. Shift by min(24, a10). */
addi a11, a10, -24
movi a6, 24
movltz a6, a10, a11
j .Lsub_normalize_shift
.Lsub_subnormal:
/* The exponent is too small to shift away all the leading zeros.
Set a6 to the current exponent (which has already been
decremented by the borrow) so that the exponent of the result
will be zero. Do not add 1 to a6 in this case, because: (1)
adding the mantissa will not increment the exponent, so there is
no need to subtract anything extra from the exponent to
compensate, and (2) the effective exponent of a subnormal is 1
not 0 so the shift amount must be 1 smaller than normal. */
mov a6, a10
j .Lsub_normalize_shift
#endif /* L_addsubsf3 */
#ifdef L_mulsf3
/* Multiplication */
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
#define XCHAL_NO_MUL 1
#endif
.literal_position
__mulsf3_aux:
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
.Lmul_xexpzero:
/* Clear the sign bit of x. */
slli a2, a2, 1
srli a2, a2, 1
/* If x is zero, return zero. */
beqz a2, .Lmul_return_zero
/* Normalize x. Adjust the exponent in a8. */
do_nsau a10, a2, a11, a12
addi a10, a10, -8
ssl a10
sll a2, a2
movi a8, 1
sub a8, a8, a10
j .Lmul_xnormalized
.Lmul_yexpzero:
/* Clear the sign bit of y. */
slli a3, a3, 1
srli a3, a3, 1
/* If y is zero, return zero. */
beqz a3, .Lmul_return_zero
/* Normalize y. Adjust the exponent in a9. */
do_nsau a10, a3, a11, a12
addi a10, a10, -8
ssl a10
sll a3, a3
movi a9, 1
sub a9, a9, a10
j .Lmul_ynormalized
.Lmul_return_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
j .Lmul_done
.Lmul_xnan_or_inf:
/* If y is zero, return NaN. */
slli a8, a3, 1
beqz a8, .Lmul_return_nan
/* If y is NaN, return y. */
bnall a3, a6, .Lmul_returnx
slli a8, a3, 9
beqz a8, .Lmul_returnx
.Lmul_returny:
mov a2, a3
.Lmul_returnx:
slli a8, a2, 9
bnez a8, .Lmul_return_nan
/* Set the sign bit and return. */
extui a7, a7, 31, 1
slli a2, a2, 1
ssai 1
src a2, a7, a2
j .Lmul_done
.Lmul_ynan_or_inf:
/* If x is zero, return NaN. */
slli a8, a2, 1
bnez a8, .Lmul_returny
mov a2, a3
.Lmul_return_nan:
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
j .Lmul_done
.align 4
.global __mulsf3
.type __mulsf3, @function
__mulsf3:
#if __XTENSA_CALL0_ABI__
leaf_entry sp, 32
addi sp, sp, -32
s32i a12, sp, 16
s32i a13, sp, 20
s32i a14, sp, 24
s32i a15, sp, 28
#elif XCHAL_NO_MUL
/* This is not really a leaf function; allocate enough stack space
to allow CALL12s to a helper function. */
leaf_entry sp, 64
#else
leaf_entry sp, 32
#endif
movi a6, 0x7f800000
/* Get the sign of the result. */
xor a7, a2, a3
/* Check for NaN and infinity. */
ball a2, a6, .Lmul_xnan_or_inf
ball a3, a6, .Lmul_ynan_or_inf
/* Extract the exponents. */
extui a8, a2, 23, 8
extui a9, a3, 23, 8
beqz a8, .Lmul_xexpzero
.Lmul_xnormalized:
beqz a9, .Lmul_yexpzero
.Lmul_ynormalized:
/* Add the exponents. */
add a8, a8, a9
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0xffffff
or a2, a2, a6
and a2, a2, a10
or a3, a3, a6
and a3, a3, a10
/* Multiply 32x32 to 64 bits. The result ends up in a2/a6. */
#if XCHAL_HAVE_MUL32_HIGH
mull a6, a2, a3
muluh a2, a2, a3
#else
/* Break the inputs into 16-bit chunks and compute 4 32-bit partial
