687 lines
18 KiB
C
687 lines
18 KiB
C
/*
|
|
* Copyright (c) 1983, 1993, 2001
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
#include "gprof.h"
|
|
#include "libiberty.h"
|
|
#include "search_list.h"
|
|
#include "source.h"
|
|
#include "symtab.h"
|
|
#include "call_graph.h"
|
|
#include "cg_arcs.h"
|
|
#include "cg_dfn.h"
|
|
#include "cg_print.h"
|
|
#include "utils.h"
|
|
#include "sym_ids.h"
|
|
|
|
static int cmp_topo (const void *, const void *);
|
|
static void propagate_time (Sym *);
|
|
static void cycle_time (void);
|
|
static void cycle_link (void);
|
|
static void inherit_flags (Sym *);
|
|
static void propagate_flags (Sym **);
|
|
static int cmp_total (const void *, const void *);
|
|
|
|
Sym *cycle_header;
|
|
unsigned int num_cycles;
|
|
Arc **arcs;
|
|
unsigned int numarcs;
|
|
|
|
/*
|
|
* Return TRUE iff PARENT has an arc to covers the address
|
|
* range covered by CHILD.
|
|
*/
|
|
Arc *
|
|
arc_lookup (Sym *parent, Sym *child)
|
|
{
|
|
Arc *arc;
|
|
|
|
if (!parent || !child)
|
|
{
|
|
printf ("[arc_lookup] parent == 0 || child == 0\n");
|
|
return 0;
|
|
}
|
|
DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n",
|
|
parent->name, child->name));
|
|
for (arc = parent->cg.children; arc; arc = arc->next_child)
|
|
{
|
|
DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n",
|
|
arc->parent->name, arc->child->name));
|
|
if (child->addr >= arc->child->addr
|
|
&& child->end_addr <= arc->child->end_addr)
|
|
{
|
|
return arc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Add (or just increment) an arc:
|
|
*/
|
|
void
|
|
arc_add (Sym *parent, Sym *child, unsigned long count)
|
|
{
|
|
static unsigned int maxarcs = 0;
|
|
Arc *arc, **newarcs;
|
|
|
|
DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n",
|
|
count, parent->name, child->name));
|
|
arc = arc_lookup (parent, child);
|
|
if (arc)
|
|
{
|
|
/*
|
|
* A hit: just increment the count.
|
|
*/
|
|
DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n",
|
|
arc->count, count));
|
|
arc->count += count;
|
|
return;
|
|
}
|
|
arc = (Arc *) xmalloc (sizeof (*arc));
|
|
memset (arc, 0, sizeof (*arc));
|
|
arc->parent = parent;
|
|
arc->child = child;
|
|
arc->count = count;
|
|
|
|
/* If this isn't an arc for a recursive call to parent, then add it
|
|
to the array of arcs. */
|
|
if (parent != child)
|
|
{
|
|
/* If we've exhausted space in our current array, get a new one
|
|
and copy the contents. We might want to throttle the doubling
|
|
factor one day. */
|
|
if (numarcs == maxarcs)
|
|
{
|
|
/* Determine how much space we want to allocate. */
|
|
if (maxarcs == 0)
|
|
maxarcs = 1;
|
|
maxarcs *= 2;
|
|
|
|
/* Allocate the new array. */
|
|
newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs);
|
|
|
|
/* Copy the old array's contents into the new array. */
|
|
memcpy (newarcs, arcs, numarcs * sizeof (Arc *));
|
|
|
|
/* Free up the old array. */
|
|
free (arcs);
|
|
|
|
/* And make the new array be the current array. */
|
|
arcs = newarcs;
|
|
}
|
|
|
|
/* Place this arc in the arc array. */
|
|
arcs[numarcs++] = arc;
|
|
}
|
|
|
|
/* prepend this child to the children of this parent: */
|
|
arc->next_child = parent->cg.children;
|
|
parent->cg.children = arc;
|
|
|
|
/* prepend this parent to the parents of this child: */
|
|
arc->next_parent = child->cg.parents;
|
|
child->cg.parents = arc;
|
|
}
|
|
|
|
|
|
static int
|
|
cmp_topo (const void *lp, const void *rp)
|
|
{
|
|
const Sym *left = *(const Sym **) lp;
