2147 lines
70 KiB
ArmAsm
2147 lines
70 KiB
ArmAsm
/* 32 and 64-bit millicode, original author Hewlett-Packard
|
|
adapted for gcc by Paul Bame <bame@debian.org>
|
|
and Alan Modra <alan@linuxcare.com.au>.
|
|
|
|
Copyright (C) 2001-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* An executable stack is *not* required for these functions. */
|
|
#if defined(__ELF__) && defined(__linux__)
|
|
.section .note.GNU-stack,"",%progbits
|
|
.previous
|
|
#endif
|
|
|
|
#ifdef pa64
|
|
.level 2.0w
|
|
#endif
|
|
|
|
/* Hardware General Registers. */
|
|
r0: .reg %r0
|
|
r1: .reg %r1
|
|
r2: .reg %r2
|
|
r3: .reg %r3
|
|
r4: .reg %r4
|
|
r5: .reg %r5
|
|
r6: .reg %r6
|
|
r7: .reg %r7
|
|
r8: .reg %r8
|
|
r9: .reg %r9
|
|
r10: .reg %r10
|
|
r11: .reg %r11
|
|
r12: .reg %r12
|
|
r13: .reg %r13
|
|
r14: .reg %r14
|
|
r15: .reg %r15
|
|
r16: .reg %r16
|
|
r17: .reg %r17
|
|
r18: .reg %r18
|
|
r19: .reg %r19
|
|
r20: .reg %r20
|
|
r21: .reg %r21
|
|
r22: .reg %r22
|
|
r23: .reg %r23
|
|
r24: .reg %r24
|
|
r25: .reg %r25
|
|
r26: .reg %r26
|
|
r27: .reg %r27
|
|
r28: .reg %r28
|
|
r29: .reg %r29
|
|
r30: .reg %r30
|
|
r31: .reg %r31
|
|
|
|
/* Hardware Space Registers. */
|
|
sr0: .reg %sr0
|
|
sr1: .reg %sr1
|
|
sr2: .reg %sr2
|
|
sr3: .reg %sr3
|
|
sr4: .reg %sr4
|
|
sr5: .reg %sr5
|
|
sr6: .reg %sr6
|
|
sr7: .reg %sr7
|
|
|
|
/* Hardware Floating Point Registers. */
|
|
fr0: .reg %fr0
|
|
fr1: .reg %fr1
|
|
fr2: .reg %fr2
|
|
fr3: .reg %fr3
|
|
fr4: .reg %fr4
|
|
fr5: .reg %fr5
|
|
fr6: .reg %fr6
|
|
fr7: .reg %fr7
|
|
fr8: .reg %fr8
|
|
fr9: .reg %fr9
|
|
fr10: .reg %fr10
|
|
fr11: .reg %fr11
|
|
fr12: .reg %fr12
|
|
fr13: .reg %fr13
|
|
fr14: .reg %fr14
|
|
fr15: .reg %fr15
|
|
|
|
/* Hardware Control Registers. */
|
|
cr11: .reg %cr11
|
|
sar: .reg %cr11 /* Shift Amount Register */
|
|
|
|
/* Software Architecture General Registers. */
|
|
rp: .reg r2 /* return pointer */
|
|
#ifdef pa64
|
|
mrp: .reg r2 /* millicode return pointer */
|
|
#else
|
|
mrp: .reg r31 /* millicode return pointer */
|
|
#endif
|
|
ret0: .reg r28 /* return value */
|
|
ret1: .reg r29 /* return value (high part of double) */
|
|
sp: .reg r30 /* stack pointer */
|
|
dp: .reg r27 /* data pointer */
|
|
arg0: .reg r26 /* argument */
|
|
arg1: .reg r25 /* argument or high part of double argument */
|
|
arg2: .reg r24 /* argument */
|
|
arg3: .reg r23 /* argument or high part of double argument */
|
|
|
|
/* Software Architecture Space Registers. */
|
|
/* sr0 ; return link from BLE */
|
|
sret: .reg sr1 /* return value */
|
|
sarg: .reg sr1 /* argument */
|
|
/* sr4 ; PC SPACE tracker */
|
|
/* sr5 ; process private data */
|
|
|
|
/* Frame Offsets (millicode convention!) Used when calling other
|
|
millicode routines. Stack unwinding is dependent upon these
|
|
definitions. */
|
|
r31_slot: .equ -20 /* "current RP" slot */
|
|
sr0_slot: .equ -16 /* "static link" slot */
|
|
#if defined(pa64)
|
|
mrp_slot: .equ -16 /* "current RP" slot */
|
|
psp_slot: .equ -8 /* "previous SP" slot */
|
|
#else
|
|
mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
|
|
#endif
|
|
|
|
|
|
#define DEFINE(name,value)name: .EQU value
|
|
#define RDEFINE(name,value)name: .REG value
|
|
#ifdef milliext
|
|
#define MILLI_BE(lbl) BE lbl(sr7,r0)
|
|
#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
|
|
#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
|
|
#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
|
|
#define MILLIRETN BE,n 0(sr0,mrp)
|
|
#define MILLIRET BE 0(sr0,mrp)
|
|
#define MILLI_RETN BE,n 0(sr0,mrp)
|
|
#define MILLI_RET BE 0(sr0,mrp)
|
|
#else
|
|
#define MILLI_BE(lbl) B lbl
|
|
#define MILLI_BEN(lbl) B,n lbl
|
|
#define MILLI_BLE(lbl) BL lbl,mrp
|
|
#define MILLI_BLEN(lbl) BL,n lbl,mrp
|
|
#define MILLIRETN BV,n 0(mrp)
|
|
#define MILLIRET BV 0(mrp)
|
|
#define MILLI_RETN BV,n 0(mrp)
|
|
#define MILLI_RET BV 0(mrp)
|
|
#endif
|
|
|
|
#ifdef __STDC__
|
|
#define CAT(a,b) a##b
|
|
#else
|
|
#define CAT(a,b) a/**/b
|
|
#endif
|
|
|
|
#ifdef ELF
|
|
#define SUBSPA_MILLI .section .text
|
|
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
|
|
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
|
|
#define ATTR_MILLI
|
|
#define SUBSPA_DATA .section .data
|
|
#define ATTR_DATA
|
|
#define GLOBAL $global$
|
|
#define GSYM(sym) !sym:
|
|
#define LSYM(sym) !CAT(.L,sym:)
|
|
#define LREF(sym) CAT(.L,sym)
|
|
|
|
#else
|
|
|
|
#ifdef coff
|
|
/* This used to be .milli but since link32 places different named
|
|
sections in different segments millicode ends up a long ways away
|
|
from .text (1meg?). This way they will be a lot closer.
