1933 lines
40 KiB
ArmAsm
1933 lines
40 KiB
ArmAsm
/* IEEE-754 single-precision functions for Xtensa
|
|
Copyright (C) 2006-2022 Free Software Foundation, Inc.
|
|
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifdef __XTENSA_EB__
|
|
#define xh a2
|
|
#define xl a3
|
|
#define yh a4
|
|
#define yl a5
|
|
#else
|
|
#define xh a3
|
|
#define xl a2
|
|
#define yh a5
|
|
#define yl a4
|
|
#endif
|
|
|
|
/* Warning! The branch displacements for some Xtensa branch instructions
|
|
are quite small, and this code has been carefully laid out to keep
|
|
branch targets in range. If you change anything, be sure to check that
|
|
the assembler is not relaxing anything to branch over a jump. */
|
|
|
|
#ifdef L_negsf2
|
|
|
|
.align 4
|
|
.global __negsf2
|
|
.type __negsf2, @function
|
|
__negsf2:
|
|
leaf_entry sp, 16
|
|
movi a4, 0x80000000
|
|
xor a2, a2, a4
|
|
leaf_return
|
|
|
|
#endif /* L_negsf2 */
|
|
|
|
#ifdef L_addsubsf3
|
|
|
|
.literal_position
|
|
/* Addition */
|
|
__addsf3_aux:
|
|
|
|
/* Handle NaNs and Infinities. (This code is placed before the
|
|
start of the function just to keep it in range of the limited
|
|
branch displacements.) */
|
|
|
|
.Ladd_xnan_or_inf:
|
|
/* If y is neither Infinity nor NaN, return x. */
|
|
bnall a3, a6, .Ladd_return_nan_or_inf
|
|
/* If x is a NaN, return it. Otherwise, return y. */
|
|
slli a7, a2, 9
|
|
bnez a7, .Ladd_return_nan
|
|
|
|
.Ladd_ynan_or_inf:
|
|
/* Return y. */
|
|
mov a2, a3
|
|
|
|
.Ladd_return_nan_or_inf:
|
|
slli a7, a2, 9
|
|
bnez a7, .Ladd_return_nan
|
|
leaf_return
|
|
|
|
.Ladd_return_nan:
|
|
movi a6, 0x400000 /* make it a quiet NaN */
|
|
or a2, a2, a6
|
|
leaf_return
|
|
|
|
.Ladd_opposite_signs:
|
|
/* Operand signs differ. Do a subtraction. */
|
|
slli a7, a6, 8
|
|
xor a3, a3, a7
|
|
j .Lsub_same_sign
|
|
|
|
.align 4
|
|
.global __addsf3
|
|
.type __addsf3, @function
|
|
__addsf3:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
|
|
/* Check if the two operands have the same sign. */
|
|
xor a7, a2, a3
|
|
bltz a7, .Ladd_opposite_signs
|
|
|
|
.Ladd_same_sign:
|
|
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
|
|
ball a2, a6, .Ladd_xnan_or_inf
|
|
ball a3, a6, .Ladd_ynan_or_inf
|
|
|
|
/* Compare the exponents. The smaller operand will be shifted
|
|
right by the exponent difference and added to the larger
|
|
one. */
|
|
extui a7, a2, 23, 9
|
|
extui a8, a3, 23, 9
|
|
bltu a7, a8, .Ladd_shiftx
|
|
|
|
.Ladd_shifty:
|
|
/* Check if the smaller (or equal) exponent is zero. */
|
|
bnone a3, a6, .Ladd_yexpzero
|
|
|
|
/* Replace y sign/exponent with 0x008. */
|
|
or a3, a3, a6
|
|
slli a3, a3, 8
|
|
srli a3, a3, 8
|
|
|
|
.Ladd_yexpdiff:
|
|
/* Compute the exponent difference. */
|
|
sub a10, a7, a8
|
|
|
|
/* Exponent difference > 32 -- just return the bigger value. */
|
|
bgeui a10, 32, 1f
|
|
|
|
/* Shift y right by the exponent difference. Any bits that are
|
|
shifted out of y are saved in a9 for rounding the result. */
|
|
ssr a10
|
|
movi a9, 0
|
|
src a9, a3, a9
|
|
srl a3, a3
|
|
|
|
/* Do the addition. */
|
|
add a2, a2, a3
|
|
|
|
/* Check if the add overflowed into the exponent. */
|
|
extui a10, a2, 23, 9
|
|
beq a10, a7, .Ladd_round
|
|
mov a8, a7
|
|
j .Ladd_carry
|
|
|
|
.Ladd_yexpzero:
|
|
/* y is a subnormal value. Replace its sign/exponent with zero,
|
|
i.e., no implicit "1.0", and increment the apparent exponent
|
|
because subnormals behave as if they had the minimum (nonzero)
|
|
exponent. Test for the case when both exponents are zero. */
|
|
slli a3, a3, 9
|
|
srli a3, a3, 9
|
|
bnone a2, a6, .Ladd_bothexpzero
|
|
addi a8, a8, 1
|
|
j .Ladd_yexpdiff
|
|
|
|
.Ladd_bothexpzero:
|
|
/* Both exponents are zero. Handle this as a special case. There
|
|
is no need to shift or round, and the normal code for handling
|
|
a carry into the exponent field will not work because it
|
|
assumes there is an implicit "1.0" that needs to be added. */
|
|
add a2, a2, a3
|
|
1: leaf_return
|
|
|
|
.Ladd_xexpzero:
|
|
/* Same as "yexpzero" except skip handling the case when both
|
|
exponents are zero. */
|
|
slli a2, a2, 9
|
|
srli a2, a2, 9
|
|
addi a7, a7, 1
|
|
j .Ladd_xexpdiff
|
|
|
|
.Ladd_shiftx:
|
|
/* Same thing as the "shifty" code, but with x and y swapped. Also,
|
|
because the exponent difference is always nonzero in this version,
|
|
the shift sequence can use SLL and skip loading a constant zero. */
|
|
bnone a2, a6, .Ladd_xexpzero
|
|
|
|
or a2, a2, a6
|
|
slli a2, a2, 8
|
|
srli a2, a2, 8
|
|
|
|
.Ladd_xexpdiff:
|
|
sub a10, a8, a7
|
|
bgeui a10, 32, .Ladd_returny
|
|
|
|
ssr a10
|
|
sll a9, a2
|
|
srl a2, a2
|
|
|
|
add a2, a2, a3
|
|
|
|
/* Check if the add overflowed into the exponent. */
|
|
extui a10, a2, 23, 9
|
|
bne a10, a8, .Ladd_carry
|
|
|
|
.Ladd_round:
|
|
/* Round up if the leftover fraction is >= 1/2. */
|
|
bgez a9, 1f
|
|
addi a2, a2, 1
|
|
|
|
/* Check if the leftover fraction is exactly 1/2. */
|
|
slli a9, a9, 1
|
|
beqz a9, .Ladd_exactlyhalf
|
|
1: leaf_return
|
|
|
|
.Ladd_returny:
|
|
mov a2, a3
|
|
leaf_return
|
|
|
|
.Ladd_carry:
|
|
/* The addition has overflowed into the exponent field, so the
|
|
value needs to be renormalized. The mantissa of the result
|
|
can be recovered by subtracting the original exponent and
|
|
adding 0x800000 (which is the explicit "1.0" for the
|
|
mantissa of the non-shifted operand -- the "1.0" for the
|
|
shifted operand was already added). The mantissa can then
|
|
be shifted right by one bit. The explicit "1.0" of the
|
|
shifted mantissa then needs to be replaced by the exponent,
|
|
incremented by one to account for the normalizing shift.
