Projet_SETI_RISC-V/riscv-gnu-toolchain/qemu/hw/sd/allwinner-sdhost.c

883 lines
29 KiB
C
Raw Normal View History

2023-03-06 14:48:14 +01:00
/*
* Allwinner (sun4i and above) SD Host Controller emulation
*
* Copyright (C) 2019 Niek Linnenbank <nieklinnenbank@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "hw/qdev-properties.h"
#include "hw/irq.h"
#include "hw/sd/allwinner-sdhost.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qom/object.h"
#define TYPE_AW_SDHOST_BUS "allwinner-sdhost-bus"
/* This is reusing the SDBus typedef from SD_BUS */
DECLARE_INSTANCE_CHECKER(SDBus, AW_SDHOST_BUS,
TYPE_AW_SDHOST_BUS)
/* SD Host register offsets */
enum {
REG_SD_GCTL = 0x00, /* Global Control */
REG_SD_CKCR = 0x04, /* Clock Control */
REG_SD_TMOR = 0x08, /* Timeout */
REG_SD_BWDR = 0x0C, /* Bus Width */
REG_SD_BKSR = 0x10, /* Block Size */
REG_SD_BYCR = 0x14, /* Byte Count */
REG_SD_CMDR = 0x18, /* Command */
REG_SD_CAGR = 0x1C, /* Command Argument */
REG_SD_RESP0 = 0x20, /* Response Zero */
REG_SD_RESP1 = 0x24, /* Response One */
REG_SD_RESP2 = 0x28, /* Response Two */
REG_SD_RESP3 = 0x2C, /* Response Three */
REG_SD_IMKR = 0x30, /* Interrupt Mask */
REG_SD_MISR = 0x34, /* Masked Interrupt Status */
REG_SD_RISR = 0x38, /* Raw Interrupt Status */
REG_SD_STAR = 0x3C, /* Status */
REG_SD_FWLR = 0x40, /* FIFO Water Level */
REG_SD_FUNS = 0x44, /* FIFO Function Select */
REG_SD_DBGC = 0x50, /* Debug Enable */
REG_SD_A12A = 0x58, /* Auto command 12 argument */
REG_SD_NTSR = 0x5C, /* SD NewTiming Set */
REG_SD_SDBG = 0x60, /* SD newTiming Set Debug */
REG_SD_HWRST = 0x78, /* Hardware Reset Register */
REG_SD_DMAC = 0x80, /* Internal DMA Controller Control */
REG_SD_DLBA = 0x84, /* Descriptor List Base Address */
REG_SD_IDST = 0x88, /* Internal DMA Controller Status */
REG_SD_IDIE = 0x8C, /* Internal DMA Controller IRQ Enable */
REG_SD_THLDC = 0x100, /* Card Threshold Control */
REG_SD_DSBD = 0x10C, /* eMMC DDR Start Bit Detection Control */
REG_SD_RES_CRC = 0x110, /* Response CRC from card/eMMC */
REG_SD_DATA7_CRC = 0x114, /* CRC Data 7 from card/eMMC */
REG_SD_DATA6_CRC = 0x118, /* CRC Data 6 from card/eMMC */
REG_SD_DATA5_CRC = 0x11C, /* CRC Data 5 from card/eMMC */
REG_SD_DATA4_CRC = 0x120, /* CRC Data 4 from card/eMMC */
REG_SD_DATA3_CRC = 0x124, /* CRC Data 3 from card/eMMC */
REG_SD_DATA2_CRC = 0x128, /* CRC Data 2 from card/eMMC */
REG_SD_DATA1_CRC = 0x12C, /* CRC Data 1 from card/eMMC */
REG_SD_DATA0_CRC = 0x130, /* CRC Data 0 from card/eMMC */
