Projet_SETI_RISC-V/riscv-gnu-toolchain/binutils/bfd/cpu-ns32k.c
2023-03-06 14:48:14 +01:00

801 lines
24 KiB
C

/* BFD support for the ns32k architecture.
Copyright (C) 1990-2022 Free Software Foundation, Inc.
Almost totally rewritten by Ian Dall from initial work
by Andrew Cagney.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "ns32k.h"
#define N(machine, printable, d, next) \
{ 32, 32, 8, bfd_arch_ns32k, machine, "ns32k",printable,3,d, \
bfd_default_compatible,bfd_default_scan,bfd_arch_default_fill,next, 0 }
static const bfd_arch_info_type arch_info_struct[] =
{
N (32532, "ns32k:32532", true, 0), /* The word ns32k will match this too. */
};
const bfd_arch_info_type bfd_ns32k_arch =
N (32032, "ns32k:32032", false, &arch_info_struct[0]);
bfd_vma
_bfd_ns32k_get_displacement (bfd_byte *buffer, int size)
{
bfd_signed_vma value;
switch (size)
{
case 1:
value = ((*buffer & 0x7f) ^ 0x40) - 0x40;
break;
case 2:
value = ((*buffer++ & 0x3f) ^ 0x20) - 0x20;
value = (value << 8) | (0xff & *buffer);
break;
case 4:
value = ((*buffer++ & 0x3f) ^ 0x20) - 0x20;
value = (value << 8) | (0xff & *buffer++);
value = (value << 8) | (0xff & *buffer++);
value = (value << 8) | (0xff & *buffer);
break;
default:
abort ();
return 0;
}
return value;
}
void
_bfd_ns32k_put_displacement (bfd_vma value, bfd_byte *buffer, int size)
{
switch (size)
{
case 1:
value &= 0x7f;
*buffer++ = value;
break;
case 2:
value &= 0x3fff;
value |= 0x8000;
*buffer++ = (value >> 8);
*buffer++ = value;
break;
case 4:
value |= (bfd_vma) 0xc0000000;
*buffer++ = (value >> 24);
*buffer++ = (value >> 16);
*buffer++ = (value >> 8);
*buffer++ = value;
break;
}
return;
}
bfd_vma
_bfd_ns32k_get_immediate (bfd_byte *buffer, int size)
{
bfd_vma value = 0;
switch (size)
{
case 4:
value = (value << 8) | (*buffer++ & 0xff);
value = (value << 8) | (*buffer++ & 0xff);
/* Fall through. */
case 2:
value = (value << 8) | (*buffer++ & 0xff);
/* Fall through. */
case 1:
value = (value << 8) | (*buffer++ & 0xff);
break;
default:
abort ();
}
return value;
}
void
_bfd_ns32k_put_immediate (bfd_vma value, bfd_byte *buffer, int size)
{
buffer += size - 1;
switch (size)
{
case 4:
*buffer-- = (value & 0xff); value >>= 8;
*buffer-- = (value & 0xff); value >>= 8;
/* Fall through. */
case 2:
*buffer-- = (value & 0xff); value >>= 8;
/* Fall through. */
case 1:
*buffer-- = (value & 0xff); value >>= 8;
}
}
/* This is just like the standard perform_relocation except we
use get_data and put_data which know about the ns32k storage
methods. This is probably a lot more complicated than it
needs to be! */
static bfd_reloc_status_type
do_ns32k_reloc (bfd * abfd,
arelent * reloc_entry,
struct bfd_symbol * symbol,
void * data,
asection * input_section,
bfd * output_bfd,
char ** error_message ATTRIBUTE_UNUSED,
bfd_vma (* get_data) (bfd_byte *, int),
void (* put_data) (bfd_vma, bfd_byte *, int))
{
int overflow = 0;
bfd_vma relocation;
bfd_reloc_status_type flag = bfd_reloc_ok;
bfd_size_type addr = reloc_entry->address;
bfd_vma output_base = 0;
reloc_howto_type *howto = reloc_entry->howto;
asection *reloc_target_output_section;
bfd_byte *location;
if (bfd_is_abs_section (symbol->section)
&& output_bfd != (bfd *) NULL)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* If we are not producing relocatable output, return an error if
the symbol is not defined. An undefined weak symbol is
considered to have a value of zero (SVR4 ABI, p. 4-27). */
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& output_bfd == (bfd *) NULL)
flag = bfd_reloc_undefined;
/* Is the address of the relocation really within the section? */
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
/* Work out which section the relocation is targeted at and the
initial relocation command value. */
/* Get symbol value. (Common symbols are special.) */
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
reloc_target_output_section = symbol->section->output_section;
/* Convert input-section-relative symbol value to absolute. */
if (output_bfd != NULL && ! howto->partial_inplace)
output_base = 0;
else
output_base = reloc_target_output_section->vma;
relocation += output_base + symbol->section->output_offset;
/* Add in supplied addend. */
relocation += reloc_entry->addend;
/* Here the variable relocation holds the final address of the
symbol we are relocating against, plus any addend. */
if (howto->pc_relative)
{
/* This is a PC relative relocation. We want to set RELOCATION
to the distance between the address of the symbol and the
location. RELOCATION is already the address of the symbol.