|
|
It is faster to combine these operations: do the shift first
|
|
and combine the additions and subtractions. If x is the
|
|
original exponent, the result is:
|
|
shifted mantissa - (x << 22) + (1 << 22) + (x << 23)
|
|
or:
|
|
shifted mantissa + ((x + 1) << 22)
|
|
Note that the exponent is incremented here by leaving the
|
|
explicit "1.0" of the mantissa in the exponent field. */
|
|
|
|
/* Shift x right by one bit. Save the lsb. */
|
|
mov a10, a2
|
|
srli a2, a2, 1
|
|
|
|
/* See explanation above. The original exponent is in a8. */
|
|
addi a8, a8, 1
|
|
slli a8, a8, 22
|
|
add a2, a2, a8
|
|
|
|
/* Return an Infinity if the exponent overflowed. */
|
|
ball a2, a6, .Ladd_infinity
|
|
|
|
/* Same thing as the "round" code except the msb of the leftover
|
|
fraction is bit 0 of a10, with the rest of the fraction in a9. */
|
|
bbci.l a10, 0, 1f
|
|
addi a2, a2, 1
|
|
beqz a9, .Ladd_exactlyhalf
|
|
1: leaf_return
|
|
|
|
.Ladd_infinity:
|
|
/* Clear the mantissa. */
|
|
srli a2, a2, 23
|
|
slli a2, a2, 23
|
|
|
|
/* The sign bit may have been lost in a carry-out. Put it back. */
|
|
slli a8, a8, 1
|
|
or a2, a2, a8
|
|
leaf_return
|
|
|
|
.Ladd_exactlyhalf:
|
|
/* Round down to the nearest even value. */
|
|
srli a2, a2, 1
|
|
slli a2, a2, 1
|
|
leaf_return
|
|
|
|
|
|
/* Subtraction */
|
|
__subsf3_aux:
|
|
|
|
/* Handle NaNs and Infinities. (This code is placed before the
|
|
start of the function just to keep it in range of the limited
|
|
branch displacements.) */
|
|
|
|
.Lsub_xnan_or_inf:
|
|
/* If y is neither Infinity nor NaN, return x. */
|
|
bnall a3, a6, .Lsub_return_nan_or_inf
|
|
/* Both x and y are either NaN or Inf, so the result is NaN. */
|
|
|
|
.Lsub_return_nan:
|
|
movi a4, 0x400000 /* make it a quiet NaN */
|
|
or a2, a2, a4
|
|
leaf_return
|
|
|
|
.Lsub_ynan_or_inf:
|
|
/* Negate y and return it. */
|
|
slli a7, a6, 8
|
|
xor a2, a3, a7
|
|
|
|
.Lsub_return_nan_or_inf:
|
|
slli a7, a2, 9
|
|
bnez a7, .Lsub_return_nan
|
|
leaf_return
|
|
|
|
.Lsub_opposite_signs:
|
|
/* Operand signs differ. Do an addition. */
|
|
slli a7, a6, 8
|
|
xor a3, a3, a7
|
|
j .Ladd_same_sign
|
|
|
|
.align 4
|
|
.global __subsf3
|
|
.type __subsf3, @function
|
|
__subsf3:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
|
|
/* Check if the two operands have the same sign. */
|
|
xor a7, a2, a3
|
|
bltz a7, .Lsub_opposite_signs
|
|
|
|
.Lsub_same_sign:
|
|
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
|
|
ball a2, a6, .Lsub_xnan_or_inf
|
|
ball a3, a6, .Lsub_ynan_or_inf
|
|
|
|
/* Compare the operands. In contrast to addition, the entire
|
|
value matters here. */
|
|
extui a7, a2, 23, 8
|
|
extui a8, a3, 23, 8
|
|
bltu a2, a3, .Lsub_xsmaller
|
|
|
|
.Lsub_ysmaller:
|
|
/* Check if the smaller (or equal) exponent is zero. */
|
|
bnone a3, a6, .Lsub_yexpzero
|
|
|
|
/* Replace y sign/exponent with 0x008. */
|
|
or a3, a3, a6
|
|
slli a3, a3, 8
|
|
srli a3, a3, 8
|
|
|
|
.Lsub_yexpdiff:
|
|
/* Compute the exponent difference. */
|
|
sub a10, a7, a8
|
|
|
|
/* Exponent difference > 32 -- just return the bigger value. */
|
|
bgeui a10, 32, 1f
|
|
|
|
/* Shift y right by the exponent difference. Any bits that are
|
|
shifted out of y are saved in a9 for rounding the result. */
|
|
ssr a10
|
|
movi a9, 0
|
|
src a9, a3, a9
|
|
srl a3, a3
|
|
|
|
sub a2, a2, a3
|
|
|
|
/* Subtract the leftover bits in a9 from zero and propagate any
|
|
borrow from a2. */
|
|
neg a9, a9
|
|
addi a10, a2, -1
|
|
movnez a2, a10, a9
|
|
|
|
/* Check if the subtract underflowed into the exponent. */
|
|
extui a10, a2, 23, 8
|
|
beq a10, a7, .Lsub_round
|
|
j .Lsub_borrow
|
|
|
|
.Lsub_yexpzero:
|
|
/* Return zero if the inputs are equal. (For the non-subnormal
|
|
case, subtracting the "1.0" will cause a borrow from the exponent
|
|
and this case can be detected when handling the borrow.) */
|
|
beq a2, a3, .Lsub_return_zero
|
|
|
|
/* y is a subnormal value. Replace its sign/exponent with zero,
|
|
i.e., no implicit "1.0". Unless x is also a subnormal, increment
|
|
y's apparent exponent because subnormals behave as if they had
|
|
the minimum (nonzero) exponent. */
|
|
slli a3, a3, 9
|
|
srli a3, a3, 9
|
|
bnone a2, a6, .Lsub_yexpdiff
|
|
addi a8, a8, 1
|
|
j .Lsub_yexpdiff
|
|
|
|
.Lsub_returny:
|
|
/* Negate and return y. */
|
|
slli a7, a6, 8
|
|
xor a2, a3, a7
|
|
1: leaf_return
|
|
|
|
.Lsub_xsmaller:
|
|
/* Same thing as the "ysmaller" code, but with x and y swapped and
|
|
with y negated. */
|
|
bnone a2, a6, .Lsub_xexpzero
|
|
|
|
or a2, a2, a6
|
|
slli a2, a2, 8
|
|
srli a2, a2, 8
|
|
|
|
.Lsub_xexpdiff:
|
|
sub a10, a8, a7
|
|
bgeui a10, 32, .Lsub_returny
|
|
|
|
ssr a10
|
|
movi a9, 0
|
|
src a9, a2, a9
|
|
srl a2, a2
|
|
|
|
/* Negate y. */
|
|
slli a11, a6, 8
|
|
xor a3, a3, a11
|
|
|
|
sub a2, a3, a2
|
|
|
|
neg a9, a9
|
|
addi a10, a2, -1
|
|
movnez a2, a10, a9
|
|
|
|
/* Check if the subtract underflowed into the exponent. */
|
|
extui a10, a2, 23, 8
|
|
bne a10, a8, .Lsub_borrow
|
|
|
|
.Lsub_round:
|
|
/* Round up if the leftover fraction is >= 1/2. */
|
|
bgez a9, 1f
|
|
addi a2, a2, 1
|
|
|
|
/* Check if the leftover fraction is exactly 1/2. */
|
|
slli a9, a9, 1
|
|
beqz a9, .Lsub_exactlyhalf
|
|
1: leaf_return
|
|
|
|
.Lsub_xexpzero:
|
|
/* Same as "yexpzero". */
|
|
beq a2, a3, .Lsub_return_zero
|
|
slli a2, a2, 9
|
|
srli a2, a2, 9
|
|
bnone a3, a6, .Lsub_xexpdiff
|
|
addi a7, a7, 1
|
|
j .Lsub_xexpdiff
|
|
|
|
.Lsub_return_zero:
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
.Lsub_borrow:
|
|
/* The subtraction has underflowed into the exponent field, so the
|
|
value needs to be renormalized. Shift the mantissa left as
|
|
needed to remove any leading zeros and adjust the exponent
|
|
accordingly. If the exponent is not large enough to remove
|
|
all the leading zeros, the result will be a subnormal value. */
|
|
|
|
slli a8, a2, 9
|
|
beqz a8, .Lsub_xzero
|
|
do_nsau a6, a8, a7, a11
|
|
srli a8, a8, 9
|
|
bge a6, a10, .Lsub_subnormal
|
|
addi a6, a6, 1
|
|
|
|
.Lsub_normalize_shift:
|
|
/* Shift the mantissa (a8/a9) left by a6. */
|
|
ssl a6
|
|
src a8, a8, a9
|
|
sll a9, a9
|
|
|
|
/* Combine the shifted mantissa with the sign and exponent,
|
|
decrementing the exponent by a6. (The exponent has already
|
|
been decremented by one due to the borrow from the subtraction,
|
|
but adding the mantissa will increment the exponent by one.) */
|
|
srli a2, a2, 23
|
|
sub a2, a2, a6
|
|
slli a2, a2, 23
|
|
add a2, a2, a8
|
|
j .Lsub_round
|
|
|
|
.Lsub_exactlyhalf:
|
|
/* Round down to the nearest even value. */
|
|
srli a2, a2, 1
|
|
slli a2, a2, 1
|
|
leaf_return
|
|
|
|
.Lsub_xzero:
|
|
/* If there was a borrow from the exponent, and the mantissa and
|
|
guard digits are all zero, then the inputs were equal and the
|
|
result should be zero. */
|
|
beqz a9, .Lsub_return_zero
|
|
|
|
/* Only the guard digit is nonzero. Shift by min(24, a10). */
|
|
addi a11, a10, -24
|
|
movi a6, 24
|
|
movltz a6, a10, a11
|
|
j .Lsub_normalize_shift
|
|
|
|
.Lsub_subnormal:
|
|
/* The exponent is too small to shift away all the leading zeros.