products. These partial products are:
0 xl * yl
1 xl * yh
2 xh * yl
3 xh * yh
If using the Mul16 or Mul32 multiplier options, these input
chunks must be stored in separate registers. For Mac16, the
UMUL.AA.* opcodes can specify that the inputs come from either
half of the registers, so there is no need to shift them out
ahead of time. If there is no multiply hardware, the 16-bit
chunks can be extracted when setting up the arguments to the
separate multiply function. */
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
/* Calling a separate multiply function will clobber a0 and requires
use of a8 as a temporary, so save those values now. (The function
uses a custom ABI so nothing else needs to be saved.) */
s32i a0, sp, 0
s32i a8, sp, 4
#endif
#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32
#define a2h a4
#define a3h a5
/* Get the high halves of the inputs into registers. */
srli a2h, a2, 16
srli a3h, a3, 16
#define a2l a2
#define a3l a3
#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
/* Clear the high halves of the inputs. This does not matter
for MUL16 because the high bits are ignored. */
extui a2, a2, 0, 16
extui a3, a3, 0, 16
#endif
#endif /* MUL16 || MUL32 */
#if XCHAL_HAVE_MUL16
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mul16u dst, xreg ## xhalf, yreg ## yhalf
#elif XCHAL_HAVE_MUL32
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mull dst, xreg ## xhalf, yreg ## yhalf
#elif XCHAL_HAVE_MAC16
/* The preprocessor insists on inserting a space when concatenating after
a period in the definition of do_mul below. These macros are a workaround
using underscores instead of periods when doing the concatenation. */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
umul_aa_ ## xhalf ## yhalf xreg, yreg; \
rsr dst, ACCLO
#else /* no multiply hardware */
#define set_arg_l(dst, src) \
extui dst, src, 0, 16
#define set_arg_h(dst, src) \
srli dst, src, 16
#if __XTENSA_CALL0_ABI__
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a13, xreg); \
set_arg_ ## yhalf (a14, yreg); \
call0 .Lmul_mulsi3; \
mov dst, a12
#else
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a14, xreg); \
set_arg_ ## yhalf (a15, yreg); \
call12 .Lmul_mulsi3; \
mov dst, a14
#endif /* __XTENSA_CALL0_ABI__ */
#endif /* no multiply hardware */
/* Add pp1 and pp2 into a6 with carry-out in a9. */
do_mul(a6, a2, l, a3, h) /* pp 1 */
do_mul(a11, a2, h, a3, l) /* pp 2 */
movi a9, 0
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Shift the high half of a9/a6 into position in a9. Note that
this value can be safely incremented without any carry-outs. */
ssai 16
src a9, a9, a6
/* Compute the low word into a6. */
do_mul(a11, a2, l, a3, l) /* pp 0 */
sll a6, a6
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Compute the high word into a2. */
do_mul(a2, a2, h, a3, h) /* pp 3 */
add a2, a2, a9
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
/* Restore values saved on the stack during the multiplication. */
l32i a0, sp, 0
l32i a8, sp, 4
#endif
#endif /* ! XCHAL_HAVE_MUL32_HIGH */
/* Shift left by 9 bits, unless there was a carry-out from the