We start by subtracting the address of the section containing
the location.
If pcrel_offset is set, we must further subtract the position
of the location within the section. Some targets arrange for
the addend to be the negative of the position of the location
within the section; for example, i386-aout does this. For
i386-aout, pcrel_offset is FALSE. Some other targets do not
include the position of the location; for example, ELF.
For those targets, pcrel_offset is TRUE.
If we are producing relocatable output, then we must ensure
that this reloc will be correctly computed when the final
relocation is done. If pcrel_offset is FALSE we want to wind
up with the negative of the location within the section,
which means we must adjust the existing addend by the change
in the location within the section. If pcrel_offset is TRUE
we do not want to adjust the existing addend at all.
FIXME: This seems logical to me, but for the case of
producing relocatable output it is not what the code
actually does. I don't want to change it, because it seems
far too likely that something will break. */
relocation -=
input_section->output_section->vma + input_section->output_offset;
if (howto->pcrel_offset)
relocation -= reloc_entry->address;
}
if (output_bfd != (bfd *) NULL)
{
if (! howto->partial_inplace)
{
/* This is a partial relocation, and we want to apply the relocation
to the reloc entry rather than the raw data. Modify the reloc
inplace to reflect what we now know. */
reloc_entry->addend = relocation;
reloc_entry->address += input_section->output_offset;
return flag;
}
else
{
/* This is a partial relocation, but inplace, so modify the
reloc record a bit.
If we've relocated with a symbol with a section, change
into a ref to the section belonging to the symbol. */
reloc_entry->address += input_section->output_offset;
/* WTF?? */
if (abfd->xvec->flavour == bfd_target_coff_flavour)
{
/* For m68k-coff, the addend was being subtracted twice during
relocation with -r. Removing the line below this comment
fixes that problem; see PR 2953.
However, Ian wrote the following, regarding removing the line
below, which explains why it is still enabled: --djm
If you put a patch like that into BFD you need to check all
the COFF linkers. I am fairly certain that patch will break
coff-i386 (e.g., SCO); see coff_i386_reloc in coff-i386.c
where I worked around the problem in a different way. There
may very well be a reason that the code works as it does.
Hmmm. The first obvious point is that bfd_perform_relocation
should not have any tests that depend upon the flavour. It's
seem like entirely the wrong place for such a thing. The
second obvious point is that the current code ignores the
reloc addend when producing relocatable output for COFF.
That's peculiar. In fact, I really have no idea what the
point of the line you want to remove is.
A typical COFF reloc subtracts the old value of the symbol
and adds in the new value to the location in the object file
(if it's a pc relative reloc it adds the difference between
the symbol value and the location). When relocating we need
to preserve that property.
BFD handles this by setting the addend to the negative of the
old value of the symbol. Unfortunately it handles common
symbols in a non-standard way (it doesn't subtract the old
value) but that's a different story (we can't change it
without losing backward compatibility with old object files)
(coff-i386 does subtract the old value, to be compatible with
existing coff-i386 targets, like SCO).
So everything works fine when not producing relocatable
output. When we are producing relocatable output, logically
we should do exactly what we do when not producing
relocatable output. Therefore, your patch is correct. In
fact, it should probably always just set reloc_entry->addend
to 0 for all cases, since it is, in fact, going to add the
value into the object file. This won't hurt the COFF code,
which doesn't use the addend; I'm not sure what it will do
to other formats (the thing to check for would be whether
any formats both use the addend and set partial_inplace).