|
|
const Sym *right = *(const Sym **) rp;
|
|
|
|
return left->cg.top_order - right->cg.top_order;
|
|
}
|
|
|
|
|
|
static void
|
|
propagate_time (Sym *parent)
|
|
{
|
|
Arc *arc;
|
|
Sym *child;
|
|
double share, prop_share;
|
|
|
|
if (parent->cg.prop.fract == 0.0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* gather time from children of this parent: */
|
|
|
|
for (arc = parent->cg.children; arc; arc = arc->next_child)
|
|
{
|
|
child = arc->child;
|
|
if (arc->count == 0 || child == parent || child->cg.prop.fract == 0)
|
|
{
|
|
continue;
|
|
}
|
|
if (child->cg.cyc.head != child)
|
|
{
|
|
if (parent->cg.cyc.num == child->cg.cyc.num)
|
|
{
|
|
continue;
|
|
}
|
|
if (parent->cg.top_order <= child->cg.top_order)
|
|
{
|
|
fprintf (stderr, "[propagate] toporder botches\n");
|
|
}
|
|
child = child->cg.cyc.head;
|
|
}
|
|
else
|
|
{
|
|
if (parent->cg.top_order <= child->cg.top_order)
|
|
{
|
|
fprintf (stderr, "[propagate] toporder botches\n");
|
|
continue;
|
|
}
|
|
}
|
|
if (child->ncalls == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* distribute time for this arc: */
|
|
arc->time = child->hist.time * (((double) arc->count)
|
|
/ ((double) child->ncalls));
|
|
arc->child_time = child->cg.child_time
|
|
* (((double) arc->count) / ((double) child->ncalls));
|
|
share = arc->time + arc->child_time;
|
|
parent->cg.child_time += share;
|
|
|
|
/* (1 - cg.prop.fract) gets lost along the way: */
|
|
prop_share = parent->cg.prop.fract * share;
|
|
|
|
/* fix things for printing: */
|
|
parent->cg.prop.child += prop_share;
|
|
arc->time *= parent->cg.prop.fract;
|
|
arc->child_time *= parent->cg.prop.fract;
|
|
|
|
/* add this share to the parent's cycle header, if any: */
|
|
if (parent->cg.cyc.head != parent)
|
|
{
|
|
parent->cg.cyc.head->cg.child_time += share;
|
|
parent->cg.cyc.head->cg.prop.child += prop_share;
|
|
}
|
|
DBG (PROPDEBUG,
|
|
printf ("[prop_time] child \t");
|
|
print_name (child);
|
|
printf (" with %f %f %lu/%lu\n", child->hist.time,
|
|
child->cg.child_time, arc->count, child->ncalls);
|
|
printf ("[prop_time] parent\t");
|
|
print_name (parent);
|
|
printf ("\n[prop_time] share %f\n", share));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute the time of a cycle as the sum of the times of all
|
|
* its members.
|
|
*/
|
|
static void
|
|
cycle_time (void)
|
|
{
|
|
Sym *member, *cyc;
|
|
|
|
for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc)
|
|
{
|
|
for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next)
|
|
{
|
|
if (member->cg.prop.fract == 0.0)
|
|
{
|
|
/*
|
|
* All members have the same propfraction except those
|
|
* that were excluded with -E.
|
|
*/
|
|
continue;
|
|
}
|
|
cyc->hist.time += member->hist.time;
|
|
}
|
|
cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
cycle_link (void)
|
|
{
|
|
Sym *sym, *cyc, *member;
|
|
Arc *arc;
|
|
int num;
|
|
|
|
/* count the number of cycles, and initialize the cycle lists: */
|
|
|
|
num_cycles = 0;
|
|
for (sym = symtab.base; sym < symtab.limit; ++sym)
|
|
{
|
|
/* this is how you find unattached cycles: */
|
|
if (sym->cg.cyc.head == sym && sym->cg.cyc.next)
|
|
{
|
|
++num_cycles;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* cycle_header is indexed by cycle number: i.e. it is origin 1,
|
|
* not origin 0.
|
|
*/
|
|
cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym));
|
|
|
|
/*
|
|
* Now link cycles to true cycle-heads, number them, accumulate
|
|
* the data for the cycle.
