538 lines
17 KiB
C
538 lines
17 KiB
C
|
/*
|
||
|
* qemu user cpu loop
|
||
|
*
|
||
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "qemu.h"
|
||
|
#include "user-internals.h"
|
||
|
#include "elf.h"
|
||
|
#include "cpu_loop-common.h"
|
||
|
#include "signal-common.h"
|
||
|
#include "semihosting/common-semi.h"
|
||
|
#include "target/arm/syndrome.h"
|
||
|
|
||
|
#define get_user_code_u32(x, gaddr, env) \
|
||
|
({ abi_long __r = get_user_u32((x), (gaddr)); \
|
||
|
if (!__r && bswap_code(arm_sctlr_b(env))) { \
|
||
|
(x) = bswap32(x); \
|
||
|
} \
|
||
|
__r; \
|
||
|
})
|
||
|
|
||
|
#define get_user_code_u16(x, gaddr, env) \
|
||
|
({ abi_long __r = get_user_u16((x), (gaddr)); \
|
||
|
if (!__r && bswap_code(arm_sctlr_b(env))) { \
|
||
|
(x) = bswap16(x); \
|
||
|
} \
|
||
|
__r; \
|
||
|
})
|
||
|
|
||
|
#define get_user_data_u32(x, gaddr, env) \
|
||
|
({ abi_long __r = get_user_u32((x), (gaddr)); \
|
||
|
if (!__r && arm_cpu_bswap_data(env)) { \
|
||
|
(x) = bswap32(x); \
|
||
|
} \
|
||
|
__r; \
|
||
|
})
|
||
|
|
||
|
#define get_user_data_u16(x, gaddr, env) \
|
||
|
({ abi_long __r = get_user_u16((x), (gaddr)); \
|
||
|
if (!__r && arm_cpu_bswap_data(env)) { \
|
||
|
(x) = bswap16(x); \
|
||
|
} \
|
||
|
__r; \
|
||
|
})
|
||
|
|
||
|
#define put_user_data_u32(x, gaddr, env) \
|
||
|
({ typeof(x) __x = (x); \
|
||
|
if (arm_cpu_bswap_data(env)) { \
|
||
|
__x = bswap32(__x); \
|
||
|
} \
|
||
|
put_user_u32(__x, (gaddr)); \
|
||
|
})
|
||
|
|
||
|
#define put_user_data_u16(x, gaddr, env) \
|
||
|
({ typeof(x) __x = (x); \
|
||
|
if (arm_cpu_bswap_data(env)) { \
|
||
|
__x = bswap16(__x); \
|
||
|
} \
|
||
|
put_user_u16(__x, (gaddr)); \
|
||
|
})
|
||
|
|
||
|
/*
|
||
|
* Similar to code in accel/tcg/user-exec.c, but outside the execution loop.
|
||
|
* Must be called with mmap_lock.
|
||
|
* We get the PC of the entry address - which is as good as anything,
|
||
|
* on a real kernel what you get depends on which mode it uses.
|
||
|
*/
|
||
|
static void *atomic_mmu_lookup(CPUArchState *env, uint32_t addr, int size)
|
||
|
{
|
||
|
int need_flags = PAGE_READ | PAGE_WRITE_ORG | PAGE_VALID;
|
||
|
int page_flags;
|
||
|
|
||
|
/* Enforce guest required alignment. */
|
||
|
if (unlikely(addr & (size - 1))) {
|
||
|
force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
page_flags = page_get_flags(addr);
|
||
|
if (unlikely((page_flags & need_flags) != need_flags)) {
|
||
|
force_sig_fault(TARGET_SIGSEGV,
|
||
|
page_flags & PAGE_VALID ?