|
|
|
|
The SUBSPA_MILLI_* specify locality sets for certain millicode
|
|
modules in order to ensure that modules that call one another are
|
|
placed close together. Without locality sets this is unlikely to
|
|
happen because of the Dynamite linker library search algorithm. We
|
|
want these modules close together so that short calls always reach
|
|
(we don't want to require long calls or use long call stubs). */
|
|
|
|
#define SUBSPA_MILLI .subspa .text
|
|
#define SUBSPA_MILLI_DIV .subspa .text$dv,align=16
|
|
#define SUBSPA_MILLI_MUL .subspa .text$mu,align=16
|
|
#define ATTR_MILLI .attr code,read,execute
|
|
#define SUBSPA_DATA .subspa .data
|
|
#define ATTR_DATA .attr init_data,read,write
|
|
#define GLOBAL _gp
|
|
#else
|
|
#define SUBSPA_MILLI .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8
|
|
#define SUBSPA_MILLI_DIV SUBSPA_MILLI
|
|
#define SUBSPA_MILLI_MUL SUBSPA_MILLI
|
|
#define ATTR_MILLI
|
|
#define SUBSPA_DATA .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero
|
|
#define ATTR_DATA
|
|
#define GLOBAL $global$
|
|
#endif
|
|
#define SPACE_DATA .space $PRIVATE$,spnum=1,sort=16
|
|
|
|
#define GSYM(sym) !sym
|
|
#define LSYM(sym) !CAT(L$,sym)
|
|
#define LREF(sym) CAT(L$,sym)
|
|
#endif
|
|
|
|
#ifdef L_dyncall
|
|
SUBSPA_MILLI
|
|
ATTR_DATA
|
|
GSYM($$dyncall)
|
|
.export $$dyncall,millicode
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
#ifdef LINUX
|
|
extru,<> %r22,30,1,%r0 ; nullify if plabel bit set
|
|
bv,n %r0(%r22) ; branch to target
|
|
ldw -2(%r22),%r21 ; load address of target
|
|
bv %r0(%r21) ; branch to the real target
|
|
ldw 2(%r22),%r19 ; load new LTP value
|
|
#else
|
|
bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
|
|
ldw -2(%r22),%r21 ; load address of target to r21
|
|
ldsid (%sr0,%r21),%r1 ; get the "space ident" selected by r21
|
|
ldw 2(%r22),%r19 ; load new LTP value
|
|
mtsp %r1,%sr0 ; move that space identifier into sr0
|
|
be 0(%sr0,%r21) ; branch to the real target
|
|
stw %r2,-24(%r30) ; save return address into frame marker
|
|
LSYM(1)
|
|
ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22
|
|
mtsp %r1,%sr0 ; move that space identifier into sr0
|
|
be 0(%sr0,%r22) ; branch to the target
|
|
stw %r2,-24(%r30) ; save return address into frame marker
|
|
#endif
|
|
.exit
|
|
.procend
|
|
#endif
|
|
|
|
#ifdef L_divI
|
|
/* ROUTINES: $$divI, $$divoI
|
|
|
|
Single precision divide for signed binary integers.
|
|
|
|
The quotient is truncated towards zero.
|
|
The sign of the quotient is the XOR of the signs of the dividend and
|
|
divisor.
|
|
Divide by zero is trapped.
|
|
Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
|
|
|
|
INPUT REGISTERS:
|
|
. arg0 == dividend
|
|
. arg1 == divisor
|
|
. mrp == return pc
|
|
. sr0 == return space when called externally
|
|
|
|
OUTPUT REGISTERS:
|
|
. arg0 = undefined
|
|
. arg1 = undefined
|
|
. ret1 = quotient
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
. r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
. Causes a trap under the following conditions:
|
|
. divisor is zero (traps with ADDIT,= 0,25,0)
|
|
. dividend==-2**31 and divisor==-1 and routine is $$divoI
|
|
. (traps with ADDO 26,25,0)
|
|
. Changes memory at the following places:
|
|
. NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
. Unwindable.
|
|
. Suitable for internal or external millicode.
|
|
. Assumes the special millicode register conventions.
|
|
|
|
DISCUSSION:
|
|
. Branchs to other millicode routines using BE
|
|
. $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
|
|
.
|
|
. For selected divisors, calls a divide by constant routine written by
|
|
. Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
|
|
.
|
|
. The only overflow case is -2**31 divided by -1.
|
|
. Both routines return -2**31 but only $$divoI traps. */
|
|
|
|
RDEFINE(temp,r1)
|
|
RDEFINE(retreg,ret1) /* r29 */
|
|
RDEFINE(temp1,arg0)
|
|
SUBSPA_MILLI_DIV
|
|
ATTR_MILLI
|
|
.import $$divI_2,millicode
|
|
.import $$divI_3,millicode
|
|
.import $$divI_4,millicode
|
|
.import $$divI_5,millicode
|
|
.import $$divI_6,millicode
|
|
.import $$divI_7,millicode
|
|
.import $$divI_8,millicode
|
|
.import $$divI_9,millicode
|
|
.import $$divI_10,millicode
|
|
.import $$divI_12,millicode
|
|
.import $$divI_14,millicode
|
|
.import $$divI_15,millicode
|
|
.export $$divI,millicode
|
|
.export $$divoI,millicode
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
GSYM($$divoI)
|
|
comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
|
|
GSYM($$divI)
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
|
and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
|
|
addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
|
|
b,n LREF(neg_denom)
|
|
LSYM(pow2)
|
|
addi,>= 0,arg0,retreg /* if numerator is negative, add the */
|
|
add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
|
extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
|
extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
|
extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
|
extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
|
extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
|
|
MILLIRETN
|
|
LSYM(neg_denom)
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
|
|
b,n LREF(regular_seq)
|
|
sub r0,arg1,temp /* make denominator positive */
|
|
comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
|
ldo -1(temp),retreg /* is there at most one bit set ? */
|
|
and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
|
|
b,n LREF(regular_seq)
|
|
sub r0,arg0,retreg /* negate numerator */
|
|
comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
|
|
copy retreg,arg0 /* set up arg0, arg1 and temp */
|
|
copy temp,arg1 /* before branching to pow2 */
|
|
b LREF(pow2)
|
|
ldo -1(arg1),temp
|
|
LSYM(regular_seq)
|
|
comib,>>=,n 15,arg1,LREF(small_divisor)
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
|
LSYM(normal)
|
|
subi 0,retreg,retreg /* make it positive */
|
|
sub 0,arg1,temp /* clear carry, */
|
|
/* negate the divisor */
|
|
ds 0,temp,0 /* set V-bit to the comple- */
|
|
/* ment of the divisor sign */
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 2nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 3rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 4th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 5th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 6th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 7th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 8th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 9th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 10th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 11th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 12th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 13th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 14th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 15th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 16th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 17th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 18th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 19th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 20th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 21st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 22nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 23rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 24th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 25th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 26th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 27th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 28th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 29th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 30th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 31st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
|
xor,>= arg0,arg1,0 /* get correct sign of quotient */
|
|
sub 0,retreg,retreg /* based on operand signs */
|
|
MILLIRETN
|
|
nop
|
|
|
|
LSYM(small_divisor)
|
|
|
|
#if defined(pa64)
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with */
|
|
/* small divisors (and 32-bit integers) We must not be mislead */
|
|
/* by "1" bits left in the upper 32 bits. */
|
|
depd %r0,31,32,%r25
|
|
#endif
|
|
blr,n arg1,r0
|
|
nop
|
|
/* table for divisor == 0,1, ... ,15 */
|
|
addit,= 0,arg1,r0 /* trap if divisor == 0 */
|
|
nop
|
|
MILLIRET /* divisor == 1 */
|
|
copy arg0,retreg
|
|
MILLI_BEN($$divI_2) /* divisor == 2 */
|
|
nop
|
|
MILLI_BEN($$divI_3) /* divisor == 3 */
|
|
nop
|
|
MILLI_BEN($$divI_4) /* divisor == 4 */
|
|
nop
|
|
MILLI_BEN($$divI_5) /* divisor == 5 */
|
|
nop
|
|
MILLI_BEN($$divI_6) /* divisor == 6 */
|
|
nop
|
|
MILLI_BEN($$divI_7) /* divisor == 7 */
|
|
nop
|
|
MILLI_BEN($$divI_8) /* divisor == 8 */
|
|
nop
|
|
MILLI_BEN($$divI_9) /* divisor == 9 */
|
|
nop
|
|
MILLI_BEN($$divI_10) /* divisor == 10 */
|
|
nop
|
|
b LREF(normal) /* divisor == 11 */
|
|
add,>= 0,arg0,retreg
|
|
MILLI_BEN($$divI_12) /* divisor == 12 */
|
|
nop
|
|
b LREF(normal) /* divisor == 13 */
|
|
add,>= 0,arg0,retreg
|
|
MILLI_BEN($$divI_14) /* divisor == 14 */
|
|
nop
|
|
MILLI_BEN($$divI_15) /* divisor == 15 */
|
|
nop
|
|
|
|
LSYM(negative1)
|
|
sub 0,arg0,retreg /* result is negation of dividend */
|
|
MILLIRET
|
|
addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
|
|
.exit
|
|
.procend
|
|
.end
|
|
#endif
|
|
|
|
#ifdef L_divU
|
|
/* ROUTINE: $$divU
|
|
.