|
|
*/
|
|
num = 0;
|
|
cyc = cycle_header;
|
|
for (sym = symtab.base; sym < symtab.limit; ++sym)
|
|
{
|
|
if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0))
|
|
{
|
|
continue;
|
|
}
|
|
++num;
|
|
++cyc;
|
|
sym_init (cyc);
|
|
cyc->cg.print_flag = true; /* should this be printed? */
|
|
cyc->cg.top_order = DFN_NAN; /* graph call chain top-sort order */
|
|
cyc->cg.cyc.num = num; /* internal number of cycle on */
|
|
cyc->cg.cyc.head = cyc; /* pointer to head of cycle */
|
|
cyc->cg.cyc.next = sym; /* pointer to next member of cycle */
|
|
DBG (CYCLEDEBUG, printf ("[cycle_link] ");
|
|
print_name (sym);
|
|
printf (" is the head of cycle %d\n", num));
|
|
|
|
/* link members to cycle header: */
|
|
for (member = sym; member; member = member->cg.cyc.next)
|
|
{
|
|
member->cg.cyc.num = num;
|
|
member->cg.cyc.head = cyc;
|
|
}
|
|
|
|
/*
|
|
* Count calls from outside the cycle and those among cycle
|
|
* members:
|
|
*/
|
|
for (member = sym; member; member = member->cg.cyc.next)
|
|
{
|
|
for (arc = member->cg.parents; arc; arc = arc->next_parent)
|
|
{
|
|
if (arc->parent == member)
|
|
{
|
|
continue;
|
|
}
|
|
if (arc->parent->cg.cyc.num == num)
|
|
{
|
|
cyc->cg.self_calls += arc->count;
|
|
}
|
|
else
|
|
{
|
|
cyc->ncalls += arc->count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Check if any parent of this child (or outside parents of this
|
|
* cycle) have their print flags on and set the print flag of the
|
|
* child (cycle) appropriately. Similarly, deal with propagation
|
|
* fractions from parents.
|
|
*/
|
|
static void
|
|
inherit_flags (Sym *child)
|
|
{
|
|
Sym *head, *parent, *member;
|
|
Arc *arc;
|
|
|
|
head = child->cg.cyc.head;
|
|
if (child == head)
|
|
{
|
|
/* just a regular child, check its parents: */
|
|
child->cg.print_flag = false;
|
|
child->cg.prop.fract = 0.0;
|
|
for (arc = child->cg.parents; arc; arc = arc->next_parent)
|
|
{
|
|
parent = arc->parent;
|
|
if (child == parent)
|
|
{
|
|
continue;
|
|
}
|
|
child->cg.print_flag |= parent->cg.print_flag;
|
|
/*
|
|
* If the child was never actually called (e.g., this arc
|
|
* is static (and all others are, too)) no time propagates
|
|
* along this arc.
|
|
*/
|
|
if (child->ncalls != 0)
|
|
{
|
|
child->cg.prop.fract += parent->cg.prop.fract
|
|
* (((double) arc->count) / ((double) child->ncalls));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Its a member of a cycle, look at all parents from outside
|
|
* the cycle.
|
|
*/
|
|
head->cg.print_flag = false;
|
|
head->cg.prop.fract = 0.0;
|
|
for (member = head->cg.cyc.next; member; member = member->cg.cyc.next)
|
|
{
|
|
for (arc = member->cg.parents; arc; arc = arc->next_parent)
|
|
{
|
|
if (arc->parent->cg.cyc.head == head)
|
|
{
|
|
continue;
|
|
}
|
|
parent = arc->parent;
|
|
head->cg.print_flag |= parent->cg.print_flag;
|
|
/*
|
|
* If the cycle was never actually called (e.g. this
|
|
* arc is static (and all others are, too)) no time
|
|
* propagates along this arc.
|
|
*/
|
|
if (head->ncalls != 0)
|
|
{
|
|
head->cg.prop.fract += parent->cg.prop.fract
|
|
* (((double) arc->count) / ((double) head->ncalls));
|
|
}
|
|
}
|
|
}
|
|
for (member = head; member; member = member->cg.cyc.next)
|
|
{
|
|
member->cg.print_flag = head->cg.print_flag;
|
|
member->cg.prop.fract = head->cg.prop.fract;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* In one top-to-bottom pass over the topologically sorted symbols
|
|
* propagate:
|
|
* cg.print_flag as the union of parents' print_flags
|
|
* propfraction as the sum of fractional parents' propfractions
|
|
* and while we're here, sum time for functions.
|
|
*/
|
|
static void
|
|
propagate_flags (Sym **symbols)
|
|
{
|
|
int sym_index;
|
|
Sym *old_head, *child;
|
|
|
|
old_head = 0;
|
|
for (sym_index = symtab.len - 1; sym_index >= 0; --sym_index)
|
|
{
|
|
child = symbols[sym_index];
|
|
/*
|
|
* If we haven't done this function or cycle, inherit things
|
|
* from parent. This way, we are linear in the number of arcs
|
|
* since we do all members of a cycle (and the cycle itself)
|
|
* as we hit the first member of the cycle.