REG_SD_CRC_STA = 0x134, /* CRC status from card/eMMC during write */
REG_SD_FIFO = 0x200, /* Read/Write FIFO */
};
/* SD Host register flags */
enum {
SD_GCTL_FIFO_AC_MOD = (1 << 31),
SD_GCTL_DDR_MOD_SEL = (1 << 10),
SD_GCTL_CD_DBC_ENB = (1 << 8),
SD_GCTL_DMA_ENB = (1 << 5),
SD_GCTL_INT_ENB = (1 << 4),
SD_GCTL_DMA_RST = (1 << 2),
SD_GCTL_FIFO_RST = (1 << 1),
SD_GCTL_SOFT_RST = (1 << 0),
};
enum {
SD_CMDR_LOAD = (1 << 31),
SD_CMDR_CLKCHANGE = (1 << 21),
SD_CMDR_WRITE = (1 << 10),
SD_CMDR_AUTOSTOP = (1 << 12),
SD_CMDR_DATA = (1 << 9),
SD_CMDR_RESPONSE_LONG = (1 << 7),
SD_CMDR_RESPONSE = (1 << 6),
SD_CMDR_CMDID_MASK = (0x3f),
};
enum {
SD_RISR_CARD_REMOVE = (1 << 31),
SD_RISR_CARD_INSERT = (1 << 30),
SD_RISR_SDIO_INTR = (1 << 16),
SD_RISR_AUTOCMD_DONE = (1 << 14),
SD_RISR_DATA_COMPLETE = (1 << 3),
SD_RISR_CMD_COMPLETE = (1 << 2),
SD_RISR_NO_RESPONSE = (1 << 1),
};
enum {
SD_STAR_FIFO_EMPTY = (1 << 2),
SD_STAR_CARD_PRESENT = (1 << 8),
SD_STAR_FIFO_LEVEL_1 = (1 << 17),
};
enum {
SD_IDST_INT_SUMMARY = (1 << 8),
SD_IDST_RECEIVE_IRQ = (1 << 1),
SD_IDST_TRANSMIT_IRQ = (1 << 0),
SD_IDST_IRQ_MASK = (1 << 1) | (1 << 0) | (1 << 8),
SD_IDST_WR_MASK = (0x3ff),
};
/* SD Host register reset values */
enum {
REG_SD_GCTL_RST = 0x00000300,
REG_SD_CKCR_RST = 0x0,
REG_SD_TMOR_RST = 0xFFFFFF40,
REG_SD_BWDR_RST = 0x0,
REG_SD_BKSR_RST = 0x00000200,
REG_SD_BYCR_RST = 0x00000200,
REG_SD_CMDR_RST = 0x0,
REG_SD_CAGR_RST = 0x0,
REG_SD_RESP_RST = 0x0,
REG_SD_IMKR_RST = 0x0,
REG_SD_MISR_RST = 0x0,
REG_SD_RISR_RST = 0x0,
REG_SD_STAR_RST = 0x00000100,
REG_SD_FWLR_RST = 0x000F0000,
REG_SD_FUNS_RST = 0x0,
REG_SD_DBGC_RST = 0x0,
REG_SD_A12A_RST = 0x0000FFFF,
REG_SD_NTSR_RST = 0x00000001,
REG_SD_SDBG_RST = 0x0,
REG_SD_HWRST_RST = 0x00000001,
REG_SD_DMAC_RST = 0x0,
REG_SD_DLBA_RST = 0x0,
REG_SD_IDST_RST = 0x0,
REG_SD_IDIE_RST = 0x0,
REG_SD_THLDC_RST = 0x0,
REG_SD_DSBD_RST = 0x0,
REG_SD_RES_CRC_RST = 0x0,
REG_SD_DATA_CRC_RST = 0x0,
REG_SD_CRC_STA_RST = 0x0,
REG_SD_FIFO_RST = 0x0,
};
/* Data transfer descriptor for DMA */
typedef struct TransferDescriptor {
uint32_t status; /* Status flags */
uint32_t size; /* Data buffer size */
uint32_t addr; /* Data buffer address */
uint32_t next; /* Physical address of next descriptor */
} TransferDescriptor;
/* Data transfer descriptor flags */
enum {
DESC_STATUS_HOLD = (1 << 31), /* Set when descriptor is in use by DMA */
DESC_STATUS_ERROR = (1 << 30), /* Set when DMA transfer error occurred */
