579 lines
14 KiB
C
579 lines
14 KiB
C
|
/* Implementation of the MINVAL intrinsic
|
||
|
Copyright (C) 2002-2022 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 3 of the License, or (at your option) any later version.
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
Under Section 7 of GPL version 3, you are granted additional
|
||
|
permissions described in the GCC Runtime Library Exception, version
|
||
|
3.1, as published by the Free Software Foundation.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License and
|
||
|
a copy of the GCC Runtime Library Exception along with this program;
|
||
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "libgfortran.h"
|
||
|
|
||
|
|
||
|
#if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
|
||
|
|
||
|
|
||
|
extern void minval_i2 (gfc_array_i2 * const restrict,
|
||
|
gfc_array_i2 * const restrict, const index_type * const restrict);
|
||
|
export_proto(minval_i2);
|
||
|
|
||
|
void
|
||
|
minval_i2 (gfc_array_i2 * const restrict retarray,
|
||
|
gfc_array_i2 * const restrict array,
|
||
|
const index_type * const restrict pdim)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
const GFC_INTEGER_2 * restrict base;
|
||
|
GFC_INTEGER_2 * restrict dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type dim;
|
||
|
int continue_loop;
|
||
|
|
||
|
/* Make dim zero based to avoid confusion. */
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
dim = (*pdim) - 1;
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
||
|
if (len < 0)
|
||
|
len = 0;
|
||
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in"
|
||
|
" MINVAL intrinsic: is %ld, should be %ld",
|
||
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||
|
(long int) rank);
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
||
|
"return value", "MINVAL");
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
if (extent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
base = array->base_addr;
|
||
|
dest = retarray->base_addr;
|
||
|
|
||
|
continue_loop = 1;
|
||
|
while (continue_loop)
|
||
|
{
|
||
|
const GFC_INTEGER_2 * restrict src;
|
||
|
GFC_INTEGER_2 result;
|
||
|
src = base;
|
||
|
{
|
||
|
|
||
|
#if defined (GFC_INTEGER_2_INFINITY)
|
||
|
result = GFC_INTEGER_2_INFINITY;
|
||
|
#else
|
||
|
result = GFC_INTEGER_2_HUGE;
|
||
|
#endif
|
||
|
if (len <= 0)
|
||
|
*dest = GFC_INTEGER_2_HUGE;
|
||
|
else
|
||
|
{
|
||
|
#if ! defined HAVE_BACK_ARG
|
||
|
for (n = 0; n < len; n++, src += delta)
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
#if defined (GFC_INTEGER_2_QUIET_NAN)
|
||
|
if (*src <= result)
|
||
|
break;
|
||
|
}
|
||
|
if (unlikely (n >= len))
|
||
|
result = GFC_INTEGER_2_QUIET_NAN;
|
||
|
else for (; n < len; n++, src += delta)
|
||
|
{
|
||
|
#endif
|
||
|
if (*src < result)
|
||
|
result = *src;
|
||
|
}
|
||
|
|
||
|
*dest = result;
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
continue_loop = 0;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
extern void mminval_i2 (gfc_array_i2 * const restrict,
|
||
|
gfc_array_i2 * const restrict, const index_type * const restrict,
|
||
|
gfc_array_l1 * const restrict);
|
||
|
export_proto(mminval_i2);
|
||
|
|
||
|
void
|
||
|
mminval_i2 (gfc_array_i2 * const restrict retarray,
|
||
|
gfc_array_i2 * const restrict array,
|
||
|
const index_type * const restrict pdim,
|
||
|
gfc_array_l1 * const restrict mask)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
||
|
GFC_INTEGER_2 * restrict dest;
|
||
|
const GFC_INTEGER_2 * restrict base;
|
||
|
const GFC_LOGICAL_1 * restrict mbase;
|
||
|
index_type rank;
|
||
|
index_type dim;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type mdelta;
|
||
|
int mask_kind;
|
||
|
|
||
|
if (mask == NULL)
|
||
|
{
|
||
|
#ifdef HAVE_BACK_ARG
|
||
|
minval_i2 (retarray, array, pdim, back);
|
||
|
#else
|
||
|
minval_i2 (retarray, array, pdim);
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
||
|
if (len <= 0)
|
||
|
return;
|
||
|
|
||
|
mbase = mask->base_addr;
|
||
|
|
||
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||
|
|
||
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||
|
#ifdef HAVE_GFC_LOGICAL_16
|
||
|
|| mask_kind == 16
|
||
|
#endif
|
||