|
||
|
TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR, addr);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
return g2h(env_cpu(env), addr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* See the Linux kernel's Documentation/arm/kernel_user_helpers.rst
|
||
|
* Input:
|
||
|
* r0 = oldval
|
||
|
* r1 = newval
|
||
|
* r2 = pointer to target value
|
||
|
*
|
||
|
* Output:
|
||
|
* r0 = 0 if *ptr was changed, non-0 if no exchange happened
|
||
|
* C set if *ptr was changed, clear if no exchange happened
|
||
|
*/
|
||
|
static void arm_kernel_cmpxchg32_helper(CPUARMState *env)
|
||
|
{
|
||
|
uint32_t oldval, newval, val, addr, cpsr, *host_addr;
|
||
|
|
||
|
oldval = env->regs[0];
|
||
|
newval = env->regs[1];
|
||
|
addr = env->regs[2];
|
||
|
|
||
|
mmap_lock();
|
||
|
host_addr = atomic_mmu_lookup(env, addr, 4);
|
||
|
if (!host_addr) {
|
||
|
mmap_unlock();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
val = qatomic_cmpxchg__nocheck(host_addr, oldval, newval);
|
||
|
mmap_unlock();
|
||
|
|
||
|
cpsr = (val == oldval) * CPSR_C;
|
||
|
cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
|
||
|
env->regs[0] = cpsr ? 0 : -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* See the Linux kernel's Documentation/arm/kernel_user_helpers.rst
|
||
|
* Input:
|
||
|
* r0 = pointer to oldval
|
||
|
* r1 = pointer to newval
|
||
|
* r2 = pointer to target value
|
||
|
*
|
||
|
* Output:
|
||
|
* r0 = 0 if *ptr was changed, non-0 if no exchange happened
|
||
|
* C set if *ptr was changed, clear if no exchange happened
|
||
|
*
|
||
|
* Note segv's in kernel helpers are a bit tricky, we can set the
|
||
|
* data address sensibly but the PC address is just the entry point.
|
||
|
*/
|
||
|
static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
|
||
|
{
|
||
|
uint64_t oldval, newval, val;
|
||
|
uint32_t addr, cpsr;
|
||
|
uint64_t *host_addr;
|
||
|
|
||
|
addr = env->regs[0];
|
||
|
if (get_user_u64(oldval, addr)) {
|
||
|
goto segv;
|
||
|
}
|
||
|
|
||
|
addr = env->regs[1];
|
||
|
if (get_user_u64(newval, addr)) {
|
||
|
goto segv;
|
||
|
}
|
||
|
|
||
|
mmap_lock();
|
||
|
addr = env->regs[2];
|
||
|
host_addr = atomic_mmu_lookup(env, addr, 8);
|
||
|
if (!host_addr) {
|
||
|
mmap_unlock();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_ATOMIC64
|
||
|
val = qatomic_cmpxchg__nocheck(host_addr, oldval, newval);
|
||
|
cpsr = (val == oldval) * CPSR_C;
|
||
|
#else
|
||
|
/*
|
||
|
* This only works between threads, not between processes, but since
|
||
|
* the host has no 64-bit cmpxchg, it is the best that we can do.
|
||
|
*/
|
||
|
start_exclusive();
|
||
|
val = *host_addr;
|
||
|
if (val == oldval) {
|
||
|
*host_addr = newval;
|
||
|
cpsr = CPSR_C;
|
||
|
} else {
|
||
|
cpsr = 0;
|
||
|
}
|
||
|
end_exclusive();
|
||
|
#endif
|
||
|
mmap_unlock();
|
||
|
|
||
|
cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
|
||
|
env->regs[0] = cpsr ? 0 : -1;
|
||
|
return;
|
||
|
|
||
|
segv:
|
||
|
force_sig_fault(TARGET_SIGSEGV,
|
||
|
page_get_flags(addr) & PAGE_VALID ?
|
||
|
TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR, addr);
|
||
|
}
|
||
|
|
||
|
/* Handle a jump to the kernel code page. */
|
||
|
static int
|
||
|
do_kernel_trap(CPUARMState *env)
|
||
|
{
|
||
|
uint32_t addr;
|
||
|
|
||
|
switch (env->regs[15]) {
|
||
|
case 0xffff0fa0: /* __kernel_memory_barrier */
|
||
|
smp_mb();
|
||
|
break;
|
||
|
case 0xffff0fc0: /* __kernel_cmpxchg */
|
||
|
arm_kernel_cmpxchg32_helper(env);
|
||
|
break;
|
||
|
case 0xffff0fe0: /* __kernel_get_tls */
|
||
|
env->regs[0] = cpu_get_tls(env);
|
||
|
break;
|
||
|
case 0xffff0f60: /* __kernel_cmpxchg64 */
|
||
|
arm_kernel_cmpxchg64_helper(env);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return 1;
|
||
|
}
|
||
|
/* Jump back to the caller. */
|
||
|
addr = env->regs[14];
|
||
|
if (addr & 1) {
|
||
|
env->thumb = true;
|
||
|
addr &= ~1;
|
||
|
}
|
||
|
env->regs[15] = addr;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb)
|
||
|
{
|
||
|
/*
|
||
|
* Return true if this insn is one of the three magic UDF insns
|
||
|
* which the kernel treats as breakpoint insns.