multiply, in which case, shift by 8 bits and increment the
exponent. */
movi a4, 9
srli a5, a2, 24 - 9
beqz a5, 1f
addi a4, a4, -1
addi a8, a8, 1
1: ssl a4
src a2, a2, a6
sll a6, a6
/* Subtract the extra bias from the exponent sum (plus one to account
for the explicit "1.0" of the mantissa that will be added to the
exponent in the final result). */
movi a4, 0x80
sub a8, a8, a4
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..fd are OK here. */
movi a4, 0xfe
bgeu a8, a4, .Lmul_overflow
.Lmul_round:
/* Round. */
bgez a6, .Lmul_rounded
addi a2, a2, 1
slli a6, a6, 1
beqz a6, .Lmul_exactlyhalf
.Lmul_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 23
add a2, a2, a8
.Lmul_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or a2, a2, a7
.Lmul_done:
#if __XTENSA_CALL0_ABI__
l32i a12, sp, 16
l32i a13, sp, 20
l32i a14, sp, 24
l32i a15, sp, 28
addi sp, sp, 32
#endif
leaf_return
.Lmul_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
j .Lmul_rounded
.Lmul_overflow:
bltz a8, .Lmul_underflow
/* Return +/- Infinity. */
movi a8, 0xff
slli a2, a8, 23
j .Lmul_addsign
.Lmul_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
mov a9, a6
ssr a8
bgeui a8, 32, .Lmul_flush_to_zero
/* Shift a2 right. Any bits that are shifted out of a2 are saved
in a6 (combined with the shifted-out bits currently in a6) for
rounding the result. */
sll a6, a2
srl a2, a2
/* Set the exponent to zero. */
movi a8, 0
/* Pack any nonzero bits shifted out into a6. */
beqz a9, .Lmul_round
movi a9, 1
or a6, a6, a9
j .Lmul_round
.Lmul_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
j .Lmul_done
#if XCHAL_NO_MUL
/* For Xtensa processors with no multiply hardware, this simplified
version of _mulsi3 is used for multiplying 16-bit chunks of
the floating-point mantissas. When using CALL0, this function
uses a custom ABI: the inputs are passed in a13 and a14, the
result is returned in a12, and a8 and a15 are clobbered. */
.align 4
.Lmul_mulsi3:
leaf_entry sp, 16
.macro mul_mulsi3_body dst, src1, src2, tmp1, tmp2
movi \dst, 0
1: add \tmp1, \src2, \dst
extui \tmp2, \src1, 0, 1
movnez \dst, \tmp1, \tmp2
do_addx2 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 1, 1
movnez \dst, \tmp1, \tmp2
do_addx4 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 2, 1
movnez \dst, \tmp1, \tmp2
do_addx8 \tmp1, \src2, \dst, \tmp1
extui \tmp2, \src1, 3, 1
movnez \dst, \tmp1, \tmp2
srli \src1, \src1, 4
slli \src2, \src2, 4
bnez \src1, 1b
.endm
#if __XTENSA_CALL0_ABI__
mul_mulsi3_body a12, a13, a14, a15, a8
#else
/* The result will be written into a2, so save that argument in a4. */
mov a4, a2
mul_mulsi3_body a2, a4, a3, a5, a6
#endif
leaf_return
#endif /* XCHAL_NO_MUL */
#endif /* L_mulsf3 */
#ifdef L_divsf3
/* Division */
#if XCHAL_HAVE_FP_DIV
.align 4
.global __divsf3
.type __divsf3, @function
__divsf3:
leaf_entry sp, 16
wfr f1, a2 /* dividend */
wfr f2, a3 /* divisor */
div0.s f3, f2
nexp01.s f4, f2
const.s f5, 1
maddn.s f5, f4, f3
mov.s f6, f3
mov.s f7, f2
nexp01.s f2, f1
maddn.s f6, f5, f6
const.s f5, 1
const.s f0, 0
neg.s f8, f2
maddn.s f5, f4, f6
maddn.s f0, f8, f3
mkdadj.s f7, f1
maddn.s f6, f5, f6
maddn.s f8, f4, f0
const.s f3, 1