DESC_STATUS_CHAIN = (1 << 4), /* Indicates chained descriptor. */
DESC_STATUS_FIRST = (1 << 3), /* Set on the first descriptor */
DESC_STATUS_LAST = (1 << 2), /* Set on the last descriptor */
DESC_STATUS_NOIRQ = (1 << 1), /* Skip raising interrupt after transfer */
DESC_SIZE_MASK = (0xfffffffc)
};
static void allwinner_sdhost_update_irq(AwSdHostState *s)
{
uint32_t irq;
if (s->global_ctl & SD_GCTL_INT_ENB) {
irq = s->irq_status & s->irq_mask;
} else {
irq = 0;
}
trace_allwinner_sdhost_update_irq(irq);
qemu_set_irq(s->irq, irq);
}
static void allwinner_sdhost_update_transfer_cnt(AwSdHostState *s,
uint32_t bytes)
{
if (s->transfer_cnt > bytes) {
s->transfer_cnt -= bytes;
} else {
s->transfer_cnt = 0;
}
if (!s->transfer_cnt) {
s->irq_status |= SD_RISR_DATA_COMPLETE;
}
}
static void allwinner_sdhost_set_inserted(DeviceState *dev, bool inserted)
{
AwSdHostState *s = AW_SDHOST(dev);
trace_allwinner_sdhost_set_inserted(inserted);
if (inserted) {
s->irq_status |= SD_RISR_CARD_INSERT;
s->irq_status &= ~SD_RISR_CARD_REMOVE;
s->status |= SD_STAR_CARD_PRESENT;
} else {
s->irq_status &= ~SD_RISR_CARD_INSERT;
s->irq_status |= SD_RISR_CARD_REMOVE;
s->status &= ~SD_STAR_CARD_PRESENT;
}
allwinner_sdhost_update_irq(s);
}
static void allwinner_sdhost_send_command(AwSdHostState *s)
{
SDRequest request;
uint8_t resp[16];
int rlen;
/* Auto clear load flag */
s->command &= ~SD_CMDR_LOAD;
/* Clock change does not actually interact with the SD bus */
if (!(s->command & SD_CMDR_CLKCHANGE)) {
/* Prepare request */
request.cmd = s->command & SD_CMDR_CMDID_MASK;
request.arg = s->command_arg;
/* Send request to SD bus */
rlen = sdbus_do_command(&s->sdbus, &request, resp);
if (rlen < 0) {
goto error;
}
/* If the command has a response, store it in the response registers */
if ((s->command & SD_CMDR_RESPONSE)) {
if (rlen == 4 && !(s->command & SD_CMDR_RESPONSE_LONG)) {
s->response[0] = ldl_be_p(&resp[0]);
s->response[1] = s->response[2] = s->response[3] = 0;
} else if (rlen == 16 && (s->command & SD_CMDR_RESPONSE_LONG)) {
s->response[0] = ldl_be_p(&resp[12]);
s->response[1] = ldl_be_p(&resp[8]);
s->response[2] = ldl_be_p(&resp[4]);
s->response[3] = ldl_be_p(&resp[0]);
} else {
goto error;
}
}
}
/* Set interrupt status bits */
s->irq_status |= SD_RISR_CMD_COMPLETE;
return;
error:
s->irq_status |= SD_RISR_NO_RESPONSE;
}
static void allwinner_sdhost_auto_stop(AwSdHostState *s)
{
/*
* The stop command (CMD12) ensures the SD bus
* returns to the transfer state.
