334 lines
8.7 KiB
Text
334 lines
8.7 KiB
Text
`/* Specific implementation of the UNPACK intrinsic
|
|
Copyright (C) 2008-2022 Free Software Foundation, Inc.
|
|
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
|
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <string.h>'
|
|
|
|
include(iparm.m4)dnl
|
|
|
|
`#if defined (HAVE_'rtype_name`)
|
|
|
|
void
|
|
unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
|
|
const gfc_array_l1 *mask, const 'rtype_name` *fptr)
|
|
{
|
|
/* r.* indicates the return array. */
|
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
|
index_type rstride0;
|
|
index_type rs;
|
|
'rtype_name` * restrict rptr;
|
|
/* v.* indicates the vector array. */
|
|
index_type vstride0;
|
|
'rtype_name` *vptr;
|
|
/* Value for field, this is constant. */
|
|
const 'rtype_name` fval = *fptr;
|
|
/* m.* indicates the mask array. */
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride0;
|
|
const GFC_LOGICAL_1 *mptr;
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
int empty;
|
|
int mask_kind;
|
|
|
|
empty = 0;
|
|
|
|
mptr = mask->base_addr;
|
|
|
|
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
|
and using shifting to address size and endian issues. */
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
{
|
|
/* Do not convert a NULL pointer as we use test for NULL below. */
|
|
if (mptr)
|
|
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
|
}
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
/* Initialize to avoid -Wmaybe-uninitialized complaints. */
|
|
rstride[0] = 1;
|
|
if (ret->base_addr == NULL)
|
|
{
|
|
/* The front end has signalled that we need to populate the
|
|
return array descriptor. */
|
|
dim = GFC_DESCRIPTOR_RANK (mask);
|
|
rs = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
GFC_DIMENSION_SET(ret->dim[n], 0,
|
|
GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
rs *= extent[n];
|
|
}
|
|
ret->offset = 0;
|
|
ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
|
|
}
|
|
else
|
|
{
|
|
dim = GFC_DESCRIPTOR_RANK (ret);
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
}
|
|
if (rstride[0] == 0)
|
|
rstride[0] = 1;
|
|
}
|
|
|
|
if (empty)
|
|
return;
|
|
|
|
if (mstride[0] == 0)
|
|
mstride[0] = 1;
|
|
|
|
vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
|
|
if (vstride0 == 0)
|
|
vstride0 = 1;
|
|
rstride0 = rstride[0];
|
|
mstride0 = mstride[0];
|
|
rptr = ret->base_addr;
|
|
vptr = vector->base_addr;
|
|
|
|
while (rptr)
|
|
{
|
|
if (*mptr)
|
|
{
|
|
/* From vector. */
|
|
*rptr = *vptr;
|
|
vptr += vstride0;
|
|
}
|
|
else
|
|
{
|
|
/* From field. */
|
|
*rptr = fval;
|
|
}
|
|
/* Advance to the next element. */
|
|
rptr += rstride0;
|
|
mptr += mstride0;
|
|
count[0]++;
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
rptr -= rstride[n] * extent[n];
|
|
mptr -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= dim)
|
|
{
|
|
/* Break out of the loop. */
|
|
rptr = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
rptr += rstride[n];
|
|
mptr += mstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
|
|
const gfc_array_l1 *mask, const 'rtype` *field)
|
|
{
|
|
/* r.* indicates the return array. */
|
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
|
index_type rstride0;
|
|
index_type rs;
|
|
'rtype_name` * restrict rptr;
|
|
/* v.* indicates the vector array. */
|
|
index_type vstride0;
|
|
'rtype_name` *vptr;
|
|
/* f.* indicates the field array. */
|
|
index_type fstride[GFC_MAX_DIMENSIONS];
|
|
index_type fstride0;
|
|
const 'rtype_name` *fptr;
|
|
/* m.* indicates the mask array. */
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride0;
|
|
const GFC_LOGICAL_1 *mptr;
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
int empty;
|
|
int mask_kind;
|
|
|
|
empty = 0;
|
|
|
|
mptr = mask->base_addr;
|
|
|
|
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
|
and using shifting to address size and endian issues. */
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
{
|
|
/* Do not convert a NULL pointer as we use test for NULL below. */
|
|
if (mptr)
|
|
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
|
}
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
/* Initialize to avoid -Wmaybe-uninitialized complaints. */
|
|
rstride[0] = 1;
|
|
if (ret->base_addr == NULL)
|
|
{
|
|
/* The front end has signalled that we need to populate the
|
|
return array descriptor. */
|
|
dim = GFC_DESCRIPTOR_RANK (mask);
|
|
rs = 1;
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
GFC_DIMENSION_SET(ret->dim[n], 0,
|
|
GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
|
|
fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
rs *= extent[n];
|
|
}
|
|
ret->offset = 0;
|
|
ret->base_addr = xmallocarray (rs, sizeof ('rtype_name`));
|
|
}
|
|
else
|
|
{
|
|
dim = GFC_DESCRIPTOR_RANK (ret);
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
count[n] = 0;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
|
|
empty = empty || extent[n] <= 0;
|
|
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
|
|
fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
}
|
|
if (rstride[0] == 0)
|
|
rstride[0] = 1;
|
|
}
|
|
|
|
if (empty)
|
|
return;
|
|
|
|
if (fstride[0] == 0)
|
|
fstride[0] = 1;
|
|
if (mstride[0] == 0)
|
|
mstride[0] = 1;
|
|
|
|
vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
|
|
if (vstride0 == 0)
|
|
vstride0 = 1;
|
|
rstride0 = rstride[0];
|
|
fstride0 = fstride[0];
|
|
mstride0 = mstride[0];
|
|
rptr = ret->base_addr;
|
|
fptr = field->base_addr;
|
|
vptr = vector->base_addr;
|
|
|
|
while (rptr)
|
|
{
|
|
if (*mptr)
|
|
{
|
|
/* From vector. */
|
|
*rptr = *vptr;
|
|
vptr += vstride0;
|
|
}
|
|
else
|
|
{
|
|
/* From field. */
|
|
*rptr = *fptr;
|
|
}
|
|
/* Advance to the next element. */
|
|
rptr += rstride0;
|
|
fptr += fstride0;
|
|
mptr += mstride0;
|
|
count[0]++;
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
rptr -= rstride[n] * extent[n];
|
|
fptr -= fstride[n] * extent[n];
|
|
mptr -= mstride[n] * extent[n];
|
|
n++;
|
|
if (n >= dim)
|
|
{
|
|
/* Break out of the loop. */
|
|
rptr = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
rptr += rstride[n];
|
|
fptr += fstride[n];
|
|
mptr += mstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
'
|