|
|
Set a6 to the current exponent (which has already been
|
|
decremented by the borrow) so that the exponent of the result
|
|
will be zero. Do not add 1 to a6 in this case, because: (1)
|
|
adding the mantissa will not increment the exponent, so there is
|
|
no need to subtract anything extra from the exponent to
|
|
compensate, and (2) the effective exponent of a subnormal is 1
|
|
not 0 so the shift amount must be 1 smaller than normal. */
|
|
mov a6, a10
|
|
j .Lsub_normalize_shift
|
|
|
|
#endif /* L_addsubsf3 */
|
|
|
|
#ifdef L_mulsf3
|
|
|
|
/* Multiplication */
|
|
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
|
|
#define XCHAL_NO_MUL 1
|
|
#endif
|
|
|
|
.literal_position
|
|
__mulsf3_aux:
|
|
|
|
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
|
|
(This code is placed before the start of the function just to
|
|
keep it in range of the limited branch displacements.) */
|
|
|
|
.Lmul_xexpzero:
|
|
/* Clear the sign bit of x. */
|
|
slli a2, a2, 1
|
|
srli a2, a2, 1
|
|
|
|
/* If x is zero, return zero. */
|
|
beqz a2, .Lmul_return_zero
|
|
|
|
/* Normalize x. Adjust the exponent in a8. */
|
|
do_nsau a10, a2, a11, a12
|
|
addi a10, a10, -8
|
|
ssl a10
|
|
sll a2, a2
|
|
movi a8, 1
|
|
sub a8, a8, a10
|
|
j .Lmul_xnormalized
|
|
|
|
.Lmul_yexpzero:
|
|
/* Clear the sign bit of y. */
|
|
slli a3, a3, 1
|
|
srli a3, a3, 1
|
|
|
|
/* If y is zero, return zero. */
|
|
beqz a3, .Lmul_return_zero
|
|
|
|
/* Normalize y. Adjust the exponent in a9. */
|
|
do_nsau a10, a3, a11, a12
|
|
addi a10, a10, -8
|
|
ssl a10
|
|
sll a3, a3
|
|
movi a9, 1
|
|
sub a9, a9, a10
|
|
j .Lmul_ynormalized
|
|
|
|
.Lmul_return_zero:
|
|
/* Return zero with the appropriate sign bit. */
|
|
srli a2, a7, 31
|
|
slli a2, a2, 31
|
|
j .Lmul_done
|
|
|
|
.Lmul_xnan_or_inf:
|
|
/* If y is zero, return NaN. */
|
|
slli a8, a3, 1
|
|
beqz a8, .Lmul_return_nan
|
|
/* If y is NaN, return y. */
|
|
bnall a3, a6, .Lmul_returnx
|
|
slli a8, a3, 9
|
|
beqz a8, .Lmul_returnx
|
|
|
|
.Lmul_returny:
|
|
mov a2, a3
|
|
|
|
.Lmul_returnx:
|
|
slli a8, a2, 9
|
|
bnez a8, .Lmul_return_nan
|
|
/* Set the sign bit and return. */
|
|
extui a7, a7, 31, 1
|
|
slli a2, a2, 1
|
|
ssai 1
|
|
src a2, a7, a2
|
|
j .Lmul_done
|
|
|
|
.Lmul_ynan_or_inf:
|
|
/* If x is zero, return NaN. */
|
|
slli a8, a2, 1
|
|
bnez a8, .Lmul_returny
|
|
mov a2, a3
|
|
|
|
.Lmul_return_nan:
|
|
movi a4, 0x400000 /* make it a quiet NaN */
|
|
or a2, a2, a4
|
|
j .Lmul_done
|
|
|
|
.align 4
|
|
.global __mulsf3
|
|
.type __mulsf3, @function
|
|
__mulsf3:
|
|
#if __XTENSA_CALL0_ABI__
|
|
leaf_entry sp, 32
|
|
addi sp, sp, -32
|
|
s32i a12, sp, 16
|
|
s32i a13, sp, 20
|
|
s32i a14, sp, 24
|
|
s32i a15, sp, 28
|
|
#elif XCHAL_NO_MUL
|
|
/* This is not really a leaf function; allocate enough stack space
|
|
to allow CALL12s to a helper function. */
|
|
leaf_entry sp, 64
|
|
#else
|
|
leaf_entry sp, 32
|
|
#endif
|
|
movi a6, 0x7f800000
|
|
|
|
/* Get the sign of the result. */
|
|
xor a7, a2, a3
|
|
|
|
/* Check for NaN and infinity. */
|
|
ball a2, a6, .Lmul_xnan_or_inf
|
|
ball a3, a6, .Lmul_ynan_or_inf
|
|
|
|
/* Extract the exponents. */
|
|
extui a8, a2, 23, 8
|
|
extui a9, a3, 23, 8
|
|
|
|
beqz a8, .Lmul_xexpzero
|
|
.Lmul_xnormalized:
|
|
beqz a9, .Lmul_yexpzero
|
|
.Lmul_ynormalized:
|
|
|
|
/* Add the exponents. */
|
|
add a8, a8, a9
|
|
|
|
/* Replace sign/exponent fields with explicit "1.0". */
|
|
movi a10, 0xffffff
|
|
or a2, a2, a6
|
|
and a2, a2, a10
|
|
or a3, a3, a6
|
|
and a3, a3, a10
|
|
|
|
/* Multiply 32x32 to 64 bits. The result ends up in a2/a6. */
|
|
|
|
#if XCHAL_HAVE_MUL32_HIGH
|
|
|
|
mull a6, a2, a3
|
|
muluh a2, a2, a3
|
|
|
|
#else
|
|
|
|
/* Break the inputs into 16-bit chunks and compute 4 32-bit partial
|
|
products. These partial products are:
|
|
|
|
0 xl * yl
|
|
|
|
1 xl * yh
|
|
2 xh * yl
|
|
|
|
3 xh * yh
|
|
|
|
If using the Mul16 or Mul32 multiplier options, these input
|
|
chunks must be stored in separate registers. For Mac16, the
|
|
UMUL.AA.* opcodes can specify that the inputs come from either
|
|
half of the registers, so there is no need to shift them out
|
|
ahead of time. If there is no multiply hardware, the 16-bit
|
|
chunks can be extracted when setting up the arguments to the
|
|
separate multiply function. */
|
|
|
|
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
|
|
/* Calling a separate multiply function will clobber a0 and requires
|
|
use of a8 as a temporary, so save those values now. (The function
|
|
uses a custom ABI so nothing else needs to be saved.) */
|
|
s32i a0, sp, 0
|
|
s32i a8, sp, 4
|
|
#endif
|
|
|
|
#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32
|
|
|
|
#define a2h a4
|
|
#define a3h a5
|
|
|
|
/* Get the high halves of the inputs into registers. */
|
|
srli a2h, a2, 16
|
|
srli a3h, a3, 16
|
|
|
|
#define a2l a2
|
|
#define a3l a3
|
|
|
|
#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
|
|
/* Clear the high halves of the inputs. This does not matter
|
|
for MUL16 because the high bits are ignored. */
|
|
extui a2, a2, 0, 16
|
|
extui a3, a3, 0, 16
|
|
#endif
|
|
#endif /* MUL16 || MUL32 */
|
|
|
|
|
|
#if XCHAL_HAVE_MUL16
|
|
|
|
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
|
|
mul16u dst, xreg ## xhalf, yreg ## yhalf
|
|
|
|
#elif XCHAL_HAVE_MUL32
|
|
|
|
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
|
|
mull dst, xreg ## xhalf, yreg ## yhalf
|
|
|
|
#elif XCHAL_HAVE_MAC16
|
|
|
|