*/
if ((s->command & SD_CMDR_AUTOSTOP) && (s->transfer_cnt == 0)) {
/* First save current command registers */
uint32_t saved_cmd = s->command;
uint32_t saved_arg = s->command_arg;
/* Prepare stop command (CMD12) */
s->command &= ~SD_CMDR_CMDID_MASK;
s->command |= 12; /* CMD12 */
s->command_arg = 0;
/* Put the command on SD bus */
allwinner_sdhost_send_command(s);
/* Restore command values */
s->command = saved_cmd;
s->command_arg = saved_arg;
/* Set IRQ status bit for automatic stop done */
s->irq_status |= SD_RISR_AUTOCMD_DONE;
}
}
static uint32_t allwinner_sdhost_process_desc(AwSdHostState *s,
hwaddr desc_addr,
TransferDescriptor *desc,
bool is_write, uint32_t max_bytes)
{
AwSdHostClass *klass = AW_SDHOST_GET_CLASS(s);
uint32_t num_done = 0;
uint32_t num_bytes = max_bytes;
uint8_t buf[1024];
/* Read descriptor */
dma_memory_read(&s->dma_as, desc_addr, desc, sizeof(*desc),
MEMTXATTRS_UNSPECIFIED);
if (desc->size == 0) {
desc->size = klass->max_desc_size;
} else if (desc->size > klass->max_desc_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA descriptor buffer size "
" is out-of-bounds: %" PRIu32 " > %zu",
__func__, desc->size, klass->max_desc_size);
desc->size = klass->max_desc_size;
}
if (desc->size < num_bytes) {
num_bytes = desc->size;
}
trace_allwinner_sdhost_process_desc(desc_addr, desc->size,
is_write, max_bytes);
while (num_done < num_bytes) {
/* Try to completely fill the local buffer */
uint32_t buf_bytes = num_bytes - num_done;
if (buf_bytes > sizeof(buf)) {
buf_bytes = sizeof(buf);
}
/* Write to SD bus */
if (is_write) {
dma_memory_read(&s->dma_as,
(desc->addr & DESC_SIZE_MASK) + num_done, buf,
buf_bytes, MEMTXATTRS_UNSPECIFIED);
sdbus_write_data(&s->sdbus, buf, buf_bytes);
/* Read from SD bus */
} else {
sdbus_read_data(&s->sdbus, buf, buf_bytes);
dma_memory_write(&s->dma_as,
(desc->addr & DESC_SIZE_MASK) + num_done, buf,
buf_bytes, MEMTXATTRS_UNSPECIFIED);
}
num_done += buf_bytes;
}
/* Clear hold flag and flush descriptor */
desc->status &= ~DESC_STATUS_HOLD;
dma_memory_write(&s->dma_as, desc_addr, desc, sizeof(*desc),
MEMTXATTRS_UNSPECIFIED);
return num_done;
}
static void allwinner_sdhost_dma(AwSdHostState *s)
{
TransferDescriptor desc;
hwaddr desc_addr = s->desc_base;
bool is_write = (s->command & SD_CMDR_WRITE);
uint32_t bytes_done = 0;
/* Check if DMA can be performed */
if (s->byte_count == 0 || s->block_size == 0 ||
!(s->global_ctl & SD_GCTL_DMA_ENB)) {
return;
}
/*
* For read operations, data must be available on the SD bus
* If not, it is an error and we should not act at all
*/
if (!is_write && !sdbus_data_ready(&s->sdbus)) {
return;
}
/* Process the DMA descriptors until all data is copied */
while (s->byte_count > 0) {
bytes_done = allwinner_sdhost_process_desc(s, desc_addr, &desc,
is_write, s->byte_count);
allwinner_sdhost_update_transfer_cnt(s, bytes_done);
if (bytes_done <= s->byte_count) {
s->byte_count -= bytes_done;
} else {
s->byte_count = 0;
}
if (desc.status & DESC_STATUS_LAST) {
break;
} else {
desc_addr = desc.next;
}
}
/* Raise IRQ to signal DMA is completed */
s->irq_status |= SD_RISR_DATA_COMPLETE | SD_RISR_SDIO_INTR;
/* Update DMAC bits */
s->dmac_status |= SD_IDST_INT_SUMMARY;
if (is_write) {
s->dmac_status |= SD_IDST_TRANSMIT_IRQ;
} else {
s->dmac_status |= SD_IDST_RECEIVE_IRQ;
}
}
static uint64_t allwinner_sdhost_read(void *opaque, hwaddr offset,