maddn.s f3, f4, f6
maddn.s f0, f8, f6
neg.s f2, f2
maddn.s f6, f3, f6
maddn.s f2, f4, f0
addexpm.s f0, f7
addexp.s f6, f7
divn.s f0, f2, f6
rfr a2, f0
leaf_return
#else
.literal_position
__divsf3_aux:
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
.Ldiv_yexpzero:
/* Clear the sign bit of y. */
slli a3, a3, 1
srli a3, a3, 1
/* Check for division by zero. */
beqz a3, .Ldiv_yzero
/* Normalize y. Adjust the exponent in a9. */
do_nsau a10, a3, a4, a5
addi a10, a10, -8
ssl a10
sll a3, a3
movi a9, 1
sub a9, a9, a10
j .Ldiv_ynormalized
.Ldiv_yzero:
/* y is zero. Return NaN if x is also zero; otherwise, infinity. */
slli a4, a2, 1
srli a4, a4, 1
srli a2, a7, 31
slli a2, a2, 31
or a2, a2, a6
bnez a4, 1f
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
1: leaf_return
.Ldiv_xexpzero:
/* Clear the sign bit of x. */
slli a2, a2, 1
srli a2, a2, 1
/* If x is zero, return zero. */
beqz a2, .Ldiv_return_zero
/* Normalize x. Adjust the exponent in a8. */
do_nsau a10, a2, a4, a5
addi a10, a10, -8
ssl a10
sll a2, a2
movi a8, 1
sub a8, a8, a10
j .Ldiv_xnormalized
.Ldiv_return_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
leaf_return
.Ldiv_xnan_or_inf:
/* Set the sign bit of the result. */
srli a7, a3, 31
slli a7, a7, 31
xor a2, a2, a7
/* If y is NaN or Inf, return NaN. */
ball a3, a6, .Ldiv_return_nan
slli a7, a2, 9
bnez a7, .Ldiv_return_nan
leaf_return
.Ldiv_ynan_or_inf:
/* If y is Infinity, return zero. */
slli a8, a3, 9
beqz a8, .Ldiv_return_zero
/* y is NaN; return it. */
mov a2, a3
.Ldiv_return_nan:
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
leaf_return
.align 4
.global __divsf3
.type __divsf3, @function
__divsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
/* Get the sign of the result. */
xor a7, a2, a3
/* Check for NaN and infinity. */
ball a2, a6, .Ldiv_xnan_or_inf
ball a3, a6, .Ldiv_ynan_or_inf
/* Extract the exponents. */
extui a8, a2, 23, 8
extui a9, a3, 23, 8
beqz a9, .Ldiv_yexpzero
.Ldiv_ynormalized:
beqz a8, .Ldiv_xexpzero
.Ldiv_xnormalized:
/* Subtract the exponents. */
sub a8, a8, a9
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0xffffff
or a2, a2, a6
and a2, a2, a10
or a3, a3, a6
and a3, a3, a10
/* The first digit of the mantissa division must be a one.
Shift x (and adjust the exponent) as needed to make this true. */
bltu a3, a2, 1f
slli a2, a2, 1
addi a8, a8, -1
1:
/* Do the first subtraction and shift. */
sub a2, a2, a3
slli a2, a2, 1
/* Put the quotient into a10. */
movi a10, 1
/* Divide one bit at a time for 23 bits. */
movi a9, 23
#if XCHAL_HAVE_LOOPS
loop a9, .Ldiv_loopend
#endif
.Ldiv_loop:
/* Shift the quotient << 1. */
slli a10, a10, 1
/* Is this digit a 0 or 1? */
bltu a2, a3, 1f
/* Output a 1 and subtract. */
addi a10, a10, 1
sub a2, a2, a3
/* Shift the dividend << 1. */
1: slli a2, a2, 1
#if !XCHAL_HAVE_LOOPS
addi a9, a9, -1
bnez a9, .Ldiv_loop
#endif
.Ldiv_loopend:
/* Add the exponent bias (less one to account for the explicit "1.0"
of the mantissa that will be added to the exponent in the final
result). */
addi a8, a8, 0x7e
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..fd are OK here. */
movi a4, 0xfe