|
|
*/
|
|
if (child->cg.cyc.head != old_head)
|
|
{
|
|
old_head = child->cg.cyc.head;
|
|
inherit_flags (child);
|
|
}
|
|
DBG (PROPDEBUG,
|
|
printf ("[prop_flags] ");
|
|
print_name (child);
|
|
printf ("inherits print-flag %d and prop-fract %f\n",
|
|
child->cg.print_flag, child->cg.prop.fract));
|
|
if (!child->cg.print_flag)
|
|
{
|
|
/*
|
|
* Printflag is off. It gets turned on by being in the
|
|
* INCL_GRAPH table, or there being an empty INCL_GRAPH
|
|
* table and not being in the EXCL_GRAPH table.
|
|
*/
|
|
if (sym_lookup (&syms[INCL_GRAPH], child->addr)
|
|
|| (syms[INCL_GRAPH].len == 0
|
|
&& !sym_lookup (&syms[EXCL_GRAPH], child->addr)))
|
|
{
|
|
child->cg.print_flag = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* This function has printing parents: maybe someone wants
|
|
* to shut it up by putting it in the EXCL_GRAPH table.
|
|
* (But favor INCL_GRAPH over EXCL_GRAPH.)
|
|
*/
|
|
if (!sym_lookup (&syms[INCL_GRAPH], child->addr)
|
|
&& sym_lookup (&syms[EXCL_GRAPH], child->addr))
|
|
{
|
|
child->cg.print_flag = false;
|
|
}
|
|
}
|
|
if (child->cg.prop.fract == 0.0)
|
|
{
|
|
/*
|
|
* No parents to pass time to. Collect time from children
|
|
* if its in the INCL_TIME table, or there is an empty
|
|
* INCL_TIME table and its not in the EXCL_TIME table.
|
|
*/
|
|
if (sym_lookup (&syms[INCL_TIME], child->addr)
|
|
|| (syms[INCL_TIME].len == 0
|
|
&& !sym_lookup (&syms[EXCL_TIME], child->addr)))
|
|
{
|
|
child->cg.prop.fract = 1.0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* It has parents to pass time to, but maybe someone wants
|
|
* to shut it up by puttting it in the EXCL_TIME table.
|
|
* (But favor being in INCL_TIME tabe over being in
|
|
* EXCL_TIME table.)
|
|
*/
|
|
if (!sym_lookup (&syms[INCL_TIME], child->addr)
|
|
&& sym_lookup (&syms[EXCL_TIME], child->addr))
|
|
{
|
|
child->cg.prop.fract = 0.0;
|
|
}
|
|
}
|
|
child->cg.prop.self = child->hist.time * child->cg.prop.fract;
|
|
print_time += child->cg.prop.self;
|
|
DBG (PROPDEBUG,
|
|
printf ("[prop_flags] ");
|
|
print_name (child);
|
|
printf (" ends up with printflag %d and prop-fract %f\n",
|
|
child->cg.print_flag, child->cg.prop.fract);
|
|
printf ("[prop_flags] time %f propself %f print_time %f\n",
|
|
child->hist.time, child->cg.prop.self, print_time));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Compare by decreasing propagated time. If times are equal, but one
|
|
* is a cycle header, say that's first (e.g. less, i.e. -1). If one's
|
|
* name doesn't have an underscore and the other does, say that one is
|
|
* first. All else being equal, compare by names.
|
|
*/
|
|
static int
|
|
cmp_total (const void *lp, const void *rp)
|
|
{
|
|
const Sym *left = *(const Sym **) lp;
|
|
const Sym *right = *(const Sym **) rp;
|
|
double diff;
|
|
|
|
diff = (left->cg.prop.self + left->cg.prop.child)
|
|
- (right->cg.prop.self + right->cg.prop.child);
|
|
if (diff < 0.0)
|
|
{
|
|
return 1;
|
|
}
|
|
if (diff > 0.0)
|
|
{
|
|
return -1;
|
|
}
|
|
if (!left->name && left->cg.cyc.num != 0)
|
|
{
|
|
return -1;
|
|
}
|
|
if (!right->name && right->cg.cyc.num != 0)
|
|
{
|
|
return 1;
|
|
}
|
|
if (!left->name)
|
|
{
|
|
return -1;
|
|
}
|
|
if (!right->name)
|
|
{
|
|
return 1;
|
|
}
|
|
if (left->name[0] != '_' && right->name[0] == '_')
|
|
{
|
|
return -1;
|
|
}
|
|
if (left->name[0] == '_' && right->name[0] != '_')
|
|
{
|
|
return 1;
|
|
}
|
|
if (left->ncalls > right->ncalls)
|
|
{
|
|
return -1;
|
|
}
|
|
if (left->ncalls < right->ncalls)
|
|
{
|
|
return 1;
|
|
}
|
|
return strcmp (left->name, right->name);
|
|
}
|
|
|
|
|
|
/* Topologically sort the graph (collapsing cycles), and propagates
|
|
time bottom up and flags top down. */
|
|
|
|
Sym **
|
|
cg_assemble (void)
|
|
{
|
|
Sym *parent, **time_sorted_syms, **top_sorted_syms;
|
|
unsigned int sym_index;
|
|
Arc *arc;
|
|
|
|
/* Initialize various things:
|
|
Zero out child times.