|
||
|
*/
|
||
|
if (!is_thumb) {
|
||
|
return (opcode & 0x0fffffff) == 0x07f001f0;
|
||
|
} else {
|
||
|
/*
|
||
|
* Note that we get the two halves of the 32-bit T32 insn
|
||
|
* in the opposite order to the value the kernel uses in
|
||
|
* its undef_hook struct.
|
||
|
*/
|
||
|
return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool emulate_arm_fpa11(CPUARMState *env, uint32_t opcode)
|
||
|
{
|
||
|
TaskState *ts = env_cpu(env)->opaque;
|
||
|
int rc = EmulateAll(opcode, &ts->fpa, env);
|
||
|
int raise, enabled;
|
||
|
|
||
|
if (rc == 0) {
|
||
|
/* Illegal instruction */
|
||
|
return false;
|
||
|
}
|
||
|
if (rc > 0) {
|
||
|
/* Everything ok. */
|
||
|
env->regs[15] += 4;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* FP exception */
|
||
|
rc = -rc;
|
||
|
raise = 0;
|
||
|
|
||
|
/* Translate softfloat flags to FPSR flags */
|
||
|
if (rc & float_flag_invalid) {
|
||
|
raise |= BIT_IOC;
|
||
|
}
|
||
|
if (rc & float_flag_divbyzero) {
|
||
|
raise |= BIT_DZC;
|
||
|
}
|
||
|
if (rc & float_flag_overflow) {
|
||
|
raise |= BIT_OFC;
|
||
|
}
|
||
|
if (rc & float_flag_underflow) {
|
||
|
raise |= BIT_UFC;
|
||
|
}
|
||
|
if (rc & float_flag_inexact) {
|
||
|
raise |= BIT_IXC;
|
||
|
}
|
||
|
|
||
|
/* Accumulate unenabled exceptions */
|
||
|
enabled = ts->fpa.fpsr >> 16;
|
||
|
ts->fpa.fpsr |= raise & ~enabled;
|
||
|
|
||
|
if (raise & enabled) {
|
||
|
/*
|
||
|
* The kernel's nwfpe emulator does not pass a real si_code.
|
||
|
* It merely uses send_sig(SIGFPE, current, 1), which results in
|
||
|
* __send_signal() filling out SI_KERNEL with pid and uid 0 (under
|
||
|
* the "SEND_SIG_PRIV" case). That's what our force_sig() does.
|
||
|
*/
|
||
|
force_sig(TARGET_SIGFPE);
|
||
|
} else {
|
||
|
env->regs[15] += 4;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void cpu_loop(CPUARMState *env)
|
||
|
{
|
||
|
CPUState *cs = env_cpu(env);
|
||
|
int trapnr, si_signo, si_code;
|
||
|
unsigned int n, insn;
|
||
|
abi_ulong ret;
|
||
|
|
||
|
for(;;) {
|
||
|
cpu_exec_start(cs);
|
||
|
trapnr = cpu_exec(cs);
|
||
|
cpu_exec_end(cs);
|
||
|
process_queued_cpu_work(cs);
|
||
|
|
||
|
switch(trapnr) {
|
||
|
case EXCP_UDEF:
|
||
|
case EXCP_NOCP:
|
||
|
case EXCP_INVSTATE:
|
||
|
{
|
||
|
uint32_t opcode;
|
||
|
|
||
|
/* we handle the FPU emulation here, as Linux */
|
||
|
/* we get the opcode */
|
||
|
/* FIXME - what to do if get_user() fails? */
|
||
|
get_user_code_u32(opcode, env->regs[15], env);
|
||
|
|
||
|
/*
|
||
|
* The Linux kernel treats some UDF patterns specially
|
||
|
* to use as breakpoints (instead of the architectural
|
||
|
* bkpt insn). These should trigger a SIGTRAP rather
|
||
|
* than SIGILL.