/* The preprocessor insists on inserting a space when concatenating after
|
|
a period in the definition of do_mul below. These macros are a workaround
|
|
using underscores instead of periods when doing the concatenation. */
|
|
#define umul_aa_ll umul.aa.ll
|
|
#define umul_aa_lh umul.aa.lh
|
|
#define umul_aa_hl umul.aa.hl
|
|
#define umul_aa_hh umul.aa.hh
|
|
|
|
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
|
|
umul_aa_ ## xhalf ## yhalf xreg, yreg; \
|
|
rsr dst, ACCLO
|
|
|
|
#else /* no multiply hardware */
|
|
|
|
#define set_arg_l(dst, src) \
|
|
extui dst, src, 0, 16
|
|
#define set_arg_h(dst, src) \
|
|
srli dst, src, 16
|
|
|
|
#if __XTENSA_CALL0_ABI__
|
|
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
|
|
set_arg_ ## xhalf (a13, xreg); \
|
|
set_arg_ ## yhalf (a14, yreg); \
|
|
call0 .Lmul_mulsi3; \
|
|
mov dst, a12
|
|
#else
|
|
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
|
|
set_arg_ ## xhalf (a14, xreg); \
|
|
set_arg_ ## yhalf (a15, yreg); \
|
|
call12 .Lmul_mulsi3; \
|
|
mov dst, a14
|
|
#endif /* __XTENSA_CALL0_ABI__ */
|
|
|
|
#endif /* no multiply hardware */
|
|
|
|
/* Add pp1 and pp2 into a6 with carry-out in a9. */
|
|
do_mul(a6, a2, l, a3, h) /* pp 1 */
|
|
do_mul(a11, a2, h, a3, l) /* pp 2 */
|
|
movi a9, 0
|
|
add a6, a6, a11
|
|
bgeu a6, a11, 1f
|
|
addi a9, a9, 1
|
|
1:
|
|
/* Shift the high half of a9/a6 into position in a9. Note that
|
|
this value can be safely incremented without any carry-outs. */
|
|
ssai 16
|
|
src a9, a9, a6
|
|
|
|
/* Compute the low word into a6. */
|
|
do_mul(a11, a2, l, a3, l) /* pp 0 */
|
|
sll a6, a6
|
|
add a6, a6, a11
|
|
bgeu a6, a11, 1f
|
|
addi a9, a9, 1
|
|
1:
|
|
/* Compute the high word into a2. */
|
|
do_mul(a2, a2, h, a3, h) /* pp 3 */
|
|
add a2, a2, a9
|
|
|
|
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
|
|
/* Restore values saved on the stack during the multiplication. */
|
|
l32i a0, sp, 0
|
|
l32i a8, sp, 4
|
|
#endif
|
|
#endif /* ! XCHAL_HAVE_MUL32_HIGH */
|
|
|
|
/* Shift left by 9 bits, unless there was a carry-out from the
|
|
multiply, in which case, shift by 8 bits and increment the
|
|
exponent. */
|
|
movi a4, 9
|
|
srli a5, a2, 24 - 9
|
|
beqz a5, 1f
|
|
addi a4, a4, -1
|
|
addi a8, a8, 1
|
|
1: ssl a4
|
|
src a2, a2, a6
|
|
sll a6, a6
|
|
|
|
/* Subtract the extra bias from the exponent sum (plus one to account
|
|
for the explicit "1.0" of the mantissa that will be added to the
|
|
exponent in the final result). */
|
|
movi a4, 0x80
|
|
sub a8, a8, a4
|
|
|
|
/* Check for over/underflow. The value in a8 is one less than the
|
|
final exponent, so values in the range 0..fd are OK here. */
|
|
movi a4, 0xfe
|
|
bgeu a8, a4, .Lmul_overflow
|
|
|
|
.Lmul_round:
|
|
/* Round. */
|
|
bgez a6, .Lmul_rounded
|
|
addi a2, a2, 1
|
|
slli a6, a6, 1
|
|
beqz a6, .Lmul_exactlyhalf
|
|
|
|
.Lmul_rounded:
|
|
/* Add the exponent to the mantissa. */
|
|
slli a8, a8, 23
|
|
add a2, a2, a8
|
|
|
|
.Lmul_addsign:
|
|
/* Add the sign bit. */
|
|
srli a7, a7, 31
|
|
slli a7, a7, 31
|
|
or a2, a2, a7
|
|
|
|
.Lmul_done:
|
|
#if __XTENSA_CALL0_ABI__
|
|
l32i a12, sp, 16
|
|
l32i a13, sp, 20
|
|
l32i a14, sp, 24
|
|
l32i a15, sp, 28
|
|
addi sp, sp, 32
|
|
#endif
|
|
leaf_return
|
|
|
|
.Lmul_exactlyhalf:
|
|
/* Round down to the nearest even value. */
|
|
srli a2, a2, 1
|
|
slli a2, a2, 1
|
|
j .Lmul_rounded
|
|
|
|
.Lmul_overflow:
|
|
bltz a8, .Lmul_underflow
|
|
/* Return +/- Infinity. */
|
|
movi a8, 0xff
|
|
slli a2, a8, 23
|
|
j .Lmul_addsign
|
|
|
|
.Lmul_underflow:
|
|
/* Create a subnormal value, where the exponent field contains zero,
|
|
but the effective exponent is 1. The value of a8 is one less than
|
|
the actual exponent, so just negate it to get the shift amount. */
|
|
neg a8, a8
|
|
mov a9, a6
|
|
ssr a8
|
|
bgeui a8, 32, .Lmul_flush_to_zero
|
|
|
|
/* Shift a2 right. Any bits that are shifted out of a2 are saved
|
|
in a6 (combined with the shifted-out bits currently in a6) for
|
|
rounding the result. */
|
|
sll a6, a2
|
|
srl a2, a2
|
|
|
|
/* Set the exponent to zero. */
|
|
movi a8, 0
|
|
|
|
/* Pack any nonzero bits shifted out into a6. */
|
|
beqz a9, .Lmul_round
|
|
movi a9, 1
|
|
or a6, a6, a9
|
|
j .Lmul_round
|
|
|
|
.Lmul_flush_to_zero:
|
|
/* Return zero with the appropriate sign bit. */
|
|
srli a2, a7, 31
|
|
slli a2, a2, 31
|
|
j .Lmul_done
|
|
|
|
#if XCHAL_NO_MUL
|
|
|
|
/* For Xtensa processors with no multiply hardware, this simplified
|
|
version of _mulsi3 is used for multiplying 16-bit chunks of
|
|
the floating-point mantissas. When using CALL0, this function
|
|
uses a custom ABI: the inputs are passed in a13 and a14, the
|
|
result is returned in a12, and a8 and a15 are clobbered. */
|
|
.align 4
|
|
.Lmul_mulsi3:
|
|
leaf_entry sp, 16
|
|
.macro mul_mulsi3_body dst, src1, src2, tmp1, tmp2
|
|
movi \dst, 0
|
|
1: add \tmp1, \src2, \dst
|
|
extui \tmp2, \src1, 0, 1
|
|
movnez \dst, \tmp1, \tmp2
|
|
|
|
do_addx2 \tmp1, \src2, \dst, \tmp1
|
|
extui \tmp2, \src1, 1, 1
|
|
movnez \dst, \tmp1, \tmp2
|
|
|
|
do_addx4 \tmp1, \src2, \dst, \tmp1
|
|
extui \tmp2, \src1, 2, 1
|
|
movnez \dst, \tmp1, \tmp2
|
|
|
|
do_addx8 \tmp1, \src2, \dst, \tmp1
|
|
extui \tmp2, \src1, 3, 1
|
|
movnez \dst, \tmp1, \tmp2
|
|
|
|
srli \src1, \src1, 4
|
|
slli \src2, \src2, 4
|
|
bnez \src1, 1b
|
|
.endm
|
|
#if __XTENSA_CALL0_ABI__
|
|
mul_mulsi3_body a12, a13, a14, a15, a8
|
|
#else
|
|
/* The result will be written into a2, so save that argument in a4. */
|