bgeu a8, a4, .Ldiv_overflow
.Ldiv_round:
/* Round. The remainder (<< 1) is in a2. */
bltu a2, a3, .Ldiv_rounded
addi a10, a10, 1
beq a2, a3, .Ldiv_exactlyhalf
.Ldiv_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 23
add a2, a10, a8
.Ldiv_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or a2, a2, a7
leaf_return
.Ldiv_overflow:
bltz a8, .Ldiv_underflow
/* Return +/- Infinity. */
addi a8, a4, 1 /* 0xff */
slli a2, a8, 23
j .Ldiv_addsign
.Ldiv_exactlyhalf:
/* Remainder is exactly half the divisor. Round even. */
srli a10, a10, 1
slli a10, a10, 1
j .Ldiv_rounded
.Ldiv_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
ssr a8
bgeui a8, 32, .Ldiv_flush_to_zero
/* Shift a10 right. Any bits that are shifted out of a10 are
saved in a6 for rounding the result. */
sll a6, a10
srl a10, a10
/* Set the exponent to zero. */
movi a8, 0
/* Pack any nonzero remainder (in a2) into a6. */
beqz a2, 1f
movi a9, 1
or a6, a6, a9
/* Round a10 based on the bits shifted out into a6. */
1: bgez a6, .Ldiv_rounded
addi a10, a10, 1
slli a6, a6, 1
bnez a6, .Ldiv_rounded
srli a10, a10, 1
slli a10, a10, 1
j .Ldiv_rounded
.Ldiv_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
leaf_return
#endif /* XCHAL_HAVE_FP_DIV */
#endif /* L_divsf3 */
#ifdef L_cmpsf2
/* Equal and Not Equal */
.align 4
.global __eqsf2
.global __nesf2
.set __nesf2, __eqsf2
.type __eqsf2, @function
__eqsf2:
leaf_entry sp, 16
bne a2, a3, 4f
/* The values are equal but NaN != NaN. Check the exponent. */
movi a6, 0x7f800000
ball a2, a6, 3f
/* Equal. */
movi a2, 0
leaf_return
/* Not equal. */
2: movi a2, 1
leaf_return
/* Check if the mantissas are nonzero. */
3: slli a7, a2, 9
j 5f
/* Check if x and y are zero with different signs. */
4: or a7, a2, a3
slli a7, a7, 1
/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
or x when exponent(x) = 0x7f8 and x == y. */
5: movi a2, 0
movi a3, 1
movnez a2, a3, a7
leaf_return
/* Greater Than */
.align 4
.global __gtsf2
.type __gtsf2, @function
__gtsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Lle_cmp
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Lle_cmp
movi a2, 0
leaf_return
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 0
leaf_return
/* Less Than or Equal */
.align 4
.global __lesf2
.type __lesf2, @function
__lesf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Lle_cmp
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Lle_cmp
movi a2, 1
leaf_return
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 1
leaf_return
.Lle_cmp:
/* Check if x and y have different signs. */
xor a7, a2, a3
bltz a7, .Lle_diff_signs
/* Check if x is negative. */
bltz a2, .Lle_xneg
/* Check if x <= y. */
bltu a3, a2, 5f
4: movi a2, 0
leaf_return
.Lle_xneg:
/* Check if y <= x. */
bgeu a2, a3, 4b
5: movi a2, 1
leaf_return
.Lle_diff_signs:
bltz a2, 4b
/* Check if both x and y are zero. */
or a7, a2, a3
slli a7, a7, 1
movi a2, 1
movi a3, 0
moveqz a2, a3, a7
leaf_return
/* Greater Than or Equal */
.align 4
.global __gesf2
.type __gesf2, @function
__gesf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Llt_cmp
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Llt_cmp
movi a2, -1
leaf_return