|
|
. Single precision divide for unsigned integers.
|
|
.
|
|
. Quotient is truncated towards zero.
|
|
. Traps on divide by zero.
|
|
|
|
INPUT REGISTERS:
|
|
. arg0 == dividend
|
|
. arg1 == divisor
|
|
. mrp == return pc
|
|
. sr0 == return space when called externally
|
|
|
|
OUTPUT REGISTERS:
|
|
. arg0 = undefined
|
|
. arg1 = undefined
|
|
. ret1 = quotient
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
. r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
. Causes a trap under the following conditions:
|
|
. divisor is zero
|
|
. Changes memory at the following places:
|
|
. NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
. Unwindable.
|
|
. Does not create a stack frame.
|
|
. Suitable for internal or external millicode.
|
|
. Assumes the special millicode register conventions.
|
|
|
|
DISCUSSION:
|
|
. Branchs to other millicode routines using BE:
|
|
. $$divU_# for 3,5,6,7,9,10,12,14,15
|
|
.
|
|
. For selected small divisors calls the special divide by constant
|
|
. routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
|
|
|
|
RDEFINE(temp,r1)
|
|
RDEFINE(retreg,ret1) /* r29 */
|
|
RDEFINE(temp1,arg0)
|
|
SUBSPA_MILLI_DIV
|
|
ATTR_MILLI
|
|
.export $$divU,millicode
|
|
.import $$divU_3,millicode
|
|
.import $$divU_5,millicode
|
|
.import $$divU_6,millicode
|
|
.import $$divU_7,millicode
|
|
.import $$divU_9,millicode
|
|
.import $$divU_10,millicode
|
|
.import $$divU_12,millicode
|
|
.import $$divU_14,millicode
|
|
.import $$divU_15,millicode
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
GSYM($$divU)
|
|
/* The subtract is not nullified since it does no harm and can be used
|
|
by the two cases that branch back to "normal". */
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
|
and,= arg1,temp,r0 /* if so, denominator is power of 2 */
|
|
b LREF(regular_seq)
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
|
copy arg0,retreg
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
|
extru retreg,15,16,retreg /* retreg = retreg >> 16 */
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
|
extru retreg,23,24,retreg /* retreg = retreg >> 8 */
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
|
extru retreg,27,28,retreg /* retreg = retreg >> 4 */
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
|
extru retreg,29,30,retreg /* retreg = retreg >> 2 */
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
|
extru retreg,30,31,retreg /* retreg = retreg >> 1 */
|
|
MILLIRETN
|
|
nop
|
|
LSYM(regular_seq)
|
|
comib,>= 15,arg1,LREF(special_divisor)
|
|
subi 0,arg1,temp /* clear carry, negate the divisor */
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
|
LSYM(normal)
|
|
add arg0,arg0,retreg /* shift msb bit into carry */
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 2nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 3rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 4th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 5th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 6th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 7th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 8th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 9th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 10th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 11th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 12th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 13th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 14th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 15th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 16th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 17th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 18th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 19th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 20th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 21st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 22nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 23rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 24th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 25th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 26th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 27th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 28th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 29th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 30th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 31st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
|
MILLIRET
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
|
|
|
/* Handle the cases where divisor is a small constant or has high bit on. */
|
|
LSYM(special_divisor)
|
|
/* blr arg1,r0 */
|
|
/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
|
|
|
|
/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
|
|
generating such a blr, comib sequence. A problem in nullification. So I
|
|
rewrote this code. */
|
|
|
|
#if defined(pa64)
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with
|
|
small divisors (and 32-bit unsigned integers) We must not be mislead
|
|
by "1" bits left in the upper 32 bits. */
|
|
depd %r0,31,32,%r25
|
|
#endif
|
|
comib,> 0,arg1,LREF(big_divisor)
|
|
nop
|
|
blr arg1,r0
|
|
nop
|
|
|
|
LSYM(zero_divisor) /* this label is here to provide external visibility */
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
|
nop
|
|
MILLIRET /* divisor == 1 */
|
|
copy arg0,retreg
|
|
MILLIRET /* divisor == 2 */
|
|
extru arg0,30,31,retreg
|
|
MILLI_BEN($$divU_3) /* divisor == 3 */
|
|
nop
|
|
MILLIRET /* divisor == 4 */
|
|
extru arg0,29,30,retreg
|
|
MILLI_BEN($$divU_5) /* divisor == 5 */
|
|
nop
|
|
MILLI_BEN($$divU_6) /* divisor == 6 */
|
|
nop
|
|
MILLI_BEN($$divU_7) /* divisor == 7 */
|
|
nop
|
|
MILLIRET /* divisor == 8 */
|
|
extru arg0,28,29,retreg
|
|
MILLI_BEN($$divU_9) /* divisor == 9 */
|
|
nop
|
|
MILLI_BEN($$divU_10) /* divisor == 10 */
|
|
nop
|
|
b LREF(normal) /* divisor == 11 */
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
|
MILLI_BEN($$divU_12) /* divisor == 12 */
|
|
nop
|
|
b LREF(normal) /* divisor == 13 */
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
|
MILLI_BEN($$divU_14) /* divisor == 14 */
|
|
nop
|
|
MILLI_BEN($$divU_15) /* divisor == 15 */
|
|
nop
|
|
|
|
/* Handle the case where the high bit is on in the divisor.
|
|
Compute: if( dividend>=divisor) quotient=1; else quotient=0;
|
|
Note: dividend>==divisor iff dividend-divisor does not borrow
|
|
and not borrow iff carry. */
|
|
LSYM(big_divisor)
|
|
sub arg0,arg1,r0
|
|
MILLIRET
|
|
addc r0,r0,retreg
|
|
.exit
|
|
.procend
|
|
.end
|
|
#endif
|
|
|
|
#ifdef L_remI
|
|
/* ROUTINE: $$remI
|
|
|
|
DESCRIPTION:
|
|
. $$remI returns the remainder of the division of two signed 32-bit
|
|
. integers. The sign of the remainder is the same as the sign of
|
|
. the dividend.