|
mov a4, a2
|
|
mul_mulsi3_body a2, a4, a3, a5, a6
|
|
#endif
|
|
leaf_return
|
|
#endif /* XCHAL_NO_MUL */
|
|
#endif /* L_mulsf3 */
|
|
|
|
#ifdef L_divsf3
|
|
|
|
/* Division */
|
|
|
|
#if XCHAL_HAVE_FP_DIV
|
|
|
|
.align 4
|
|
.global __divsf3
|
|
.type __divsf3, @function
|
|
__divsf3:
|
|
leaf_entry sp, 16
|
|
|
|
wfr f1, a2 /* dividend */
|
|
wfr f2, a3 /* divisor */
|
|
|
|
div0.s f3, f2
|
|
nexp01.s f4, f2
|
|
const.s f5, 1
|
|
maddn.s f5, f4, f3
|
|
mov.s f6, f3
|
|
mov.s f7, f2
|
|
nexp01.s f2, f1
|
|
maddn.s f6, f5, f6
|
|
const.s f5, 1
|
|
const.s f0, 0
|
|
neg.s f8, f2
|
|
maddn.s f5, f4, f6
|
|
maddn.s f0, f8, f3
|
|
mkdadj.s f7, f1
|
|
maddn.s f6, f5, f6
|
|
maddn.s f8, f4, f0
|
|
const.s f3, 1
|
|
maddn.s f3, f4, f6
|
|
maddn.s f0, f8, f6
|
|
neg.s f2, f2
|
|
maddn.s f6, f3, f6
|
|
maddn.s f2, f4, f0
|
|
addexpm.s f0, f7
|
|
addexp.s f6, f7
|
|
divn.s f0, f2, f6
|
|
|
|
rfr a2, f0
|
|
|
|
leaf_return
|
|
|
|
#else
|
|
|
|
.literal_position
|
|
__divsf3_aux:
|
|
|
|
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
|
|
(This code is placed before the start of the function just to
|
|
keep it in range of the limited branch displacements.) */
|
|
|
|
.Ldiv_yexpzero:
|
|
/* Clear the sign bit of y. */
|
|
slli a3, a3, 1
|
|
srli a3, a3, 1
|
|
|
|
/* Check for division by zero. */
|
|
beqz a3, .Ldiv_yzero
|
|
|
|
/* Normalize y. Adjust the exponent in a9. */
|
|
do_nsau a10, a3, a4, a5
|
|
addi a10, a10, -8
|
|
ssl a10
|
|
sll a3, a3
|
|
movi a9, 1
|
|
sub a9, a9, a10
|
|
j .Ldiv_ynormalized
|
|
|
|
.Ldiv_yzero:
|
|
/* y is zero. Return NaN if x is also zero; otherwise, infinity. */
|
|
slli a4, a2, 1
|
|
srli a4, a4, 1
|
|
srli a2, a7, 31
|
|
slli a2, a2, 31
|
|
or a2, a2, a6
|
|
bnez a4, 1f
|
|
movi a4, 0x400000 /* make it a quiet NaN */
|
|
or a2, a2, a4
|
|
1: leaf_return
|
|
|
|
.Ldiv_xexpzero:
|
|
/* Clear the sign bit of x. */
|
|
slli a2, a2, 1
|
|
srli a2, a2, 1
|
|
|
|
/* If x is zero, return zero. */
|
|
beqz a2, .Ldiv_return_zero
|
|
|
|
/* Normalize x. Adjust the exponent in a8. */
|
|
do_nsau a10, a2, a4, a5
|
|
addi a10, a10, -8
|
|
ssl a10
|
|
sll a2, a2
|
|
movi a8, 1
|
|
sub a8, a8, a10
|
|
j .Ldiv_xnormalized
|
|
|
|
.Ldiv_return_zero:
|
|
/* Return zero with the appropriate sign bit. */
|
|
srli a2, a7, 31
|
|
slli a2, a2, 31
|
|
leaf_return
|
|
|
|
.Ldiv_xnan_or_inf:
|
|
/* Set the sign bit of the result. */
|
|
srli a7, a3, 31
|
|
slli a7, a7, 31
|
|
xor a2, a2, a7
|
|
/* If y is NaN or Inf, return NaN. */
|
|
ball a3, a6, .Ldiv_return_nan
|
|
slli a7, a2, 9
|
|
bnez a7, .Ldiv_return_nan
|
|
leaf_return
|
|
|
|
.Ldiv_ynan_or_inf:
|
|
/* If y is Infinity, return zero. */
|
|
slli a8, a3, 9
|
|
beqz a8, .Ldiv_return_zero
|
|
/* y is NaN; return it. */
|
|
mov a2, a3
|
|
|
|
.Ldiv_return_nan:
|
|
movi a4, 0x400000 /* make it a quiet NaN */
|
|
or a2, a2, a4
|
|
leaf_return
|
|
|
|
.align 4
|
|
.global __divsf3
|
|
.type __divsf3, @function
|
|
__divsf3:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
|
|
/* Get the sign of the result. */
|
|
xor a7, a2, a3
|
|
|
|
/* Check for NaN and infinity. */
|
|
ball a2, a6, .Ldiv_xnan_or_inf
|
|
ball a3, a6, .Ldiv_ynan_or_inf
|
|
|
|
/* Extract the exponents. */
|
|
extui a8, a2, 23, 8
|
|
extui a9, a3, 23, 8
|
|
|
|
beqz a9, .Ldiv_yexpzero
|
|
.Ldiv_ynormalized:
|
|
beqz a8, .Ldiv_xexpzero
|
|
.Ldiv_xnormalized:
|
|
|
|
/* Subtract the exponents. */
|
|
sub a8, a8, a9
|
|
|
|
/* Replace sign/exponent fields with explicit "1.0". */
|
|
movi a10, 0xffffff
|
|
or a2, a2, a6
|
|
and a2, a2, a10
|
|
or a3, a3, a6
|
|
and a3, a3, a10
|
|
|
|
/* The first digit of the mantissa division must be a one.
|
|
Shift x (and adjust the exponent) as needed to make this true. */
|
|
bltu a3, a2, 1f
|
|
slli a2, a2, 1
|
|
addi a8, a8, -1
|
|
1:
|
|
/* Do the first subtraction and shift. */
|
|
sub a2, a2, a3
|
|
slli a2, a2, 1
|
|
|
|
/* Put the quotient into a10. */
|
|
movi a10, 1
|
|
|
|
/* Divide one bit at a time for 23 bits. */
|
|
movi a9, 23
|
|
#if XCHAL_HAVE_LOOPS
|
|
loop a9, .Ldiv_loopend
|
|
#endif
|
|
.Ldiv_loop:
|
|
/* Shift the quotient << 1. */
|
|
slli a10, a10, 1
|
|
|
|
/* Is this digit a 0 or 1? */
|
|
bltu a2, a3, 1f
|
|
|
|
/* Output a 1 and subtract. */
|
|
addi a10, a10, 1
|
|
sub a2, a2, a3
|
|
|
|
/* Shift the dividend << 1. */
|
|
1: slli a2, a2, 1
|
|
|
|
#if !XCHAL_HAVE_LOOPS
|
|
addi a9, a9, -1
|
|
bnez a9, .Ldiv_loop
|
|
#endif
|
|
.Ldiv_loopend:
|
|
|
|
/* Add the exponent bias (less one to account for the explicit "1.0"
|
|
of the mantissa that will be added to the exponent in the final
|
|
result). */
|
|
addi a8, a8, 0x7e
|
|
|
|
/* Check for over/underflow. The value in a8 is one less than the
|
|
final exponent, so values in the range 0..fd are OK here. */
|
|
movi a4, 0xfe
|
|
bgeu a8, a4, .Ldiv_overflow
|
|
|
|
.Ldiv_round:
|
|
/* Round. The remainder (<< 1) is in a2. */
|
|
bltu a2, a3, .Ldiv_rounded
|
|
addi a10, a10, 1
|
|
beq a2, a3, .Ldiv_exactlyhalf
|
|
|
|
.Ldiv_rounded:
|
|
/* Add the exponent to the mantissa. */
|
|
slli a8, a8, 23
|
|
add a2, a10, a8
|
|
|
|
.Ldiv_addsign:
|
|
/* Add the sign bit. */
|
|
srli a7, a7, 31
|
|
slli a7, a7, 31
|
|
or a2, a2, a7
|
|
leaf_return
|
|
|
|
.Ldiv_overflow:
|
|
bltz a8, .Ldiv_underflow
|
|
/* Return +/- Infinity. */
|
|
addi a8, a4, 1 /* 0xff */
|
|
slli a2, a8, 23
|
|
j .Ldiv_addsign
|
|
|
|
.Ldiv_exactlyhalf:
|
|
/* Remainder is exactly half the divisor. Round even. */
|
|
srli a10, a10, 1
|
|