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, -1
leaf_return
/* Less Than */
.align 4
.global __ltsf2
.type __ltsf2, @function
__ltsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Llt_cmp
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Llt_cmp
movi a2, 0
leaf_return
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 0
leaf_return
.Llt_cmp:
/* Check if x and y have different signs. */
xor a7, a2, a3
bltz a7, .Llt_diff_signs
/* Check if x is negative. */
bltz a2, .Llt_xneg
/* Check if x < y. */
bgeu a2, a3, 5f
4: movi a2, -1
leaf_return
.Llt_xneg:
/* Check if y < x. */
bltu a3, a2, 4b
5: movi a2, 0
leaf_return
.Llt_diff_signs:
bgez a2, 5b
/* Check if both x and y are nonzero. */
or a7, a2, a3
slli a7, a7, 1
movi a2, 0
movi a3, -1
movnez a2, a3, a7
leaf_return
/* Unordered */
.align 4
.global __unordsf2
.type __unordsf2, @function
__unordsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 3f
1: ball a3, a6, 4f
2: movi a2, 0
leaf_return
3: slli a7, a2, 9
beqz a7, 1b
movi a2, 1
leaf_return
4: slli a7, a3, 9
beqz a7, 2b
movi a2, 1
leaf_return
#endif /* L_cmpsf2 */
#ifdef L_fixsfsi
.align 4
.global __fixsfsi
.type __fixsfsi, @function
__fixsfsi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixsfsi_nan_or_inf
/* Extract the exponent and check if 0 < (exp - 0x7e) < 32. */
extui a4, a2, 23, 8
addi a4, a4, -0x7e
bgei a4, 32, .Lfixsfsi_maxint
blti a4, 1, .Lfixsfsi_zero
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli a5, a7, 8
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 32 - a4 */
srl a5, a5
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
.Lfixsfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixsfsi_maxint
/* Translate NaN to +maxint. */
movi a2, 0
.Lfixsfsi_maxint:
slli a4, a6, 8 /* 0x80000000 */
addi a5, a4, -1 /* 0x7fffffff */
movgez a4, a5, a2
mov a2, a4
leaf_return
.Lfixsfsi_zero:
movi a2, 0
leaf_return
#endif /* L_fixsfsi */
#ifdef L_fixsfdi
.align 4
.global __fixsfdi
.type __fixsfdi, @function
__fixsfdi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixsfdi_nan_or_inf
/* Extract the exponent and check if 0 < (exp - 0x7e) < 64. */
extui a4, a2, 23, 8
addi a4, a4, -0x7e
bgei a4, 64, .Lfixsfdi_maxint
blti a4, 1, .Lfixsfdi_zero
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli xh, a7, 8
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixsfdi_smallshift
srl xl, xh
movi xh, 0
.Lfixsfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
.Lfixsfdi_smallshift:
movi xl, 0
sll xl, xh
srl xh, xh
j .Lfixsfdi_shifted
.Lfixsfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixsfdi_maxint
/* Translate NaN to +maxint. */
movi a2, 0
.Lfixsfdi_maxint:
slli a7, a6, 8 /* 0x80000000 */
bgez a2, 1f
mov xh, a7
movi xl, 0
leaf_return
1: addi xh, a7, -1 /* 0x7fffffff */
movi xl, -1
leaf_return
.Lfixsfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
#endif /* L_fixsfdi */
#ifdef L_fixunssfsi
.align 4
.global __fixunssfsi
.type __fixunssfsi, @function
__fixunssfsi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixunssfsi_nan_or_inf
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 32. */
extui a4, a2, 23, 8
addi a4, a4, -0x7f