|
|
|
|
|
|
INPUT REGISTERS:
|
|
. arg0 == dividend
|
|
. arg1 == divisor
|
|
. mrp == return pc
|
|
. sr0 == return space when called externally
|
|
|
|
OUTPUT REGISTERS:
|
|
. arg0 = destroyed
|
|
. arg1 = destroyed
|
|
. ret1 = remainder
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
. r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
|
. Changes memory at the following places: NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
. Unwindable
|
|
. Does not create a stack frame
|
|
. Is usable for internal or external microcode
|
|
|
|
DISCUSSION:
|
|
. Calls other millicode routines via mrp: NONE
|
|
. Calls other millicode routines: NONE */
|
|
|
|
RDEFINE(tmp,r1)
|
|
RDEFINE(retreg,ret1)
|
|
|
|
SUBSPA_MILLI
|
|
ATTR_MILLI
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
GSYM($$remI)
|
|
GSYM($$remoI)
|
|
.export $$remI,MILLICODE
|
|
.export $$remoI,MILLICODE
|
|
ldo -1(arg1),tmp /* is there at most one bit set ? */
|
|
and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
|
|
addi,> 0,arg1,r0 /* if denominator > 0, use power */
|
|
/* of 2 */
|
|
b,n LREF(neg_denom)
|
|
LSYM(pow2)
|
|
comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
|
|
and arg0,tmp,retreg /* get the result */
|
|
MILLIRETN
|
|
LSYM(neg_num)
|
|
subi 0,arg0,arg0 /* negate numerator */
|
|
and arg0,tmp,retreg /* get the result */
|
|
subi 0,retreg,retreg /* negate result */
|
|
MILLIRETN
|
|
LSYM(neg_denom)
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
|
|
/* of 2 */
|
|
b,n LREF(regular_seq)
|
|
sub r0,arg1,tmp /* make denominator positive */
|
|
comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
|
ldo -1(tmp),retreg /* is there at most one bit set ? */
|
|
and,= tmp,retreg,r0 /* if not, go to regular_seq */
|
|
b,n LREF(regular_seq)
|
|
comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
|
|
and arg0,retreg,retreg
|
|
MILLIRETN
|
|
LSYM(neg_num_2)
|
|
subi 0,arg0,tmp /* test against 0x80000000 */
|
|
and tmp,retreg,retreg
|
|
subi 0,retreg,retreg
|
|
MILLIRETN
|
|
LSYM(regular_seq)
|
|
addit,= 0,arg1,0 /* trap if div by zero */
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
|
sub 0,retreg,retreg /* make it positive */
|
|
sub 0,arg1, tmp /* clear carry, */
|
|
/* negate the divisor */
|
|
ds 0, tmp,0 /* set V-bit to the comple- */
|
|
/* ment of the divisor sign */
|
|
or 0,0, tmp /* clear tmp */
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
|
ds tmp,arg1, tmp /* 1st divide step, if no carry */
|
|
/* out, msb of quotient = 0 */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
LSYM(t1)
|
|
ds tmp,arg1, tmp /* 2nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 3rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 4th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 5th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 6th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 7th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 8th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 9th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 10th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 11th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 12th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 13th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 14th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 15th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 16th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 17th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 18th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 19th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 20th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 21st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 22nd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 23rd divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 24th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 25th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 26th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 27th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 28th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 29th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 30th divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 31st divide step */
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
|
ds tmp,arg1, tmp /* 32nd divide step, */
|
|
addc retreg,retreg,retreg /* shift last bit into retreg */
|
|
movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
|
|
add,< arg1,0,0 /* if arg1 > 0, add arg1 */
|
|
add,tr tmp,arg1,retreg /* for correcting remainder tmp */
|
|
sub tmp,arg1,retreg /* else add absolute value arg1 */
|
|
LSYM(finish)
|
|
add,>= arg0,0,0 /* set sign of remainder */
|
|
sub 0,retreg,retreg /* to sign of dividend */
|
|
MILLIRET
|
|
nop
|
|
.exit
|
|
.procend
|
|
#ifdef milliext
|
|
.origin 0x00000200
|
|
#endif
|
|
.end
|
|
#endif
|
|
|
|
#ifdef L_remU
|
|
/* ROUTINE: $$remU
|
|
. Single precision divide for remainder with unsigned binary integers.
|
|
.
|
|
. The remainder must be dividend-(dividend/divisor)*divisor.
|
|
. Divide by zero is trapped.
|
|
|
|
INPUT REGISTERS:
|
|
. arg0 == dividend
|
|
. arg1 == divisor
|
|
. mrp == return pc
|
|
. sr0 == return space when called externally
|
|
|
|
OUTPUT REGISTERS:
|
|
. arg0 = undefined
|
|
. arg1 = undefined
|
|
. ret1 = remainder
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
. r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
|
. Changes memory at the following places: NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
. Unwindable.
|
|
. Does not create a stack frame.
|
|
. Suitable for internal or external millicode.
|
|
. Assumes the special millicode register conventions.
|
|
|
|
DISCUSSION:
|
|
. Calls other millicode routines using mrp: NONE
|
|
. Calls other millicode routines: NONE */
|
|
|
|
|
|
RDEFINE(temp,r1)
|
|
RDEFINE(rmndr,ret1) /* r29 */
|
|
SUBSPA_MILLI
|
|
ATTR_MILLI
|
|
.export $$remU,millicode
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
GSYM($$remU)
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
|
and,= arg1,temp,r0 /* if not, don't use power of 2 */
|
|
b LREF(regular_seq)
|
|
addit,= 0,arg1,r0 /* trap on div by zero */
|
|
and arg0,temp,rmndr /* get the result for power of 2 */
|
|
MILLIRETN
|
|
LSYM(regular_seq)
|
|
comib,>=,n 0,arg1,LREF(special_case)
|
|
subi 0,arg1,rmndr /* clear carry, negate the divisor */
|
|
ds r0,rmndr,r0 /* set V-bit to 1 */
|
|
add arg0,arg0,temp /* shift msb bit into carry */
|
|
ds r0,arg1,rmndr /* 1st divide step, if no carry */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 2nd divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 3rd divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 4th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 5th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 6th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 7th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 8th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 9th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 10th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 11th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 12th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 13th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 14th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 15th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 16th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 17th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 18th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 19th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 20th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 21st divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 22nd divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 23rd divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 24th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 25th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 26th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 27th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 28th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 29th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 30th divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 31st divide step */
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
|
ds rmndr,arg1,rmndr /* 32nd divide step, */
|
|
comiclr,<= 0,rmndr,r0
|
|
add rmndr,arg1,rmndr /* correction */
|
|
MILLIRETN
|
|
nop
|
|
|
|
/* Putting >= on the last DS and deleting COMICLR does not work! */
|
|
LSYM(special_case)
|
|
sub,>>= arg0,arg1,rmndr
|
|
copy arg0,rmndr
|
|
MILLIRETN
|
|
nop
|
|
.exit
|
|
.procend
|
|
.end
|
|
#endif
|
|
|
|
#ifdef L_div_const
|
|
/* ROUTINE: $$divI_2
|
|
. $$divI_3 $$divU_3
|
|
. $$divI_4
|
|
. $$divI_5 $$divU_5
|
|
. $$divI_6 $$divU_6
|
|
. $$divI_7 $$divU_7
|
|
. $$divI_8
|
|
. $$divI_9 $$divU_9
|
|
. $$divI_10 $$divU_10
|
|
.
|
|
. $$divI_12 $$divU_12
|
|
.
|
|
. $$divI_14 $$divU_14
|
|
. $$divI_15 $$divU_15
|
|
. $$divI_16
|
|
. $$divI_17 $$divU_17
|
|
.
|
|
. Divide by selected constants for single precision binary integers.
|
|
|
|
INPUT REGISTERS:
|
|
. arg0 == dividend
|
|
. mrp == return pc
|
|
. sr0 == return space when called externally
|
|
|
|
OUTPUT REGISTERS:
|
|
. arg0 = undefined
|
|
. arg1 = undefined
|
|
. ret1 = quotient
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
. r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
. Causes a trap under the following conditions: NONE
|
|
. Changes memory at the following places: NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
. Unwindable.
|
|
. Does not create a stack frame.
|
|
. Suitable for internal or external millicode.
|
|
. Assumes the special millicode register conventions.
|
|
|
|
DISCUSSION:
|
|
. Calls other millicode routines using mrp: NONE
|
|
. Calls other millicode routines: NONE */
|
|
|
|
|
|
/* TRUNCATED DIVISION BY SMALL INTEGERS
|
|
|
|
We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
|
|
(with y fixed).
|
|
|
|
Let a = floor(z/y), for some choice of z. Note that z will be
|
|
chosen so that division by z is cheap.
|
|
|
|
Let r be the remainder(z/y). In other words, r = z - ay.