When I wanted to make coff-i386 produce relocatable output,
I ran into the problem that you are running into: I wanted
to remove that line. Rather than risk it, I made the
coff-i386 relocs use a special function; it's coff_i386_reloc
in coff-i386.c. The function specifically adds the addend
field into the object file, knowing that bfd_perform_relocation
is not going to. If you remove that line, then coff-i386.c
will wind up adding the addend field in twice. It's trivial
to fix; it just needs to be done.
The problem with removing the line is just that it may break
some working code. With BFD it's hard to be sure of anything.
The right way to deal with this is simply to build and test at
least all the supported COFF targets. It should be
straightforward if time and disk space consuming. For each
target:
1) build the linker
2) generate some executable, and link it using -r (I would
probably use paranoia.o and link against newlib/libc.a,
which for all the supported targets would be available in
/usr/cygnus/progressive/H-host/target/lib/libc.a).
3) make the change to reloc.c
4) rebuild the linker
5) repeat step 2
6) if the resulting object files are the same, you have at
least made it no worse
7) if they are different you have to figure out which
version is right. */
relocation -= reloc_entry->addend;
reloc_entry->addend = 0;
}
else
{
reloc_entry->addend = relocation;
}
}
}
else
{
reloc_entry->addend = 0;
}
/* FIXME: This overflow checking is incomplete, because the value
might have overflowed before we get here. For a correct check we
need to compute the value in a size larger than bitsize, but we
can't reasonably do that for a reloc the same size as a host
machine word.
FIXME: We should also do overflow checking on the result after
adding in the value contained in the object file. */
if (howto->complain_on_overflow != complain_overflow_dont)
{
bfd_vma check;
/* Get the value that will be used for the relocation, but
starting at bit position zero. */
if (howto->rightshift > howto->bitpos)
check = relocation >> (howto->rightshift - howto->bitpos);
else
check = relocation << (howto->bitpos - howto->rightshift);
switch (howto->complain_on_overflow)
{
case complain_overflow_signed:
{
/* Assumes two's complement. */
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
/* The above right shift is incorrect for a signed value.
Fix it up by forcing on the upper bits. */
if (howto->rightshift > howto->bitpos
&& (bfd_signed_vma) relocation < 0)
check |= ((bfd_vma) - 1
& ~((bfd_vma) - 1
>> (howto->rightshift - howto->bitpos)));
if ((bfd_signed_vma) check > reloc_signed_max
|| (bfd_signed_vma) check < reloc_signed_min)
flag = bfd_reloc_overflow;
}
break;
case complain_overflow_unsigned:
{
/* Assumes two's complement. This expression avoids
overflow if howto->bitsize is the number of bits in
bfd_vma. */
bfd_vma reloc_unsigned_max =
(((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
if ((bfd_vma) check > reloc_unsigned_max)
flag = bfd_reloc_overflow;
}
break;
case complain_overflow_bitfield:
{
/* Assumes two's complement. This expression avoids
overflow if howto->bitsize is the number of bits in
bfd_vma. */
bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
if (((bfd_vma) check & ~reloc_bits) != 0
&& (((bfd_vma) check & ~reloc_bits)
!= (-(bfd_vma) 1 & ~reloc_bits)))
{
/* The above right shift is incorrect for a signed
value. See if turning on the upper bits fixes the
overflow. */
if (howto->rightshift > howto->bitpos
&& (bfd_signed_vma) relocation < 0)
{
check |= ((bfd_vma) - 1
& ~((bfd_vma) - 1
>> (howto->rightshift - howto->bitpos)));
if (((bfd_vma) check & ~reloc_bits)
!= (-(bfd_vma) 1 & ~reloc_bits))
flag = bfd_reloc_overflow;
}
else
flag = bfd_reloc_overflow;
}
}
break;
default:
abort ();
}
}