bgei a4, 32, .Lfixunssfsi_maxint
bltz a4, .Lfixunssfsi_zero
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli a5, a7, 8
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 32, .Lfixunssfsi_bigexp
ssl a4 /* shift by 32 - a4 */
srl a5, a5
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
.Lfixunssfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixunssfsi_maxint
/* Translate NaN to 0xffffffff. */
movi a2, -1
leaf_return
.Lfixunssfsi_maxint:
slli a4, a6, 8 /* 0x80000000 */
movi a5, -1 /* 0xffffffff */
movgez a4, a5, a2
mov a2, a4
leaf_return
.Lfixunssfsi_zero:
movi a2, 0
leaf_return
.Lfixunssfsi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a2, 1f
mov a2, a5 /* no shift needed */
leaf_return
/* Return 0x80000000 if negative. */
1: slli a2, a6, 8
leaf_return
#endif /* L_fixunssfsi */
#ifdef L_fixunssfdi
.align 4
.global __fixunssfdi
.type __fixunssfdi, @function
__fixunssfdi:
leaf_entry sp, 16
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixunssfdi_nan_or_inf
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 64. */
extui a4, a2, 23, 8
addi a4, a4, -0x7f
bgei a4, 64, .Lfixunssfdi_maxint
bltz a4, .Lfixunssfdi_zero
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli xh, a7, 8
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 64, .Lfixunssfdi_bigexp
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixunssfdi_smallshift
srl xl, xh
movi xh, 0
.Lfixunssfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
.Lfixunssfdi_smallshift:
movi xl, 0
src xl, xh, xl
srl xh, xh
j .Lfixunssfdi_shifted
.Lfixunssfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixunssfdi_maxint
/* Translate NaN to 0xffffffff.... */
1: movi xh, -1
movi xl, -1
leaf_return
.Lfixunssfdi_maxint:
bgez a2, 1b
2: slli xh, a6, 8 /* 0x80000000 */
movi xl, 0
leaf_return
.Lfixunssfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
.Lfixunssfdi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a7, 2b
movi xl, 0
leaf_return /* no shift needed */
#endif /* L_fixunssfdi */
#ifdef L_floatsisf
.align 4
.global __floatunsisf
.type __floatunsisf, @function
__floatunsisf:
leaf_entry sp, 16
beqz a2, .Lfloatsisf_return
/* Set the sign to zero and jump to the floatsisf code. */
movi a7, 0
j .Lfloatsisf_normalize
.align 4
.global __floatsisf
.type __floatsisf, @function
__floatsisf:
leaf_entry sp, 16
/* Check for zero. */
beqz a2, .Lfloatsisf_return
/* Save the sign. */
extui a7, a2, 31, 1
/* Get the absolute value. */
#if XCHAL_HAVE_ABS
abs a2, a2
#else
neg a4, a2
movltz a2, a4, a2
#endif
.Lfloatsisf_normalize:
/* Normalize with the first 1 bit in the msb. */
do_nsau a4, a2, a5, a6
ssl a4
sll a5, a2
/* Shift the mantissa into position, with rounding bits in a6. */
srli a2, a5, 8
slli a6, a5, (32 - 8)
/* Set the exponent. */
movi a5, 0x9d /* 0x7e + 31 */
sub a5, a5, a4
slli a5, a5, 23
add a2, a2, a5
/* Add the sign. */
slli a7, a7, 31
or a2, a2, a7
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, .Lfloatsisf_return
addi a2, a2, 1 /* Overflow to the exponent is OK. */
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatsisf_exactlyhalf
.Lfloatsisf_return:
leaf_return