|
|
|
|
Now, our method is to choose a value for b such that
|
|
|
|
q'(x) = floor((ax+b)/z)
|
|
|
|
is equal to q(x) over as large a range of x as possible. If the
|
|
two are equal over a sufficiently large range, and if it is easy to
|
|
form the product (ax), and it is easy to divide by z, then we can
|
|
perform the division much faster than the general division algorithm.
|
|
|
|
So, we want the following to be true:
|
|
|
|
. For x in the following range:
|
|
.
|
|
. ky <= x < (k+1)y
|
|
.
|
|
. implies that
|
|
.
|
|
. k <= (ax+b)/z < (k+1)
|
|
|
|
We want to determine b such that this is true for all k in the
|
|
range {0..K} for some maximum K.
|
|
|
|
Since (ax+b) is an increasing function of x, we can take each
|
|
bound separately to determine the "best" value for b.
|
|
|
|
(ax+b)/z < (k+1) implies
|
|
|
|
(a((k+1)y-1)+b < (k+1)z implies
|
|
|
|
b < a + (k+1)(z-ay) implies
|
|
|
|
b < a + (k+1)r
|
|
|
|
This needs to be true for all k in the range {0..K}. In
|
|
particular, it is true for k = 0 and this leads to a maximum
|
|
acceptable value for b.
|
|
|
|
b < a+r or b <= a+r-1
|
|
|
|
Taking the other bound, we have
|
|
|
|
k <= (ax+b)/z implies
|
|
|
|
k <= (aky+b)/z implies
|
|
|
|
k(z-ay) <= b implies
|
|
|
|
kr <= b
|
|
|
|
Clearly, the largest range for k will be achieved by maximizing b,
|
|
when r is not zero. When r is zero, then the simplest choice for b
|
|
is 0. When r is not 0, set
|
|
|
|
. b = a+r-1
|
|
|
|
Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
|
|
for all x in the range:
|
|
|
|
. 0 <= x < (K+1)y
|
|
|
|
We need to determine what K is. Of our two bounds,
|
|
|
|
. b < a+(k+1)r is satisfied for all k >= 0, by construction.
|
|
|
|
The other bound is
|
|
|
|
. kr <= b
|
|
|
|
This is always true if r = 0. If r is not 0 (the usual case), then
|
|
K = floor((a+r-1)/r), is the maximum value for k.
|
|
|
|
Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
|
|
answer for q(x) = floor(x/y) when x is in the range
|
|
|
|
(0,(K+1)y-1) K = floor((a+r-1)/r)
|
|
|
|
To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
|
|
the formula for q'(x) yields the correct value of q(x) for all x
|
|
representable by a single word in HPPA.
|
|
|
|
We are also constrained in that computing the product (ax), adding
|
|
b, and dividing by z must all be done quickly, otherwise we will be
|
|
better off going through the general algorithm using the DS
|
|
instruction, which uses approximately 70 cycles.
|
|
|
|
For each y, there is a choice of z which satisfies the constraints
|
|
for (K+1)y >= 2**32. We may not, however, be able to satisfy the
|
|
timing constraints for arbitrary y. It seems that z being equal to
|
|
a power of 2 or a power of 2 minus 1 is as good as we can do, since
|
|
it minimizes the time to do division by z. We want the choice of z
|
|
to also result in a value for (a) that minimizes the computation of
|
|
the product (ax). This is best achieved if (a) has a regular bit
|
|
pattern (so the multiplication can be done with shifts and adds).
|
|
The value of (a) also needs to be less than 2**32 so the product is
|
|
always guaranteed to fit in 2 words.
|
|
|
|
In actual practice, the following should be done:
|
|
|
|
1) For negative x, you should take the absolute value and remember
|
|
. the fact so that the result can be negated. This obviously does
|
|
. not apply in the unsigned case.
|
|
2) For even y, you should factor out the power of 2 that divides y
|
|
. and divide x by it. You can then proceed by dividing by the
|
|
. odd factor of y.
|
|
|
|
Here is a table of some odd values of y, and corresponding choices
|
|
for z which are "good".
|
|
|
|
y z r a (hex) max x (hex)
|
|
|
|
3 2**32 1 55555555 100000001
|
|
5 2**32 1 33333333 100000003
|
|
7 2**24-1 0 249249 (infinite)
|
|
9 2**24-1 0 1c71c7 (infinite)
|
|
11 2**20-1 0 1745d (infinite)
|
|
13 2**24-1 0 13b13b (infinite)
|
|
15 2**32 1 11111111 10000000d
|
|
17 2**32 1 f0f0f0f 10000000f
|
|
|
|
If r is 1, then b = a+r-1 = a. This simplifies the computation
|
|
of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
|
|
then b = 0 is ok to use which simplifies (ax+b).
|
|
|
|
The bit patterns for 55555555, 33333333, and 11111111 are obviously
|
|
very regular. The bit patterns for the other values of a above are:
|
|
|
|
y (hex) (binary)
|
|
|
|
7 249249 001001001001001001001001 << regular >>
|
|
9 1c71c7 000111000111000111000111 << regular >>
|
|
11 1745d 000000010111010001011101 << irregular >>
|
|
13 13b13b 000100111011000100111011 << irregular >>
|
|
|
|
The bit patterns for (a) corresponding to (y) of 11 and 13 may be
|
|
too irregular to warrant using this method.
|
|
|
|
When z is a power of 2 minus 1, then the division by z is slightly
|
|
more complicated, involving an iterative solution.
|
|
|
|
The code presented here solves division by 1 through 17, except for
|
|
11 and 13. There are algorithms for both signed and unsigned
|
|
quantities given.
|
|
|
|
TIMINGS (cycles)
|
|
|
|
divisor positive negative unsigned
|
|
|
|
. 1 2 2 2
|
|
. 2 4 4 2
|
|
. 3 19 21 19
|
|
. 4 4 4 2
|
|
. 5 18 22 19
|
|
. 6 19 22 19
|
|
. 8 4 4 2
|
|
. 10 18 19 17
|
|
. 12 18 20 18
|
|
. 15 16 18 16
|
|
. 16 4 4 2
|
|
. 17 16 18 16
|
|
|
|
Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
|
|
a loop body is executed until the tentative quotient is 0. The
|
|
number of times the loop body is executed varies depending on the
|
|
dividend, but is never more than two times. If the dividend is
|
|
less than the divisor, then the loop body is not executed at all.
|
|
Each iteration adds 4 cycles to the timings.
|
|
|
|
divisor positive negative unsigned
|
|
|
|
. 7 19+4n 20+4n 20+4n n = number of iterations
|
|
. 9 21+4n 22+4n 21+4n
|
|
. 14 21+4n 22+4n 20+4n
|
|
|
|
To give an idea of how the number of iterations varies, here is a
|
|
table of dividend versus number of iterations when dividing by 7.