unsigned size)
{
AwSdHostState *s = AW_SDHOST(opaque);
uint32_t res = 0;
switch (offset) {
case REG_SD_GCTL: /* Global Control */
res = s->global_ctl;
break;
case REG_SD_CKCR: /* Clock Control */
res = s->clock_ctl;
break;
case REG_SD_TMOR: /* Timeout */
res = s->timeout;
break;
case REG_SD_BWDR: /* Bus Width */
res = s->bus_width;
break;
case REG_SD_BKSR: /* Block Size */
res = s->block_size;
break;
case REG_SD_BYCR: /* Byte Count */
res = s->byte_count;
break;
case REG_SD_CMDR: /* Command */
res = s->command;
break;
case REG_SD_CAGR: /* Command Argument */
res = s->command_arg;
break;
case REG_SD_RESP0: /* Response Zero */
res = s->response[0];
break;
case REG_SD_RESP1: /* Response One */
res = s->response[1];
break;
case REG_SD_RESP2: /* Response Two */
res = s->response[2];
break;
case REG_SD_RESP3: /* Response Three */
res = s->response[3];
break;
case REG_SD_IMKR: /* Interrupt Mask */
res = s->irq_mask;
break;
case REG_SD_MISR: /* Masked Interrupt Status */
res = s->irq_status & s->irq_mask;
break;
case REG_SD_RISR: /* Raw Interrupt Status */
res = s->irq_status;
break;
case REG_SD_STAR: /* Status */
res = s->status;
if (sdbus_data_ready(&s->sdbus)) {
res |= SD_STAR_FIFO_LEVEL_1;
} else {
res |= SD_STAR_FIFO_EMPTY;
}
break;
case REG_SD_FWLR: /* FIFO Water Level */
res = s->fifo_wlevel;
break;
case REG_SD_FUNS: /* FIFO Function Select */
res = s->fifo_func_sel;
break;
case REG_SD_DBGC: /* Debug Enable */
res = s->debug_enable;
break;
case REG_SD_A12A: /* Auto command 12 argument */
res = s->auto12_arg;
break;
case REG_SD_NTSR: /* SD NewTiming Set */
res = s->newtiming_set;
break;
case REG_SD_SDBG: /* SD newTiming Set Debug */
res = s->newtiming_debug;
break;
case REG_SD_HWRST: /* Hardware Reset Register */
res = s->hardware_rst;
break;
case REG_SD_DMAC: /* Internal DMA Controller Control */
res = s->dmac;
break;
case REG_SD_DLBA: /* Descriptor List Base Address */
res = s->desc_base;
break;
case REG_SD_IDST: /* Internal DMA Controller Status */
res = s->dmac_status;
break;
case REG_SD_IDIE: /* Internal DMA Controller Interrupt Enable */
res = s->dmac_irq;
break;
case REG_SD_THLDC: /* Card Threshold Control */
res = s->card_threshold;
break;
case REG_SD_DSBD: /* eMMC DDR Start Bit Detection Control */
res = s->startbit_detect;
break;
case REG_SD_RES_CRC: /* Response CRC from card/eMMC */
res = s->response_crc;
break;
case REG_SD_DATA7_CRC: /* CRC Data 7 from card/eMMC */
case REG_SD_DATA6_CRC: /* CRC Data 6 from card/eMMC */
case REG_SD_DATA5_CRC: /* CRC Data 5 from card/eMMC */
case REG_SD_DATA4_CRC: /* CRC Data 4 from card/eMMC */
case REG_SD_DATA3_CRC: /* CRC Data 3 from card/eMMC */
case REG_SD_DATA2_CRC: /* CRC Data 2 from card/eMMC */
case REG_SD_DATA1_CRC: /* CRC Data 1 from card/eMMC */
case REG_SD_DATA0_CRC: /* CRC Data 0 from card/eMMC */
res = s->data_crc[((offset - REG_SD_DATA7_CRC) / sizeof(uint32_t))];
break;
case REG_SD_CRC_STA: /* CRC status from card/eMMC in write operation */
res = s->status_crc;
break;
case REG_SD_FIFO: /* Read/Write FIFO */
if (sdbus_data_ready(&s->sdbus)) {
sdbus_read_data(&s->sdbus, &res, sizeof(uint32_t));
le32_to_cpus(&res);
allwinner_sdhost_update_transfer_cnt(s, sizeof(uint32_t));
allwinner_sdhost_auto_stop(s);
allwinner_sdhost_update_irq(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "%s: no data ready on SD bus\n",