|
|
Count self-recursive calls.
|
|
Indicate that nothing is on cycles. */
|
|
for (parent = symtab.base; parent < symtab.limit; parent++)
|
|
{
|
|
parent->cg.child_time = 0.0;
|
|
arc = arc_lookup (parent, parent);
|
|
if (arc && parent == arc->child)
|
|
{
|
|
parent->ncalls -= arc->count;
|
|
parent->cg.self_calls = arc->count;
|
|
}
|
|
else
|
|
{
|
|
parent->cg.self_calls = 0;
|
|
}
|
|
parent->cg.prop.fract = 0.0;
|
|
parent->cg.prop.self = 0.0;
|
|
parent->cg.prop.child = 0.0;
|
|
parent->cg.print_flag = false;
|
|
parent->cg.top_order = DFN_NAN;
|
|
parent->cg.cyc.num = 0;
|
|
parent->cg.cyc.head = parent;
|
|
parent->cg.cyc.next = 0;
|
|
if (ignore_direct_calls)
|
|
find_call (parent, parent->addr, (parent + 1)->addr);
|
|
}
|
|
|
|
/* Topologically order things. If any node is unnumbered, number
|
|
it and any of its descendents. */
|
|
for (parent = symtab.base; parent < symtab.limit; parent++)
|
|
{
|
|
if (parent->cg.top_order == DFN_NAN)
|
|
cg_dfn (parent);
|
|
}
|
|
|
|
/* Link together nodes on the same cycle. */
|
|
cycle_link ();
|
|
|
|
/* Sort the symbol table in reverse topological order. */
|
|
top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
|
|
for (sym_index = 0; sym_index < symtab.len; ++sym_index)
|
|
top_sorted_syms[sym_index] = &symtab.base[sym_index];
|
|
|
|
qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo);
|
|
DBG (DFNDEBUG,
|
|
printf ("[cg_assemble] topological sort listing\n");
|
|
for (sym_index = 0; sym_index < symtab.len; ++sym_index)
|
|
{
|
|
printf ("[cg_assemble] ");
|
|
printf ("%d:", top_sorted_syms[sym_index]->cg.top_order);
|
|
print_name (top_sorted_syms[sym_index]);
|
|
printf ("\n");
|
|
}
|
|
);
|
|
|
|
/* Starting from the topological top, propagate print flags to
|
|
children. also, calculate propagation fractions. this happens
|
|
before time propagation since time propagation uses the
|
|
fractions. */
|
|
propagate_flags (top_sorted_syms);
|
|
|
|
/* Starting from the topological bottom, propagate children times
|
|
up to parents. */
|
|
cycle_time ();
|
|
for (sym_index = 0; sym_index < symtab.len; ++sym_index)
|
|
propagate_time (top_sorted_syms[sym_index]);
|
|
|
|
free (top_sorted_syms);
|
|
|
|
/* Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular
|
|
function names and cycle headers. */
|
|
time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *));
|
|
for (sym_index = 0; sym_index < symtab.len; sym_index++)
|
|
time_sorted_syms[sym_index] = &symtab.base[sym_index];
|
|
|
|
for (sym_index = 1; sym_index <= num_cycles; sym_index++)
|
|
time_sorted_syms[symtab.len + sym_index - 1] = &cycle_header[sym_index];
|
|
|
|
qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *),
|
|
cmp_total);
|
|
|
|
for (sym_index = 0; sym_index < symtab.len + num_cycles; sym_index++)
|
|
time_sorted_syms[sym_index]->cg.index = sym_index + 1;
|
|
|
|
return time_sorted_syms;
|
|
}
|