|
)
|
||
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
||
|
else
|
||
|
runtime_error ("Funny sized logical array");
|
||
|
|
||
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
||
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
||
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
||
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in MINVAL intrinsic");
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
||
|
"return value", "MINVAL");
|
||
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
||
|
"MASK argument", "MINVAL");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
if (extent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dest = retarray->base_addr;
|
||
|
base = array->base_addr;
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
const GFC_INTEGER_2 * restrict src;
|
||
|
const GFC_LOGICAL_1 * restrict msrc;
|
||
|
GFC_INTEGER_2 result;
|
||
|
src = base;
|
||
|
msrc = mbase;
|
||
|
{
|
||
|
|
||
|
#if defined (GFC_INTEGER_2_INFINITY)
|
||
|
result = GFC_INTEGER_2_INFINITY;
|
||
|
#else
|
||
|
result = GFC_INTEGER_2_HUGE;
|
||
|
#endif
|
||
|
#if defined (GFC_INTEGER_2_QUIET_NAN)
|
||
|
int non_empty_p = 0;
|
||
|
#endif
|
||
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
||
|
{
|
||
|
|
||
|
#if defined (GFC_INTEGER_2_INFINITY) || defined (GFC_INTEGER_2_QUIET_NAN)
|
||
|
if (*msrc)
|
||
|
{
|
||
|
#if defined (GFC_INTEGER_2_QUIET_NAN)
|
||
|
non_empty_p = 1;
|
||
|
if (*src <= result)
|
||
|
#endif
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (unlikely (n >= len))
|
||
|
{
|
||
|
#if defined (GFC_INTEGER_2_QUIET_NAN)
|
||
|
result = non_empty_p ? GFC_INTEGER_2_QUIET_NAN : GFC_INTEGER_2_HUGE;
|
||
|
#else
|
||
|
result = GFC_INTEGER_2_HUGE;
|
||
|
#endif
|
||
|
}
|
||
|
else for (; n < len; n++, src += delta, msrc += mdelta)
|
||
|
{
|
||
|
#endif
|
||
|
if (*msrc && *src < result)
|
||
|
result = *src;
|
||
|
}
|
||
|
*dest = result;
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
mbase -= mstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
mbase += mstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
extern void sminval_i2 (gfc_array_i2 * const restrict,
|
||
|
gfc_array_i2 * const restrict, const index_type * const restrict,
|
||
|
GFC_LOGICAL_4 *);
|
||
|
export_proto(sminval_i2);
|
||
|
|
||
|
void
|
||
|
sminval_i2 (gfc_array_i2 * const restrict retarray,
|
||
|
gfc_array_i2 * const restrict array,
|
||
|
const index_type * const restrict pdim,
|
||
|
GFC_LOGICAL_4 * mask)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
GFC_INTEGER_2 * restrict dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
index_type dim;
|
||
|
|
||
|
|
||
|
if (mask == NULL || *mask)
|
||
|
{
|
||
|
#ifdef HAVE_BACK_ARG
|
||
|
minval_i2 (retarray, array, pdim, back);
|
||
|
#else
|
||
|
minval_i2 (retarray, array, pdim);
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
/* Make dim zero based to avoid confusion. */
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in MINVAL intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
|
||
|
if (extent[n] <= 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
extent[n] =
|
||
|
GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
||
|
|
||
|
if (extent[n] <= 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_2));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in"
|
||
|
" MINVAL intrinsic: is %ld, should be %ld",
|
||
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||
|
(long int) rank);
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
for (n=0; n < rank; n++)
|
||
|
{
|
||
|
index_type ret_extent;
|
||
|
|
||
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
||
|
if (extent[n] != ret_extent)
|
||
|
runtime_error ("Incorrect extent in return value of"
|
||
|
" MINVAL intrinsic in dimension %ld:"
|
||
|
" is %ld, should be %ld", (long int) n + 1,
|
||
|
(long int) ret_extent, (long int) extent[n]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
}
|
||
|
|
||
|
dest = retarray->base_addr;
|
||
|
|
||
|
while(1)
|
||
|
{
|
||
|
*dest = GFC_INTEGER_2_HUGE;
|
||
|
count[0]++;
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
return;
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|