|
|
|
|
smallest largest required
|
|
dividend dividend iterations
|
|
|
|
. 0 6 0
|
|
. 7 0x6ffffff 1
|
|
0x1000006 0xffffffff 2
|
|
|
|
There is some overlap in the range of numbers requiring 1 and 2
|
|
iterations. */
|
|
|
|
RDEFINE(t2,r1)
|
|
RDEFINE(x2,arg0) /* r26 */
|
|
RDEFINE(t1,arg1) /* r25 */
|
|
RDEFINE(x1,ret1) /* r29 */
|
|
|
|
SUBSPA_MILLI_DIV
|
|
ATTR_MILLI
|
|
|
|
.proc
|
|
.callinfo millicode
|
|
.entry
|
|
/* NONE of these routines require a stack frame
|
|
ALL of these routines are unwindable from millicode */
|
|
|
|
GSYM($$divide_by_constant)
|
|
.export $$divide_by_constant,millicode
|
|
/* Provides a "nice" label for the code covered by the unwind descriptor
|
|
for things like gprof. */
|
|
|
|
/* DIVISION BY 2 (shift by 1) */
|
|
GSYM($$divI_2)
|
|
.export $$divI_2,millicode
|
|
comclr,>= arg0,0,0
|
|
addi 1,arg0,arg0
|
|
MILLIRET
|
|
extrs arg0,30,31,ret1
|
|
|
|
|
|
/* DIVISION BY 4 (shift by 2) */
|
|
GSYM($$divI_4)
|
|
.export $$divI_4,millicode
|
|
comclr,>= arg0,0,0
|
|
addi 3,arg0,arg0
|
|
MILLIRET
|
|
extrs arg0,29,30,ret1
|
|
|
|
|
|
/* DIVISION BY 8 (shift by 3) */
|
|
GSYM($$divI_8)
|
|
.export $$divI_8,millicode
|
|
comclr,>= arg0,0,0
|
|
addi 7,arg0,arg0
|
|
MILLIRET
|
|
extrs arg0,28,29,ret1
|
|
|
|
/* DIVISION BY 16 (shift by 4) */
|
|
GSYM($$divI_16)
|
|
.export $$divI_16,millicode
|
|
comclr,>= arg0,0,0
|
|
addi 15,arg0,arg0
|
|
MILLIRET
|
|
extrs arg0,27,28,ret1
|
|
|
|
/****************************************************************************
|
|
*
|
|
* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
|
|
*
|
|
* includes 3,5,15,17 and also 6,10,12
|
|
*
|
|
****************************************************************************/
|
|
|
|
/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
|
|
|
|
GSYM($$divI_3)
|
|
.export $$divI_3,millicode
|
|
comb,<,N x2,0,LREF(neg3)
|
|
|
|
addi 1,x2,x2 /* this cannot overflow */
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
|
sh2add x2,x2,x2
|
|
b LREF(pos)
|
|
addc x1,0,x1
|
|
|
|
LSYM(neg3)
|
|
subi 1,x2,x2 /* this cannot overflow */
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
|
sh2add x2,x2,x2
|
|
b LREF(neg)
|
|
addc x1,0,x1
|
|
|
|
GSYM($$divU_3)
|
|
.export $$divU_3,millicode
|
|
addi 1,x2,x2 /* this CAN overflow */
|
|
addc 0,0,x1
|
|
shd x1,x2,30,t1 /* multiply by 5 to get started */
|
|
sh2add x2,x2,x2
|
|
b LREF(pos)
|
|
addc x1,t1,x1
|
|
|
|
/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
|
|
|
|
GSYM($$divI_5)
|
|
.export $$divI_5,millicode
|
|
comb,<,N x2,0,LREF(neg5)
|
|
|
|
addi 3,x2,t1 /* this cannot overflow */
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
|
b LREF(pos)
|
|
addc 0,0,x1
|
|
|
|
LSYM(neg5)
|
|
sub 0,x2,x2 /* negate x2 */
|
|
addi 1,x2,x2 /* this cannot overflow */
|
|
shd 0,x2,31,x1 /* get top bit (can be 1) */
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
|
b LREF(neg)
|
|
addc x1,0,x1
|
|
|
|
GSYM($$divU_5)
|
|
.export $$divU_5,millicode
|
|
addi 1,x2,x2 /* this CAN overflow */
|
|
addc 0,0,x1
|
|
shd x1,x2,31,t1 /* multiply by 3 to get started */
|
|
sh1add x2,x2,x2
|
|
b LREF(pos)
|
|
addc t1,x1,x1
|
|
|
|
/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
|
|
GSYM($$divI_6)
|
|
.export $$divI_6,millicode
|
|
comb,<,N x2,0,LREF(neg6)
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
|
b LREF(pos)
|
|
addc 0,0,x1
|
|
|
|
LSYM(neg6)
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
|
/* negation and adding 1 are done */
|
|
/* at the same time by the SUBI */
|
|
extru x2,30,31,x2
|
|
shd 0,x2,30,x1
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
|
b LREF(neg)
|
|
addc x1,0,x1
|
|
|
|
GSYM($$divU_6)
|
|
.export $$divU_6,millicode
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
addi 1,x2,x2 /* cannot carry */
|
|
shd 0,x2,30,x1 /* multiply by 5 to get started */
|
|
sh2add x2,x2,x2
|
|
b LREF(pos)
|
|
addc x1,0,x1
|
|
|
|
/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
|
|
GSYM($$divU_10)
|
|
.export $$divU_10,millicode
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
|
addc 0,0,x1
|
|
LSYM(pos)
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
|
shd x2,0,28,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
LSYM(pos_for_17)
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
|
shd x2,0,24,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
|
shd x2,0,16,t2
|
|
add x2,t2,x2
|
|
MILLIRET
|
|
addc x1,t1,x1
|
|
|
|
GSYM($$divI_10)
|
|
.export $$divI_10,millicode
|
|
comb,< x2,0,LREF(neg10)
|
|
copy 0,x1
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
|
|
|
LSYM(neg10)
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
|
/* negation and adding 1 are done */
|
|
/* at the same time by the SUBI */
|
|
extru x2,30,31,x2
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
|
LSYM(neg)
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
|
shd x2,0,28,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
LSYM(neg_for_17)
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
|
shd x2,0,24,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
|
shd x2,0,16,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
MILLIRET
|
|
sub 0,x1,x1
|
|
|
|
/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
|
|
GSYM($$divI_12)
|
|
.export $$divI_12,millicode
|
|
comb,< x2,0,LREF(neg12)
|
|
copy 0,x1
|
|
extru x2,29,30,x2 /* divide by 4 */
|
|
addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
|
|
|
LSYM(neg12)
|
|
subi 4,x2,x2 /* negate, divide by 4, and add 1 */
|
|
/* negation and adding 1 are done */
|
|
/* at the same time by the SUBI */
|
|
extru x2,29,30,x2
|
|
b LREF(neg)
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
|
|
|
GSYM($$divU_12)
|
|
.export $$divU_12,millicode
|
|
extru x2,29,30,x2 /* divide by 4 */
|
|
addi 5,x2,t1 /* cannot carry */
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
|
b LREF(pos)
|
|
addc 0,0,x1
|
|
|
|
/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
|
|
GSYM($$divI_15)
|
|
.export $$divI_15,millicode
|
|
comb,< x2,0,LREF(neg15)
|
|
copy 0,x1
|
|
addib,tr 1,x2,LREF(pos)+4
|
|
shd x1,x2,28,t1
|
|
|
|
LSYM(neg15)
|
|
b LREF(neg)
|
|
subi 1,x2,x2
|
|
|
|
GSYM($$divU_15)
|
|
.export $$divU_15,millicode
|
|
addi 1,x2,x2 /* this CAN overflow */
|
|
b LREF(pos)
|
|
addc 0,0,x1
|
|
|
|
/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
|
|
GSYM($$divI_17)
|
|
.export $$divI_17,millicode
|
|
comb,<,n x2,0,LREF(neg17)
|
|
addi 1,x2,x2 /* this cannot overflow */
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
|
shd x2,0,28,t2
|
|
sub t2,x2,x2
|
|
b LREF(pos_for_17)
|
|
subb t1,0,x1
|
|
|
|
LSYM(neg17)
|
|
subi 1,x2,x2 /* this cannot overflow */
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
|
shd x2,0,28,t2
|
|
sub t2,x2,x2
|
|
b LREF(neg_for_17)
|
|
subb t1,0,x1
|
|
|
|
GSYM($$divU_17)
|
|
.export $$divU_17,millicode
|
|
addi 1,x2,x2 /* this CAN overflow */
|
|
addc 0,0,x1
|
|
shd x1,x2,28,t1 /* multiply by 0xf to get started */
|
|
LSYM(u17)
|
|
shd x2,0,28,t2
|
|
sub t2,x2,x2
|
|
b LREF(pos_for_17)
|
|
subb t1,x1,x1
|
|
|
|
|
|
/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
|
|
includes 7,9 and also 14
|
|
|
|
|
|
z = 2**24-1
|
|
r = z mod x = 0
|
|
|
|
so choose b = 0
|
|
|
|
Also, in order to divide by z = 2**24-1, we approximate by dividing
|
|
by (z+1) = 2**24 (which is easy), and then correcting.