__func__);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset %"
HWADDR_PRIx"\n", __func__, offset);
res = 0;
break;
}
trace_allwinner_sdhost_read(offset, res, size);
return res;
}
static void allwinner_sdhost_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
AwSdHostState *s = AW_SDHOST(opaque);
uint32_t u32;
trace_allwinner_sdhost_write(offset, value, size);
switch (offset) {
case REG_SD_GCTL: /* Global Control */
s->global_ctl = value;
s->global_ctl &= ~(SD_GCTL_DMA_RST | SD_GCTL_FIFO_RST |
SD_GCTL_SOFT_RST);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_CKCR: /* Clock Control */
s->clock_ctl = value;
break;
case REG_SD_TMOR: /* Timeout */
s->timeout = value;
break;
case REG_SD_BWDR: /* Bus Width */
s->bus_width = value;
break;
case REG_SD_BKSR: /* Block Size */
s->block_size = value;
break;
case REG_SD_BYCR: /* Byte Count */
s->byte_count = value;
s->transfer_cnt = value;
break;
case REG_SD_CMDR: /* Command */
s->command = value;
if (value & SD_CMDR_LOAD) {
allwinner_sdhost_send_command(s);
allwinner_sdhost_dma(s);
allwinner_sdhost_auto_stop(s);
}
allwinner_sdhost_update_irq(s);
break;
case REG_SD_CAGR: /* Command Argument */
s->command_arg = value;
break;
case REG_SD_RESP0: /* Response Zero */
s->response[0] = value;
break;
case REG_SD_RESP1: /* Response One */
s->response[1] = value;
break;
case REG_SD_RESP2: /* Response Two */
s->response[2] = value;
break;
case REG_SD_RESP3: /* Response Three */
s->response[3] = value;
break;
case REG_SD_IMKR: /* Interrupt Mask */
s->irq_mask = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_MISR: /* Masked Interrupt Status */
case REG_SD_RISR: /* Raw Interrupt Status */
s->irq_status &= ~value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_STAR: /* Status */
s->status &= ~value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_FWLR: /* FIFO Water Level */
s->fifo_wlevel = value;
break;
case REG_SD_FUNS: /* FIFO Function Select */
s->fifo_func_sel = value;
break;
case REG_SD_DBGC: /* Debug Enable */
s->debug_enable = value;
break;
case REG_SD_A12A: /* Auto command 12 argument */
s->auto12_arg = value;
break;
case REG_SD_NTSR: /* SD NewTiming Set */
s->newtiming_set = value;
break;
case REG_SD_SDBG: /* SD newTiming Set Debug */
s->newtiming_debug = value;
break;
case REG_SD_HWRST: /* Hardware Reset Register */
s->hardware_rst = value;
break;
case REG_SD_DMAC: /* Internal DMA Controller Control */
s->dmac = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_DLBA: /* Descriptor List Base Address */
s->desc_base = value;
break;
case REG_SD_IDST: /* Internal DMA Controller Status */
s->dmac_status &= (~SD_IDST_WR_MASK) | (~value & SD_IDST_WR_MASK);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_IDIE: /* Internal DMA Controller Interrupt Enable */
s->dmac_irq = value;
allwinner_sdhost_update_irq(s);
break;
case REG_SD_THLDC: /* Card Threshold Control */
s->card_threshold = value;
break;
case REG_SD_DSBD: /* eMMC DDR Start Bit Detection Control */
s->startbit_detect = value;
break;
case REG_SD_FIFO: /* Read/Write FIFO */
u32 = cpu_to_le32(value);
sdbus_write_data(&s->sdbus, &u32, sizeof(u32));
allwinner_sdhost_update_transfer_cnt(s, sizeof(u32));
allwinner_sdhost_auto_stop(s);
allwinner_sdhost_update_irq(s);
break;
case REG_SD_RES_CRC: /* Response CRC from card/eMMC */
case REG_SD_DATA7_CRC: /* CRC Data 7 from card/eMMC */