slli a10, a10, 1
|
|
j .Ldiv_rounded
|
|
|
|
.Ldiv_underflow:
|
|
/* Create a subnormal value, where the exponent field contains zero,
|
|
but the effective exponent is 1. The value of a8 is one less than
|
|
the actual exponent, so just negate it to get the shift amount. */
|
|
neg a8, a8
|
|
ssr a8
|
|
bgeui a8, 32, .Ldiv_flush_to_zero
|
|
|
|
/* Shift a10 right. Any bits that are shifted out of a10 are
|
|
saved in a6 for rounding the result. */
|
|
sll a6, a10
|
|
srl a10, a10
|
|
|
|
/* Set the exponent to zero. */
|
|
movi a8, 0
|
|
|
|
/* Pack any nonzero remainder (in a2) into a6. */
|
|
beqz a2, 1f
|
|
movi a9, 1
|
|
or a6, a6, a9
|
|
|
|
/* Round a10 based on the bits shifted out into a6. */
|
|
1: bgez a6, .Ldiv_rounded
|
|
addi a10, a10, 1
|
|
slli a6, a6, 1
|
|
bnez a6, .Ldiv_rounded
|
|
srli a10, a10, 1
|
|
slli a10, a10, 1
|
|
j .Ldiv_rounded
|
|
|
|
.Ldiv_flush_to_zero:
|
|
/* Return zero with the appropriate sign bit. */
|
|
srli a2, a7, 31
|
|
slli a2, a2, 31
|
|
leaf_return
|
|
|
|
#endif /* XCHAL_HAVE_FP_DIV */
|
|
|
|
#endif /* L_divsf3 */
|
|
|
|
#ifdef L_cmpsf2
|
|
|
|
/* Equal and Not Equal */
|
|
|
|
.align 4
|
|
.global __eqsf2
|
|
.global __nesf2
|
|
.set __nesf2, __eqsf2
|
|
.type __eqsf2, @function
|
|
__eqsf2:
|
|
leaf_entry sp, 16
|
|
bne a2, a3, 4f
|
|
|
|
/* The values are equal but NaN != NaN. Check the exponent. */
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 3f
|
|
|
|
/* Equal. */
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
/* Not equal. */
|
|
2: movi a2, 1
|
|
leaf_return
|
|
|
|
/* Check if the mantissas are nonzero. */
|
|
3: slli a7, a2, 9
|
|
j 5f
|
|
|
|
/* Check if x and y are zero with different signs. */
|
|
4: or a7, a2, a3
|
|
slli a7, a7, 1
|
|
|
|
/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
|
|
or x when exponent(x) = 0x7f8 and x == y. */
|
|
5: movi a2, 0
|
|
movi a3, 1
|
|
movnez a2, a3, a7
|
|
leaf_return
|
|
|
|
|
|
/* Greater Than */
|
|
|
|
.align 4
|
|
.global __gtsf2
|
|
.type __gtsf2, @function
|
|
__gtsf2:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 2f
|
|
1: bnall a3, a6, .Lle_cmp
|
|
|
|
/* Check if y is a NaN. */
|
|
slli a7, a3, 9
|
|
beqz a7, .Lle_cmp
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
/* Check if x is a NaN. */
|
|
2: slli a7, a2, 9
|
|
beqz a7, 1b
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
|
|
/* Less Than or Equal */
|
|
|
|
.align 4
|
|
.global __lesf2
|
|
.type __lesf2, @function
|
|
__lesf2:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 2f
|
|
1: bnall a3, a6, .Lle_cmp
|
|
|
|
/* Check if y is a NaN. */
|
|
slli a7, a3, 9
|
|
beqz a7, .Lle_cmp
|
|
movi a2, 1
|
|
leaf_return
|
|
|
|
/* Check if x is a NaN. */
|
|
2: slli a7, a2, 9
|
|
beqz a7, 1b
|
|
movi a2, 1
|
|
leaf_return
|
|
|
|
.Lle_cmp:
|
|
/* Check if x and y have different signs. */
|
|
xor a7, a2, a3
|
|
bltz a7, .Lle_diff_signs
|
|
|
|
/* Check if x is negative. */
|
|
bltz a2, .Lle_xneg
|
|
|
|
/* Check if x <= y. */
|
|
bltu a3, a2, 5f
|
|
4: movi a2, 0
|
|
leaf_return
|
|
|
|
.Lle_xneg:
|
|
/* Check if y <= x. */
|
|
bgeu a2, a3, 4b
|
|
5: movi a2, 1
|
|
leaf_return
|
|
|
|
.Lle_diff_signs:
|
|
bltz a2, 4b
|
|
|
|
/* Check if both x and y are zero. */
|
|
or a7, a2, a3
|
|
slli a7, a7, 1
|
|
movi a2, 1
|
|
movi a3, 0
|
|
moveqz a2, a3, a7
|
|
leaf_return
|
|
|
|
|
|
/* Greater Than or Equal */
|
|
|
|
.align 4
|
|
.global __gesf2
|
|
.type __gesf2, @function
|
|
__gesf2:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 2f
|
|
1: bnall a3, a6, .Llt_cmp
|
|
|
|
/* Check if y is a NaN. */
|
|
slli a7, a3, 9
|
|
beqz a7, .Llt_cmp
|
|
movi a2, -1
|
|
leaf_return
|
|
|
|
/* Check if x is a NaN. */
|
|
2: slli a7, a2, 9
|
|
beqz a7, 1b
|
|
movi a2, -1
|
|
leaf_return
|
|
|
|
|
|
/* Less Than */
|
|
|
|
.align 4
|
|
.global __ltsf2
|
|
.type __ltsf2, @function
|
|
__ltsf2:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 2f
|
|
1: bnall a3, a6, .Llt_cmp
|
|
|
|
/* Check if y is a NaN. */
|
|
slli a7, a3, 9
|
|
beqz a7, .Llt_cmp
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
/* Check if x is a NaN. */
|
|
2: slli a7, a2, 9
|
|
beqz a7, 1b
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
.Llt_cmp:
|
|
/* Check if x and y have different signs. */
|
|
xor a7, a2, a3
|
|
bltz a7, .Llt_diff_signs
|
|
|
|
/* Check if x is negative. */
|
|
bltz a2, .Llt_xneg
|
|
|
|
/* Check if x < y. */
|
|
bgeu a2, a3, 5f
|
|
4: movi a2, -1
|
|
leaf_return
|
|
|
|
.Llt_xneg:
|
|
/* Check if y < x. */
|
|
bltu a3, a2, 4b
|
|
5: movi a2, 0
|
|
leaf_return
|
|
|
|
.Llt_diff_signs:
|
|
bgez a2, 5b
|
|
|
|
/* Check if both x and y are nonzero. */
|
|
or a7, a2, a3
|
|
slli a7, a7, 1
|
|
movi a2, 0
|
|
movi a3, -1
|
|
movnez a2, a3, a7
|
|
leaf_return
|
|
|
|
|
|
/* Unordered */
|
|
|
|
.align 4
|
|
.global __unordsf2
|
|
.type __unordsf2, @function
|
|
__unordsf2:
|
|
leaf_entry sp, 16
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, 3f
|
|
1: ball a3, a6, 4f
|
|
2: movi a2, 0
|
|
leaf_return
|
|
|
|
3: slli a7, a2, 9
|
|
beqz a7, 1b
|
|
movi a2, 1
|
|
leaf_return
|
|
|
|
4: slli a7, a3, 9
|
|
beqz a7, 2b
|
|
movi a2, 1
|
|
leaf_return
|
|
|
|
#endif /* L_cmpsf2 */
|
|
|
|
#ifdef L_fixsfsi
|
|
|
|
.align 4
|
|
.global __fixsfsi
|
|
.type __fixsfsi, @function
|
|
__fixsfsi:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for NaN and Infinity. */
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, .Lfixsfsi_nan_or_inf
|
|
|
|
/* Extract the exponent and check if 0 < (exp - 0x7e) < 32. */