|
|
|
|
(ax) = (z+1)q' + r
|
|
. = zq' + (q'+r)
|
|
|
|
So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
|
|
Then the true remainder of (ax)/z is (q'+r). Repeat the process
|
|
with this new remainder, adding the tentative quotients together,
|
|
until a tentative quotient is 0 (and then we are done). There is
|
|
one last correction to be done. It is possible that (q'+r) = z.
|
|
If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
|
|
in fact, we need to add 1 more to the quotient. Now, it turns
|
|
out that this happens if and only if the original value x is
|
|
an exact multiple of y. So, to avoid a three instruction test at
|
|
the end, instead use 1 instruction to add 1 to x at the beginning. */
|
|
|
|
/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
|
|
GSYM($$divI_7)
|
|
.export $$divI_7,millicode
|
|
comb,<,n x2,0,LREF(neg7)
|
|
LSYM(7)
|
|
addi 1,x2,x2 /* cannot overflow */
|
|
shd 0,x2,29,x1
|
|
sh3add x2,x2,x2
|
|
addc x1,0,x1
|
|
LSYM(pos7)
|
|
shd x1,x2,26,t1
|
|
shd x2,0,26,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
|
|
shd x1,x2,20,t1
|
|
shd x2,0,20,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,t1
|
|
|
|
/* computed <t1,x2>. Now divide it by (2**24 - 1) */
|
|
|
|
copy 0,x1
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
|
LSYM(1)
|
|
addb,tr t1,x1,LREF(2) /* add to previous quotient */
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
|
|
|
MILLIRETN
|
|
|
|
LSYM(2)
|
|
addb,tr t1,x2,LREF(1) /* adjust remainder */
|
|
extru,= x2,7,8,t1 /* new quotient */
|
|
|
|
LSYM(neg7)
|
|
subi 1,x2,x2 /* negate x2 and add 1 */
|
|
LSYM(8)
|
|
shd 0,x2,29,x1
|
|
sh3add x2,x2,x2
|
|
addc x1,0,x1
|
|
|
|
LSYM(neg7_shift)
|
|
shd x1,x2,26,t1
|
|
shd x2,0,26,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,x1
|
|
|
|
shd x1,x2,20,t1
|
|
shd x2,0,20,t2
|
|
add x2,t2,x2
|
|
addc x1,t1,t1
|
|
|
|
/* computed <t1,x2>. Now divide it by (2**24 - 1) */
|
|
|
|
copy 0,x1
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
|
LSYM(3)
|
|
addb,tr t1,x1,LREF(4) /* add to previous quotient */
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
|
|
|
MILLIRET
|
|
sub 0,x1,x1 /* negate result */
|
|
|
|
LSYM(4)
|
|
addb,tr t1,x2,LREF(3) /* adjust remainder */
|
|
extru,= x2,7,8,t1 /* new quotient */
|
|
|
|
GSYM($$divU_7)
|
|
.export $$divU_7,millicode
|
|
addi 1,x2,x2 /* can carry */
|
|
addc 0,0,x1
|
|
shd x1,x2,29,t1
|
|
sh3add x2,x2,x2
|
|
b LREF(pos7)
|
|
addc t1,x1,x1
|
|
|
|
/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
|
|
GSYM($$divI_9)
|
|
.export $$divI_9,millicode
|
|
comb,<,n x2,0,LREF(neg9)
|
|
addi 1,x2,x2 /* cannot overflow */
|
|
shd 0,x2,29,t1
|
|
shd x2,0,29,t2
|
|
sub t2,x2,x2
|
|
b LREF(pos7)
|
|
subb t1,0,x1
|
|
|
|
LSYM(neg9)
|
|
subi 1,x2,x2 /* negate and add 1 */
|
|
shd 0,x2,29,t1
|
|
shd x2,0,29,t2
|
|
sub t2,x2,x2
|
|
b LREF(neg7_shift)
|
|
subb t1,0,x1
|
|
|
|
GSYM($$divU_9)
|
|
.export $$divU_9,millicode
|
|
addi 1,x2,x2 /* can carry */
|
|
addc 0,0,x1
|
|
shd x1,x2,29,t1
|
|
shd x2,0,29,t2
|
|
sub t2,x2,x2
|
|
b LREF(pos7)
|
|
subb t1,x1,x1
|
|
|
|
/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
|
|
GSYM($$divI_14)
|
|
.export $$divI_14,millicode
|
|
comb,<,n x2,0,LREF(neg14)
|
|
GSYM($$divU_14)
|
|
.export $$divU_14,millicode
|
|
b LREF(7) /* go to 7 case */
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
|
|
LSYM(neg14)
|
|
subi 2,x2,x2 /* negate (and add 2) */
|
|
b LREF(8)
|
|
extru x2,30,31,x2 /* divide by 2 */
|
|
.exit
|
|
.procend
|
|
.end
|
|
#endif
|
|
|
|
#ifdef L_mulI
|
|
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
|
|
/******************************************************************************
|
|
This routine is used on PA2.0 processors when gcc -mno-fpregs is used
|
|
|
|
ROUTINE: $$mulI
|
|
|
|
|
|
DESCRIPTION:
|
|
|
|
$$mulI multiplies two single word integers, giving a single
|
|
word result.