/* Either we are relocating all the way, or we don't want to apply
the relocation to the reloc entry (probably because there isn't
any room in the output format to describe addends to relocs). */
/* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
(OSF version 1.3, compiler version 3.11). It miscompiles the
following program:
struct str
{
unsigned int i0;
} s = { 0 };
int
main ()
{
unsigned long x;
x = 0x100000000;
x <<= (unsigned long) s.i0;
if (x == 0)
printf ("failed\n");
else
printf ("succeeded (%lx)\n", x);
}
*/
relocation >>= (bfd_vma) howto->rightshift;
/* Shift everything up to where it's going to be used. */
relocation <<= (bfd_vma) howto->bitpos;
/* Wait for the day when all have the mask in them. */
/* What we do:
i instruction to be left alone
o offset within instruction
r relocation offset to apply
S src mask
D dst mask
N ~dst mask
A part 1
B part 2
R result
Do this:
i i i i i o o o o o from bfd_get<size>
and S S S S S to get the size offset we want
+ r r r r r r r r r r to get the final value to place
and D D D D D to chop to right size
-----------------------
A A A A A
And this:
... i i i i i o o o o o from bfd_get<size>
and N N N N N get instruction
-----------------------
... B B B B B
And then:
B B B B B
or A A A A A
-----------------------
R R R R R R R R R R put into bfd_put<size>. */
if (howto->negate)
relocation = -relocation;
#define DOIT(x) \
x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
location = (bfd_byte *) data + addr;
switch (bfd_get_reloc_size (howto))
{
case 0:
break;
case 1:
{
bfd_vma x = get_data (location, 1);
DOIT (x);
put_data ((bfd_vma) x, location, 1);
}
break;
case 2:
if (relocation)
{
bfd_vma x = get_data (location, 2);
DOIT (x);
put_data ((bfd_vma) x, location, 2);
}
break;
case 4:
if (relocation)
{
bfd_vma x = get_data (location, 4);
DOIT (x);
put_data ((bfd_vma) x, location, 4);
}
break;
case 8:
#ifdef BFD64
if (relocation)
{
bfd_vma x = get_data (location, 8);
DOIT (x);
put_data (x, location, 8);
}
#else
abort ();
#endif
break;
default:
return bfd_reloc_other;
}
if ((howto->complain_on_overflow != complain_overflow_dont) && overflow)
return bfd_reloc_overflow;
return flag;
}
/* Relocate a given location using a given value and howto. */
bfd_reloc_status_type
_bfd_do_ns32k_reloc_contents (reloc_howto_type *howto,
bfd *input_bfd ATTRIBUTE_UNUSED,
bfd_vma relocation,
bfd_byte *location,
bfd_vma (*get_data) (bfd_byte *, int),
void (*put_data) (bfd_vma, bfd_byte *, int))
{
int size;
bfd_vma x;
bool overflow;
if (howto->negate)
relocation = -relocation;
/* Get the value we are going to relocate. */
size = bfd_get_reloc_size (howto);
switch (size)
{
default:
abort ();
case 0:
return bfd_reloc_ok;
case 1:
case 2:
case 4:
#ifdef BFD64
case 8:
#endif
x = get_data (location, size);
break;
}
/* Check for overflow. FIXME: We may drop bits during the addition
which we don't check for. We must either check at every single
operation, which would be tedious, or we must do the computations
in a type larger than bfd_vma, which would be inefficient. */
overflow = false;
if (howto->complain_on_overflow != complain_overflow_dont)
{
bfd_vma check;
bfd_signed_vma signed_check;
bfd_vma add;
bfd_signed_vma signed_add;
if (howto->rightshift == 0)
{
check = relocation;
signed_check = (bfd_signed_vma) relocation;
}
else
{
/* Drop unwanted bits from the value we are relocating to. */
check = relocation >> howto->rightshift;
/* If this is a signed value, the rightshift just dropped
leading 1 bits (assuming twos complement). */
if ((bfd_signed_vma) relocation >= 0)
signed_check = check;
else
signed_check = (check
| ((bfd_vma) - 1
& ~((bfd_vma) - 1 >> howto->rightshift)));
}
/* Get the value from the object file. */
add = x & howto->src_mask;
/* Get the value from the object file with an appropriate sign.