|
|
extui a4, a2, 23, 8
|
|
addi a4, a4, -0x7e
|
|
bgei a4, 32, .Lfixsfsi_maxint
|
|
blti a4, 1, .Lfixsfsi_zero
|
|
|
|
/* Add explicit "1.0" and shift << 8. */
|
|
or a7, a2, a6
|
|
slli a5, a7, 8
|
|
|
|
/* Shift back to the right, based on the exponent. */
|
|
ssl a4 /* shift by 32 - a4 */
|
|
srl a5, a5
|
|
|
|
/* Negate the result if sign != 0. */
|
|
neg a2, a5
|
|
movgez a2, a5, a7
|
|
leaf_return
|
|
|
|
.Lfixsfsi_nan_or_inf:
|
|
/* Handle Infinity and NaN. */
|
|
slli a4, a2, 9
|
|
beqz a4, .Lfixsfsi_maxint
|
|
|
|
/* Translate NaN to +maxint. */
|
|
movi a2, 0
|
|
|
|
.Lfixsfsi_maxint:
|
|
slli a4, a6, 8 /* 0x80000000 */
|
|
addi a5, a4, -1 /* 0x7fffffff */
|
|
movgez a4, a5, a2
|
|
mov a2, a4
|
|
leaf_return
|
|
|
|
.Lfixsfsi_zero:
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
#endif /* L_fixsfsi */
|
|
|
|
#ifdef L_fixsfdi
|
|
|
|
.align 4
|
|
.global __fixsfdi
|
|
.type __fixsfdi, @function
|
|
__fixsfdi:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for NaN and Infinity. */
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, .Lfixsfdi_nan_or_inf
|
|
|
|
/* Extract the exponent and check if 0 < (exp - 0x7e) < 64. */
|
|
extui a4, a2, 23, 8
|
|
addi a4, a4, -0x7e
|
|
bgei a4, 64, .Lfixsfdi_maxint
|
|
blti a4, 1, .Lfixsfdi_zero
|
|
|
|
/* Add explicit "1.0" and shift << 8. */
|
|
or a7, a2, a6
|
|
slli xh, a7, 8
|
|
|
|
/* Shift back to the right, based on the exponent. */
|
|
ssl a4 /* shift by 64 - a4 */
|
|
bgei a4, 32, .Lfixsfdi_smallshift
|
|
srl xl, xh
|
|
movi xh, 0
|
|
|
|
.Lfixsfdi_shifted:
|
|
/* Negate the result if sign != 0. */
|
|
bgez a7, 1f
|
|
neg xl, xl
|
|
neg xh, xh
|
|
beqz xl, 1f
|
|
addi xh, xh, -1
|
|
1: leaf_return
|
|
|
|
.Lfixsfdi_smallshift:
|
|
movi xl, 0
|
|
sll xl, xh
|
|
srl xh, xh
|
|
j .Lfixsfdi_shifted
|
|
|
|
.Lfixsfdi_nan_or_inf:
|
|
/* Handle Infinity and NaN. */
|
|
slli a4, a2, 9
|
|
beqz a4, .Lfixsfdi_maxint
|
|
|
|
/* Translate NaN to +maxint. */
|
|
movi a2, 0
|
|
|
|
.Lfixsfdi_maxint:
|
|
slli a7, a6, 8 /* 0x80000000 */
|
|
bgez a2, 1f
|
|
mov xh, a7
|
|
movi xl, 0
|
|
leaf_return
|
|
|
|
1: addi xh, a7, -1 /* 0x7fffffff */
|
|
movi xl, -1
|
|
leaf_return
|
|
|
|
.Lfixsfdi_zero:
|
|
movi xh, 0
|
|
movi xl, 0
|
|
leaf_return
|
|
|
|
#endif /* L_fixsfdi */
|
|
|
|
#ifdef L_fixunssfsi
|
|
|
|
.align 4
|
|
.global __fixunssfsi
|
|
.type __fixunssfsi, @function
|
|
__fixunssfsi:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for NaN and Infinity. */
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, .Lfixunssfsi_nan_or_inf
|
|
|
|
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 32. */
|
|
extui a4, a2, 23, 8
|
|
addi a4, a4, -0x7f
|
|
bgei a4, 32, .Lfixunssfsi_maxint
|
|
bltz a4, .Lfixunssfsi_zero
|
|
|
|
/* Add explicit "1.0" and shift << 8. */
|
|
or a7, a2, a6
|
|
slli a5, a7, 8
|
|
|
|
/* Shift back to the right, based on the exponent. */
|
|
addi a4, a4, 1
|
|
beqi a4, 32, .Lfixunssfsi_bigexp
|
|
ssl a4 /* shift by 32 - a4 */
|
|
srl a5, a5
|
|
|
|
/* Negate the result if sign != 0. */
|
|
neg a2, a5
|
|
movgez a2, a5, a7
|
|
leaf_return
|
|
|
|
.Lfixunssfsi_nan_or_inf:
|
|
/* Handle Infinity and NaN. */
|
|
slli a4, a2, 9
|
|
beqz a4, .Lfixunssfsi_maxint
|
|
|
|
/* Translate NaN to 0xffffffff. */
|
|
movi a2, -1
|
|
leaf_return
|
|
|
|
.Lfixunssfsi_maxint:
|
|
slli a4, a6, 8 /* 0x80000000 */
|
|
movi a5, -1 /* 0xffffffff */
|
|
movgez a4, a5, a2
|
|
mov a2, a4
|
|
leaf_return
|
|
|
|
.Lfixunssfsi_zero:
|
|
movi a2, 0
|
|
leaf_return
|
|
|
|
.Lfixunssfsi_bigexp:
|
|
/* Handle unsigned maximum exponent case. */
|
|
bltz a2, 1f
|
|
mov a2, a5 /* no shift needed */
|
|
leaf_return
|
|
|
|
/* Return 0x80000000 if negative. */
|
|
1: slli a2, a6, 8
|
|
leaf_return
|
|
|
|
#endif /* L_fixunssfsi */
|
|
|
|
#ifdef L_fixunssfdi
|
|
|
|
.align 4
|
|
.global __fixunssfdi
|
|
.type __fixunssfdi, @function
|
|
__fixunssfdi:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for NaN and Infinity. */
|
|
movi a6, 0x7f800000
|
|
ball a2, a6, .Lfixunssfdi_nan_or_inf
|
|
|
|
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 64. */
|
|
extui a4, a2, 23, 8
|
|
addi a4, a4, -0x7f
|
|
bgei a4, 64, .Lfixunssfdi_maxint
|
|
bltz a4, .Lfixunssfdi_zero
|
|
|
|
/* Add explicit "1.0" and shift << 8. */
|
|
or a7, a2, a6
|
|
slli xh, a7, 8
|
|
|
|
/* Shift back to the right, based on the exponent. */
|
|
addi a4, a4, 1
|
|
beqi a4, 64, .Lfixunssfdi_bigexp
|
|
ssl a4 /* shift by 64 - a4 */
|
|
bgei a4, 32, .Lfixunssfdi_smallshift
|
|
srl xl, xh
|
|
movi xh, 0
|
|
|
|
.Lfixunssfdi_shifted:
|
|
/* Negate the result if sign != 0. */
|
|
bgez a7, 1f
|
|
neg xl, xl
|
|
neg xh, xh
|
|
beqz xl, 1f
|
|
addi xh, xh, -1
|
|
1: leaf_return
|
|
|
|
.Lfixunssfdi_smallshift:
|
|
movi xl, 0
|
|
src xl, xh, xl
|
|
srl xh, xh
|
|
j .Lfixunssfdi_shifted
|
|
|
|
.Lfixunssfdi_nan_or_inf:
|
|
/* Handle Infinity and NaN. */
|
|
slli a4, a2, 9
|
|
beqz a4, .Lfixunssfdi_maxint
|
|
|
|
/* Translate NaN to 0xffffffff.... */
|
|
1: movi xh, -1
|
|
movi xl, -1
|
|
leaf_return
|
|
|
|
.Lfixunssfdi_maxint:
|
|
bgez a2, 1b
|
|
2: slli xh, a6, 8 /* 0x80000000 */
|
|
movi xl, 0
|
|
leaf_return
|
|
|
|
.Lfixunssfdi_zero:
|
|
movi xh, 0
|
|
movi xl, 0
|
|
leaf_return
|
|
|
|
.Lfixunssfdi_bigexp:
|
|
/* Handle unsigned maximum exponent case. */
|
|
bltz a7, 2b
|
|
movi xl, 0
|
|
leaf_return /* no shift needed */
|
|
|
|
#endif /* L_fixunssfdi */
|
|
|
|
#ifdef L_floatsisf
|
|
|
|
.align 4
|
|