|
|
|
|
|
|
INPUT REGISTERS:
|
|
|
|
arg0 = Operand 1
|
|
arg1 = Operand 2
|
|
r31 == return pc
|
|
sr0 == return space when called externally
|
|
|
|
|
|
OUTPUT REGISTERS:
|
|
|
|
arg0 = undefined
|
|
arg1 = undefined
|
|
ret1 = result
|
|
|
|
OTHER REGISTERS AFFECTED:
|
|
|
|
r1 = undefined
|
|
|
|
SIDE EFFECTS:
|
|
|
|
Causes a trap under the following conditions: NONE
|
|
Changes memory at the following places: NONE
|
|
|
|
PERMISSIBLE CONTEXT:
|
|
|
|
Unwindable
|
|
Does not create a stack frame
|
|
Is usable for internal or external microcode
|
|
|
|
DISCUSSION:
|
|
|
|
Calls other millicode routines via mrp: NONE
|
|
Calls other millicode routines: NONE
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
#define a0 %arg0
|
|
#define a1 %arg1
|
|
#define t0 %r1
|
|
#define r %ret1
|
|
|
|
#define a0__128a0 zdep a0,24,25,a0
|
|
#define a0__256a0 zdep a0,23,24,a0
|
|
#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
|
|
#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
|
|
#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
|
|
#define b_n_ret_t0 b,n LREF(ret_t0)
|
|
#define b_e_shift b LREF(e_shift)
|
|
#define b_e_t0ma0 b LREF(e_t0ma0)
|
|
#define b_e_t0 b LREF(e_t0)
|
|
#define b_e_t0a0 b LREF(e_t0a0)
|
|
#define b_e_t02a0 b LREF(e_t02a0)
|
|
#define b_e_t04a0 b LREF(e_t04a0)
|
|
#define b_e_2t0 b LREF(e_2t0)
|
|
#define b_e_2t0a0 b LREF(e_2t0a0)
|
|
#define b_e_2t04a0 b LREF(e2t04a0)
|
|
#define b_e_3t0 b LREF(e_3t0)
|
|
#define b_e_4t0 b LREF(e_4t0)
|
|
#define b_e_4t0a0 b LREF(e_4t0a0)
|
|
#define b_e_4t08a0 b LREF(e4t08a0)
|
|
#define b_e_5t0 b LREF(e_5t0)
|
|
#define b_e_8t0 b LREF(e_8t0)
|
|
#define b_e_8t0a0 b LREF(e_8t0a0)
|
|
#define r__r_a0 add r,a0,r
|
|
#define r__r_2a0 sh1add a0,r,r
|
|
#define r__r_4a0 sh2add a0,r,r
|
|
#define r__r_8a0 sh3add a0,r,r
|
|
#define r__r_t0 add r,t0,r
|
|
#define r__r_2t0 sh1add t0,r,r
|
|
#define r__r_4t0 sh2add t0,r,r
|
|
#define r__r_8t0 sh3add t0,r,r
|
|
#define t0__3a0 sh1add a0,a0,t0
|
|
#define t0__4a0 sh2add a0,0,t0
|
|
#define t0__5a0 sh2add a0,a0,t0
|
|
#define t0__8a0 sh3add a0,0,t0
|
|
#define t0__9a0 sh3add a0,a0,t0
|
|
#define t0__16a0 zdep a0,27,28,t0
|
|
#define t0__32a0 zdep a0,26,27,t0
|
|
#define t0__64a0 zdep a0,25,26,t0
|
|
#define t0__128a0 zdep a0,24,25,t0
|
|
#define t0__t0ma0 sub t0,a0,t0
|
|
#define t0__t0_a0 add t0,a0,t0
|
|
#define t0__t0_2a0 sh1add a0,t0,t0
|
|
#define t0__t0_4a0 sh2add a0,t0,t0
|
|
#define t0__t0_8a0 sh3add a0,t0,t0
|
|
#define t0__2t0_a0 sh1add t0,a0,t0
|
|
#define t0__3t0 sh1add t0,t0,t0
|
|
#define t0__4t0 sh2add t0,0,t0
|
|
#define t0__4t0_a0 sh2add t0,a0,t0
|
|
#define t0__5t0 sh2add t0,t0,t0
|
|
#define t0__8t0 sh3add t0,0,t0
|
|
#define t0__8t0_a0 sh3add t0,a0,t0
|
|
#define t0__9t0 sh3add t0,t0,t0
|
|
#define t0__16t0 zdep t0,27,28,t0
|
|
#define t0__32t0 zdep t0,26,27,t0
|
|
#define t0__256a0 zdep a0,23,24,t0
|
|
|
|
|
|
SUBSPA_MILLI
|
|
ATTR_MILLI
|
|
.align 16
|
|
.proc
|
|
.callinfo millicode
|
|
.export $$mulI,millicode
|
|
GSYM($$mulI)
|
|
combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
|
|
copy 0,r /* zero out the result */
|
|
xor a0,a1,a0 /* swap a0 & a1 using the */
|
|
xor a0,a1,a1 /* old xor trick */
|
|
xor a0,a1,a0
|
|
LSYM(l4)
|
|
combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
|
|
zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
|
sub,> 0,a1,t0 /* otherwise negate both and */
|
|
combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
|
|
sub 0,a0,a1
|
|
movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
|
|
|
|
LSYM(l0) r__r_t0 /* add in this partial product */
|
|
LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
|
|
LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
|
LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
|
|
extru a1,23,24,a1 /* a1 >>= 8 ****************** */
|
|
|
|
/*16 insts before this. */
|
|
/* a0 <<= 8 ************************** */
|
|
LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
|
|
LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
|
|
LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
|
|
LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
|
|
LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
|
|
LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
|
|
LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
|
LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
|
|
LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
|
|
LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
|
|
LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
|
LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
|
LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
|
LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
|
LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
|
|
LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
|
LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
|
|
LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
|
LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
|
|
LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
|
LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
|
LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
|
LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
|
LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
|
|
LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
|
LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
|
LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
|
LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
|
|
LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
|
LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
|
LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
|
LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
|
LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
|
LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
|
|
LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
|
|
LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
|
|
LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
|
|
LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
|
|
LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
|
LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
|
LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
|
LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
|
|
LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
|
|
LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
|
LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
|
|
LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
|
LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
|
|
LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
|
|
LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
|
|
LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
|
LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
|
|
LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
|
|
LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
|
|
LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
|
|
LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
|
|
LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
|
|
LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
|
|
LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
|
|
LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
|
LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
|
LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
|
|
LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
|
|
LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
|
LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
|
LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
|
|
LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
|
|
LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
|
|
LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
|
|
LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
|
|
LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
|
|
LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
|
LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
|
LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
|
|
LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
|
|
LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
|
LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
|
|
LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
|
LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
|
|
LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
|
LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
|
|
LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
|
|
LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
|
LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
|
|
LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
|
|
LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
|
|
LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
|
|
LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
|
|
LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
|
|
LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
|
|
LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
|
|
LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
|
|
LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
|
|
LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
|
LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
|
|
LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
|
|
LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
|
|
LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
|
|
LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
|
LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
|
|
LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
|
LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
|
|
LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
|
LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
|
|
LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
|
|
LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
|
|
LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
|
|
LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
|
LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
|
|
LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
|
|
LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
|
LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
|
LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
|
|
LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
|
|
LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
|
|
LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
|
LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
|
|
LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
|
LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
|
|
LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
|
|
LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
|
LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
|
|
LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
|
|
LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
|
LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
|
|
LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
|
|
LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
|
|
LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
|
|
LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
|
|
LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
|
|
LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
|
|
LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
|
|
LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
|
|
LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
|
|
LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
|
|
LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
|
|
LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
|
|
LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
|
|
LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
|
|
LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
|
|
LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
|
|
LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
|
|
LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
|
|
LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
|
|
LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
|
LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
|
|
LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
|
LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
|
/*1040 insts before this. */
|
|
LSYM(ret_t0) MILLIRET
|
|
LSYM(e_t0) r__r_t0
|
|
LSYM(e_shift) a1_ne_0_b_l2
|
|
a0__256a0 /* a0 <<= 8 *********** */
|
|
MILLIRETN
|
|
LSYM(e_t0ma0) a1_ne_0_b_l0
|
|
t0__t0ma0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_t0a0) a1_ne_0_b_l0
|
|
t0__t0_a0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_t02a0) a1_ne_0_b_l0
|
|
t0__t0_2a0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_t04a0) a1_ne_0_b_l0
|
|
t0__t0_4a0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_2t0) a1_ne_0_b_l1
|
|
r__r_2t0
|
|
MILLIRETN
|
|
LSYM(e_2t0a0) a1_ne_0_b_l0
|
|
t0__2t0_a0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e2t04a0) t0__t0_2a0
|
|
a1_ne_0_b_l1
|
|
r__r_2t0
|
|
MILLIRETN
|
|
LSYM(e_3t0) a1_ne_0_b_l0
|
|
t0__3t0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_4t0) a1_ne_0_b_l1
|
|
r__r_4t0
|
|
MILLIRETN
|
|
LSYM(e_4t0a0) a1_ne_0_b_l0
|
|
t0__4t0_a0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e4t08a0) t0__t0_2a0
|
|
a1_ne_0_b_l1
|
|
r__r_4t0
|
|
MILLIRETN
|
|
LSYM(e_5t0) a1_ne_0_b_l0
|
|
t0__5t0
|
|
MILLIRET
|
|
r__r_t0
|
|
LSYM(e_8t0) a1_ne_0_b_l1
|
|
r__r_8t0
|
|
MILLIRETN
|
|
LSYM(e_8t0a0) a1_ne_0_b_l0
|
|
t0__8t0_a0
|
|
MILLIRET
|
|
r__r_t0
|
|
|
|
.procend
|
|
.end
|
|
#endif
|