|
||
|
*/
|
||
|
if (insn_is_linux_bkpt(opcode, env->thumb)) {
|
||
|
goto excp_debug;
|
||
|
}
|
||
|
|
||
|
if (!env->thumb && emulate_arm_fpa11(env, opcode)) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN,
|
||
|
env->regs[15]);
|
||
|
}
|
||
|
break;
|
||
|
case EXCP_SWI:
|
||
|
{
|
||
|
env->eabi = 1;
|
||
|
/* system call */
|
||
|
if (env->thumb) {
|
||
|
/* Thumb is always EABI style with syscall number in r7 */
|
||
|
n = env->regs[7];
|
||
|
} else {
|
||
|
/*
|
||
|
* Equivalent of kernel CONFIG_OABI_COMPAT: read the
|
||
|
* Arm SVC insn to extract the immediate, which is the
|
||
|
* syscall number in OABI.
|
||
|
*/
|
||
|
/* FIXME - what to do if get_user() fails? */
|
||
|
get_user_code_u32(insn, env->regs[15] - 4, env);
|
||
|
n = insn & 0xffffff;
|
||
|
if (n == 0) {
|
||
|
/* zero immediate: EABI, syscall number in r7 */
|
||
|
n = env->regs[7];
|
||
|
} else {
|
||
|
/*
|
||
|
* This XOR matches the kernel code: an immediate
|
||
|
* in the valid range (0x900000 .. 0x9fffff) is
|
||
|
* converted into the correct EABI-style syscall
|
||
|
* number; invalid immediates end up as values
|
||
|
* > 0xfffff and are handled below as out-of-range.
|
||
|
*/
|
||
|
n ^= ARM_SYSCALL_BASE;
|
||
|
env->eabi = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (n > ARM_NR_BASE) {
|
||
|
switch (n) {
|
||
|
case ARM_NR_cacheflush:
|
||
|
/* nop */
|
||
|
break;
|
||
|
case ARM_NR_set_tls:
|
||
|
cpu_set_tls(env, env->regs[0]);
|
||
|
env->regs[0] = 0;
|
||
|
break;
|
||
|
case ARM_NR_breakpoint:
|
||
|
env->regs[15] -= env->thumb ? 2 : 4;
|
||
|
goto excp_debug;
|
||
|
case ARM_NR_get_tls:
|
||
|
env->regs[0] = cpu_get_tls(env);
|
||
|
break;
|
||
|
default:
|
||
|
if (n < 0xf0800) {
|
||
|
/*
|
||
|
* Syscalls 0xf0000..0xf07ff (or 0x9f0000..
|
||
|
* 0x9f07ff in OABI numbering) are defined
|
||
|
* to return -ENOSYS rather than raising
|
||
|
* SIGILL. Note that we have already
|
||
|
* removed the 0x900000 prefix.
|
||
|
*/
|
||
|
qemu_log_mask(LOG_UNIMP,
|
||
|
"qemu: Unsupported ARM syscall: 0x%x\n",
|
||
|
n);
|
||
|
env->regs[0] = -TARGET_ENOSYS;
|
||
|
} else {
|
||
|
/*
|
||
|
* Otherwise SIGILL. This includes any SWI with
|
||
|
* immediate not originally 0x9fxxxx, because
|
||
|
* of the earlier XOR.
|
||
|
* Like the real kernel, we report the addr of the
|
||
|
* SWI in the siginfo si_addr but leave the PC
|
||
|
* pointing at the insn after the SWI.