.global __floatunsisf
|
|
.type __floatunsisf, @function
|
|
__floatunsisf:
|
|
leaf_entry sp, 16
|
|
beqz a2, .Lfloatsisf_return
|
|
|
|
/* Set the sign to zero and jump to the floatsisf code. */
|
|
movi a7, 0
|
|
j .Lfloatsisf_normalize
|
|
|
|
.align 4
|
|
.global __floatsisf
|
|
.type __floatsisf, @function
|
|
__floatsisf:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for zero. */
|
|
beqz a2, .Lfloatsisf_return
|
|
|
|
/* Save the sign. */
|
|
extui a7, a2, 31, 1
|
|
|
|
/* Get the absolute value. */
|
|
#if XCHAL_HAVE_ABS
|
|
abs a2, a2
|
|
#else
|
|
neg a4, a2
|
|
movltz a2, a4, a2
|
|
#endif
|
|
|
|
.Lfloatsisf_normalize:
|
|
/* Normalize with the first 1 bit in the msb. */
|
|
do_nsau a4, a2, a5, a6
|
|
ssl a4
|
|
sll a5, a2
|
|
|
|
/* Shift the mantissa into position, with rounding bits in a6. */
|
|
srli a2, a5, 8
|
|
slli a6, a5, (32 - 8)
|
|
|
|
/* Set the exponent. */
|
|
movi a5, 0x9d /* 0x7e + 31 */
|
|
sub a5, a5, a4
|
|
slli a5, a5, 23
|
|
add a2, a2, a5
|
|
|
|
/* Add the sign. */
|
|
slli a7, a7, 31
|
|
or a2, a2, a7
|
|
|
|
/* Round up if the leftover fraction is >= 1/2. */
|
|
bgez a6, .Lfloatsisf_return
|
|
addi a2, a2, 1 /* Overflow to the exponent is OK. */
|
|
|
|
/* Check if the leftover fraction is exactly 1/2. */
|
|
slli a6, a6, 1
|
|
beqz a6, .Lfloatsisf_exactlyhalf
|
|
|
|
.Lfloatsisf_return:
|
|
leaf_return
|
|
|
|
.Lfloatsisf_exactlyhalf:
|
|
/* Round down to the nearest even value. */
|
|
srli a2, a2, 1
|
|
slli a2, a2, 1
|
|
leaf_return
|
|
|
|
#endif /* L_floatsisf */
|
|
|
|
#ifdef L_floatdisf
|
|
|
|
.align 4
|
|
.global __floatundisf
|
|
.type __floatundisf, @function
|
|
__floatundisf:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for zero. */
|
|
or a4, xh, xl
|
|
beqz a4, 2f
|
|
|
|
/* Set the sign to zero and jump to the floatdisf code. */
|
|
movi a7, 0
|
|
j .Lfloatdisf_normalize
|
|
|
|
.align 4
|
|
.global __floatdisf
|
|
.type __floatdisf, @function
|
|
__floatdisf:
|
|
leaf_entry sp, 16
|
|
|
|
/* Check for zero. */
|
|
or a4, xh, xl
|
|
beqz a4, 2f
|
|
|
|
/* Save the sign. */
|
|
extui a7, xh, 31, 1
|
|
|
|
/* Get the absolute value. */
|
|
bgez xh, .Lfloatdisf_normalize
|
|
neg xl, xl
|
|
neg xh, xh
|
|
beqz xl, .Lfloatdisf_normalize
|
|
addi xh, xh, -1
|
|
|
|
.Lfloatdisf_normalize:
|
|
/* Normalize with the first 1 bit in the msb of xh. */
|
|
beqz xh, .Lfloatdisf_bigshift
|
|
do_nsau a4, xh, a5, a6
|
|
ssl a4
|
|
src xh, xh, xl
|
|
sll xl, xl
|
|
|
|
.Lfloatdisf_shifted:
|
|
/* Shift the mantissa into position, with rounding bits in a6. */
|
|
ssai 8
|
|
sll a5, xl
|
|
src a6, xh, xl
|
|
srl xh, xh
|
|
beqz a5, 1f
|
|
movi a5, 1
|
|
or a6, a6, a5
|
|
1:
|
|
/* Set the exponent. */
|
|
movi a5, 0xbd /* 0x7e + 63 */
|
|
sub a5, a5, a4
|
|
slli a5, a5, 23
|
|
add a2, xh, a5
|
|
|
|
/* Add the sign. */
|
|
slli a7, a7, 31
|
|
or a2, a2, a7
|
|
|
|
/* Round up if the leftover fraction is >= 1/2. */
|
|
bgez a6, 2f
|
|
addi a2, a2, 1 /* Overflow to the exponent is OK. */
|
|
|
|
/* Check if the leftover fraction is exactly 1/2. */
|
|
slli a6, a6, 1
|
|
beqz a6, .Lfloatdisf_exactlyhalf
|
|
2: leaf_return
|
|
|
|
.Lfloatdisf_bigshift:
|
|
/* xh is zero. Normalize with first 1 bit of xl in the msb of xh. */
|
|
do_nsau a4, xl, a5, a6
|
|
ssl a4
|
|
sll xh, xl
|
|
movi xl, 0
|
|
addi a4, a4, 32
|
|
j .Lfloatdisf_shifted
|
|
|
|
.Lfloatdisf_exactlyhalf:
|
|
/* Round down to the nearest even value. */
|
|
srli a2, a2, 1
|
|
slli a2, a2, 1
|
|
leaf_return
|
|
|
|
#endif /* L_floatdisf */
|
|
|
|
#if XCHAL_HAVE_FP_SQRT
|
|
#ifdef L_sqrtf
|
|
/* Square root */
|
|
|
|
.align 4
|
|
.global __ieee754_sqrtf
|
|
.type __ieee754_sqrtf, @function
|
|
__ieee754_sqrtf:
|
|
leaf_entry sp, 16
|
|
|
|
wfr f1, a2
|
|
|
|
sqrt0.s f2, f1
|
|
const.s f3, 0
|
|
maddn.s f3, f2, f2
|
|
nexp01.s f4, f1
|
|
const.s f0, 3
|
|
addexp.s f4, f0
|
|
maddn.s f0, f3, f4
|
|
nexp01.s f3, f1
|
|
neg.s f5, f3
|
|
maddn.s f2, f0, f2
|
|
const.s f0, 0
|
|
const.s f6, 0
|
|
const.s f7, 0
|
|
maddn.s f0, f5, f2
|
|
maddn.s f6, f2, f4
|
|
const.s f4, 3
|
|
maddn.s f7, f4, f2
|
|
maddn.s f3, f0, f0
|
|
maddn.s f4, f6, f2
|
|
neg.s f2, f7
|
|
maddn.s f0, f3, f2
|
|
maddn.s f7, f4, f7
|
|
mksadj.s f2, f1
|
|
nexp01.s f1, f1
|
|
maddn.s f1, f0, f0
|
|
neg.s f3, f7
|
|
addexpm.s f0, f2
|
|
addexp.s f3, f2
|
|
divn.s f0, f1, f3
|
|
|
|
rfr a2, f0
|
|
|
|
leaf_return
|
|
|
|
#endif /* L_sqrtf */
|
|
#endif /* XCHAL_HAVE_FP_SQRT */
|
|
|
|
#if XCHAL_HAVE_FP_RECIP
|
|
#ifdef L_recipsf2
|
|
/* Reciprocal */
|
|
|
|
.align 4
|
|
.global __recipsf2
|
|
.type __recipsf2, @function
|
|
__recipsf2:
|
|
leaf_entry sp, 16
|
|
|
|
wfr f1, a2
|
|
|
|
recip0.s f0, f1
|
|
const.s f2, 1
|
|
msub.s f2, f1, f0
|
|
maddn.s f0, f0, f2
|
|
const.s f2, 1
|
|
msub.s f2, f1, f0
|
|
maddn.s f0, f0, f2
|
|
|
|
rfr a2, f0
|
|
|
|
leaf_return
|
|
|
|
#endif /* L_recipsf2 */
|
|
#endif /* XCHAL_HAVE_FP_RECIP */
|
|
|
|
#if XCHAL_HAVE_FP_RSQRT
|
|
#ifdef L_rsqrtsf2
|
|
/* Reciprocal square root */
|
|
|
|
.align 4
|
|
.global __rsqrtsf2
|
|
.type __rsqrtsf2, @function
|
|
__rsqrtsf2:
|
|
leaf_entry sp, 16
|
|
|
|
wfr f1, a2
|
|
|
|
rsqrt0.s f0, f1
|
|
mul.s f2, f1, f0
|
|
const.s f3, 3;
|
|
mul.s f4, f3, f0
|
|
const.s f5, 1
|
|
msub.s f5, f2, f0
|
|
maddn.s f0, f4, f5
|
|
mul.s f2, f1, f0
|
|
mul.s f1, f3, f0
|
|
const.s f3, 1
|
|
msub.s f3, f2, f0
|
|
maddn.s f0, f1, f3
|
|
|
|
rfr a2, f0
|
|
|
|
leaf_return
|
|
|
|
#endif /* L_rsqrtsf2 */
|
|
#endif /* XCHAL_HAVE_FP_RSQRT */
|