.Lfloatsisf_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
#endif /* L_floatsisf */
#ifdef L_floatdisf
.align 4
.global __floatundisf
.type __floatundisf, @function
__floatundisf:
leaf_entry sp, 16
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
/* Set the sign to zero and jump to the floatdisf code. */
movi a7, 0
j .Lfloatdisf_normalize
.align 4
.global __floatdisf
.type __floatdisf, @function
__floatdisf:
leaf_entry sp, 16
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
/* Save the sign. */
extui a7, xh, 31, 1
/* Get the absolute value. */
bgez xh, .Lfloatdisf_normalize
neg xl, xl
neg xh, xh
beqz xl, .Lfloatdisf_normalize
addi xh, xh, -1
.Lfloatdisf_normalize:
/* Normalize with the first 1 bit in the msb of xh. */
beqz xh, .Lfloatdisf_bigshift
do_nsau a4, xh, a5, a6
ssl a4
src xh, xh, xl
sll xl, xl
.Lfloatdisf_shifted:
/* Shift the mantissa into position, with rounding bits in a6. */
ssai 8
sll a5, xl
src a6, xh, xl
srl xh, xh
beqz a5, 1f
movi a5, 1
or a6, a6, a5
1:
/* Set the exponent. */
movi a5, 0xbd /* 0x7e + 63 */
sub a5, a5, a4
slli a5, a5, 23
add a2, xh, a5
/* Add the sign. */
slli a7, a7, 31
or a2, a2, a7
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, 2f
addi a2, a2, 1 /* Overflow to the exponent is OK. */
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatdisf_exactlyhalf
2: leaf_return
.Lfloatdisf_bigshift:
/* xh is zero. Normalize with first 1 bit of xl in the msb of xh. */
do_nsau a4, xl, a5, a6
ssl a4
sll xh, xl
movi xl, 0
addi a4, a4, 32
j .Lfloatdisf_shifted
.Lfloatdisf_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
#endif /* L_floatdisf */
#if XCHAL_HAVE_FP_SQRT
#ifdef L_sqrtf
/* Square root */
.align 4
.global __ieee754_sqrtf
.type __ieee754_sqrtf, @function
__ieee754_sqrtf:
leaf_entry sp, 16
wfr f1, a2
sqrt0.s f2, f1
const.s f3, 0
maddn.s f3, f2, f2
nexp01.s f4, f1
const.s f0, 3
addexp.s f4, f0
maddn.s f0, f3, f4
nexp01.s f3, f1
neg.s f5, f3
maddn.s f2, f0, f2
const.s f0, 0
const.s f6, 0
const.s f7, 0
maddn.s f0, f5, f2
maddn.s f6, f2, f4
const.s f4, 3
maddn.s f7, f4, f2
maddn.s f3, f0, f0
maddn.s f4, f6, f2
neg.s f2, f7
maddn.s f0, f3, f2
maddn.s f7, f4, f7
mksadj.s f2, f1
nexp01.s f1, f1
maddn.s f1, f0, f0
neg.s f3, f7
addexpm.s f0, f2
addexp.s f3, f2
divn.s f0, f1, f3
rfr a2, f0
leaf_return
#endif /* L_sqrtf */
#endif /* XCHAL_HAVE_FP_SQRT */
#if XCHAL_HAVE_FP_RECIP
#ifdef L_recipsf2
/* Reciprocal */
.align 4
.global __recipsf2
.type __recipsf2, @function
__recipsf2:
leaf_entry sp, 16
wfr f1, a2
recip0.s f0, f1
const.s f2, 1
msub.s f2, f1, f0
maddn.s f0, f0, f2
const.s f2, 1
msub.s f2, f1, f0
maddn.s f0, f0, f2
rfr a2, f0
leaf_return
#endif /* L_recipsf2 */
#endif /* XCHAL_HAVE_FP_RECIP */
#if XCHAL_HAVE_FP_RSQRT
#ifdef L_rsqrtsf2
/* Reciprocal square root */
.align 4
.global __rsqrtsf2
.type __rsqrtsf2, @function
__rsqrtsf2:
leaf_entry sp, 16
wfr f1, a2
rsqrt0.s f0, f1
mul.s f2, f1, f0
const.s f3, 3;
mul.s f4, f3, f0
const.s f5, 1
msub.s f5, f2, f0
maddn.s f0, f4, f5
mul.s f2, f1, f0
mul.s f1, f3, f0
const.s f3, 1
msub.s f3, f2, f0
maddn.s f0, f1, f3
rfr a2, f0
leaf_return
#endif /* L_rsqrtsf2 */
#endif /* XCHAL_HAVE_FP_RSQRT */