|
||
|
*/
|
||
|
abi_ulong faultaddr = env->regs[15];
|
||
|
faultaddr -= env->thumb ? 2 : 4;
|
||
|
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLTRP,
|
||
|
faultaddr);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
ret = do_syscall(env,
|
||
|
n,
|
||
|
env->regs[0],
|
||
|
env->regs[1],
|
||
|
env->regs[2],
|
||
|
env->regs[3],
|
||
|
env->regs[4],
|
||
|
env->regs[5],
|
||
|
0, 0);
|
||
|
if (ret == -QEMU_ERESTARTSYS) {
|
||
|
env->regs[15] -= env->thumb ? 2 : 4;
|
||
|
} else if (ret != -QEMU_ESIGRETURN) {
|
||
|
env->regs[0] = ret;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case EXCP_SEMIHOST:
|
||
|
do_common_semihosting(cs);
|
||
|
env->regs[15] += env->thumb ? 2 : 4;
|
||
|
break;
|
||
|
case EXCP_INTERRUPT:
|
||
|
/* just indicate that signals should be handled asap */
|
||
|
break;
|
||
|
case EXCP_PREFETCH_ABORT:
|
||
|
case EXCP_DATA_ABORT:
|
||
|
/* For user-only we don't set TTBCR_EAE, so look at the FSR. */
|
||
|
switch (env->exception.fsr & 0x1f) {
|
||
|
case 0x1: /* Alignment */
|
||
|
si_signo = TARGET_SIGBUS;
|
||
|
si_code = TARGET_BUS_ADRALN;
|
||
|
break;
|
||
|
case 0x3: /* Access flag fault, level 1 */
|
||
|
case 0x6: /* Access flag fault, level 2 */
|
||
|
case 0x9: /* Domain fault, level 1 */
|
||
|
case 0xb: /* Domain fault, level 2 */
|
||
|
case 0xd: /* Permission fault, level 1 */
|
||
|
case 0xf: /* Permission fault, level 2 */
|
||
|
si_signo = TARGET_SIGSEGV;
|
||
|
si_code = TARGET_SEGV_ACCERR;
|
||
|
break;
|
||
|
case 0x5: /* Translation fault, level 1 */
|
||
|
case 0x7: /* Translation fault, level 2 */
|
||
|
si_signo = TARGET_SIGSEGV;
|
||
|
si_code = TARGET_SEGV_MAPERR;
|
||
|
break;
|
||
|
default:
|
||
|
g_assert_not_reached();
|
||
|
}
|
||
|
force_sig_fault(si_signo, si_code, env->exception.vaddress);
|
||
|
break;
|
||
|
case EXCP_DEBUG:
|
||
|
case EXCP_BKPT:
|
||
|
excp_debug:
|
||
|
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->regs[15]);
|
||
|
break;
|
||
|
case EXCP_KERNEL_TRAP:
|
||
|
if (do_kernel_trap(env))
|
||
|
goto error;
|
||
|
break;
|
||
|
case EXCP_YIELD:
|
||
|
/* nothing to do here for user-mode, just resume guest code */
|
||
|
break;
|
||
|
case EXCP_ATOMIC:
|
||
|
cpu_exec_step_atomic(cs);
|
||
|
break;
|
||
|
default:
|
||
|
error:
|
||
|
EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
|
||
|
abort();
|
||
|
}
|
||
|
process_pending_signals(env);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
|
||
|
{
|
||
|
CPUState *cpu = env_cpu(env);
|
||
|
TaskState *ts = cpu->opaque;
|
||
|
struct image_info *info = ts->info;
|
||
|
int i;
|
||
|
|
||
|
cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
|
||
|
CPSRWriteByInstr);
|
||
|
for(i = 0; i < 16; i++) {
|
||
|
env->regs[i] = regs->uregs[i];
|
||
|
}
|
||
|
#if TARGET_BIG_ENDIAN
|
||
|
/* Enable BE8. */
|
||
|
if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
|
||
|
&& (info->elf_flags & EF_ARM_BE8)) {
|
||
|
env->uncached_cpsr |= CPSR_E;
|
||
|
env->cp15.sctlr_el[1] |= SCTLR_E0E;
|
||
|
} else {
|
||
|
env->cp15.sctlr_el[1] |= SCTLR_B;
|
||
|
}
|
||
|
arm_rebuild_hflags(env);
|
||
|
#endif
|
||
|
|
||
|
ts->stack_base = info->start_stack;
|
||
|
ts->heap_base = info->brk;
|
||
|
/* This will be filled in on the first SYS_HEAPINFO call. */
|
||
|
ts->heap_limit = 0;
|
||
|
}
|