The expression involving howto->src_mask isolates the upper
bit of src_mask. If that bit is set in the value we are
adding, it is negative, and we subtract out that number times
two. If src_mask includes the highest possible bit, then we
can not get the upper bit, but that does not matter since
signed_add needs no adjustment to become negative in that
case. */
signed_add = add;
if ((add & (((~howto->src_mask) >> 1) & howto->src_mask)) != 0)
signed_add -= (((~howto->src_mask) >> 1) & howto->src_mask) << 1;
/* Add the value from the object file, shifted so that it is a
straight number. */
if (howto->bitpos == 0)
{
check += add;
signed_check += signed_add;
}
else
{
check += add >> howto->bitpos;
/* For the signed case we use ADD, rather than SIGNED_ADD,
to avoid warnings from SVR4 cc. This is OK since we
explicitly handle the sign bits. */
if (signed_add >= 0)
signed_check += add >> howto->bitpos;
else
signed_check += ((add >> howto->bitpos)
| ((bfd_vma) - 1
& ~((bfd_vma) - 1 >> howto->bitpos)));
}
switch (howto->complain_on_overflow)
{
case complain_overflow_signed:
{
/* Assumes two's complement. */
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
if (signed_check > reloc_signed_max
|| signed_check < reloc_signed_min)
overflow = true;
}
break;
case complain_overflow_unsigned:
{
/* Assumes two's complement. This expression avoids
overflow if howto->bitsize is the number of bits in
bfd_vma. */
bfd_vma reloc_unsigned_max =
(((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
if (check > reloc_unsigned_max)
overflow = true;
}
break;
case complain_overflow_bitfield:
{
/* Assumes two's complement. This expression avoids
overflow if howto->bitsize is the number of bits in
bfd_vma. */
bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
if ((check & ~reloc_bits) != 0
&& (((bfd_vma) signed_check & ~reloc_bits)
!= (-(bfd_vma) 1 & ~reloc_bits)))
overflow = true;
}
break;
default:
abort ();
}
}
/* Put RELOCATION in the right bits. */
relocation >>= (bfd_vma) howto->rightshift;
relocation <<= (bfd_vma) howto->bitpos;
/* Add RELOCATION to the right bits of X. */
x = ((x & ~howto->dst_mask)
| (((x & howto->src_mask) + relocation) & howto->dst_mask));
/* Put the relocated value back in the object file. */
switch (size)
{
default:
case 0:
abort ();
case 1:
case 2:
case 4:
#ifdef BFD64
case 8:
#endif
put_data (x, location, size);
break;
}
return overflow ? bfd_reloc_overflow : bfd_reloc_ok;
}
bfd_reloc_status_type
_bfd_ns32k_reloc_disp (bfd *abfd,
arelent *reloc_entry,
struct bfd_symbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message)
{
return do_ns32k_reloc (abfd, reloc_entry, symbol, data, input_section,
output_bfd, error_message,
_bfd_ns32k_get_displacement,
_bfd_ns32k_put_displacement);
}
bfd_reloc_status_type
_bfd_ns32k_reloc_imm (bfd *abfd,
arelent *reloc_entry,
struct bfd_symbol *symbol,
void * data,
asection *input_section,
bfd *output_bfd,
char **error_message)
{
return do_ns32k_reloc (abfd, reloc_entry, symbol, data, input_section,
output_bfd, error_message, _bfd_ns32k_get_immediate,
_bfd_ns32k_put_immediate);
}
bfd_reloc_status_type
_bfd_ns32k_final_link_relocate (reloc_howto_type *howto,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
bfd_vma address,
bfd_vma value,
bfd_vma addend)
{
bfd_vma relocation;
/* Sanity check the address. */
if (address > bfd_get_section_limit (input_bfd, input_section))
return bfd_reloc_outofrange;
/* This function assumes that we are dealing with a basic relocation
against a symbol. We want to compute the value of the symbol to
relocate to. This is just VALUE, the value of the symbol, plus
ADDEND, any addend associated with the reloc. */
relocation = value + addend;
/* If the relocation is PC relative, we want to set RELOCATION to
the distance between the symbol (currently in RELOCATION) and the
location we are relocating. If pcrel_offset is FALSE we do not
need to subtract out the offset of the location within the
section (which is just ADDRESS). */
if (howto->pc_relative)
{
relocation -= (input_section->output_section->vma
+ input_section->output_offset);
if (howto->pcrel_offset)
relocation -= address;
}
return _bfd_ns32k_relocate_contents (howto, input_bfd, relocation,
contents + address);
}