case REG_SD_DATA6_CRC: /* CRC Data 6 from card/eMMC */
case REG_SD_DATA5_CRC: /* CRC Data 5 from card/eMMC */
case REG_SD_DATA4_CRC: /* CRC Data 4 from card/eMMC */
case REG_SD_DATA3_CRC: /* CRC Data 3 from card/eMMC */
case REG_SD_DATA2_CRC: /* CRC Data 2 from card/eMMC */
case REG_SD_DATA1_CRC: /* CRC Data 1 from card/eMMC */
case REG_SD_DATA0_CRC: /* CRC Data 0 from card/eMMC */
case REG_SD_CRC_STA: /* CRC status from card/eMMC in write operation */
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset %"
HWADDR_PRIx"\n", __func__, offset);
break;
}
}
static const MemoryRegionOps allwinner_sdhost_ops = {
.read = allwinner_sdhost_read,
.write = allwinner_sdhost_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl.min_access_size = 4,
};
static const VMStateDescription vmstate_allwinner_sdhost = {
.name = "allwinner-sdhost",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(global_ctl, AwSdHostState),
VMSTATE_UINT32(clock_ctl, AwSdHostState),
VMSTATE_UINT32(timeout, AwSdHostState),
VMSTATE_UINT32(bus_width, AwSdHostState),
VMSTATE_UINT32(block_size, AwSdHostState),
VMSTATE_UINT32(byte_count, AwSdHostState),
VMSTATE_UINT32(transfer_cnt, AwSdHostState),
VMSTATE_UINT32(command, AwSdHostState),
VMSTATE_UINT32(command_arg, AwSdHostState),
VMSTATE_UINT32_ARRAY(response, AwSdHostState, 4),
VMSTATE_UINT32(irq_mask, AwSdHostState),
VMSTATE_UINT32(irq_status, AwSdHostState),
VMSTATE_UINT32(status, AwSdHostState),
VMSTATE_UINT32(fifo_wlevel, AwSdHostState),
VMSTATE_UINT32(fifo_func_sel, AwSdHostState),
VMSTATE_UINT32(debug_enable, AwSdHostState),
VMSTATE_UINT32(auto12_arg, AwSdHostState),
VMSTATE_UINT32(newtiming_set, AwSdHostState),
VMSTATE_UINT32(newtiming_debug, AwSdHostState),
VMSTATE_UINT32(hardware_rst, AwSdHostState),
VMSTATE_UINT32(dmac, AwSdHostState),
VMSTATE_UINT32(desc_base, AwSdHostState),
VMSTATE_UINT32(dmac_status, AwSdHostState),
VMSTATE_UINT32(dmac_irq, AwSdHostState),
VMSTATE_UINT32(card_threshold, AwSdHostState),
VMSTATE_UINT32(startbit_detect, AwSdHostState),
VMSTATE_UINT32(response_crc, AwSdHostState),
VMSTATE_UINT32_ARRAY(data_crc, AwSdHostState, 8),
VMSTATE_UINT32(status_crc, AwSdHostState),
VMSTATE_END_OF_LIST()
}
};
static Property allwinner_sdhost_properties[] = {
DEFINE_PROP_LINK("dma-memory", AwSdHostState, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void allwinner_sdhost_init(Object *obj)
{
AwSdHostState *s = AW_SDHOST(obj);
qbus_init(&s->sdbus, sizeof(s->sdbus),
TYPE_AW_SDHOST_BUS, DEVICE(s), "sd-bus");
memory_region_init_io(&s->iomem, obj, &allwinner_sdhost_ops, s,
TYPE_AW_SDHOST, 4 * KiB);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->iomem);
sysbus_init_irq(SYS_BUS_DEVICE(s), &s->irq);
}
static void allwinner_sdhost_realize(DeviceState *dev, Error **errp)
{
AwSdHostState *s = AW_SDHOST(dev);
if (!s->dma_mr) {
error_setg(errp, TYPE_AW_SDHOST " 'dma-memory' link not set");
return;
}
address_space_init(&s->dma_as, s->dma_mr, "sdhost-dma");
}
static void allwinner_sdhost_reset(DeviceState *dev)
{
AwSdHostState *s = AW_SDHOST(dev);
s->global_ctl = REG_SD_GCTL_RST;
s->clock_ctl = REG_SD_CKCR_RST;
s->timeout = REG_SD_TMOR_RST;
s->bus_width = REG_SD_BWDR_RST;
s->block_size = REG_SD_BKSR_RST;
s->byte_count = REG_SD_BYCR_RST;
s->transfer_cnt = 0;
s->command = REG_SD_CMDR_RST;
s->command_arg = REG_SD_CAGR_RST;
for (int i = 0; i < ARRAY_SIZE(s->response); i++) {
s->response[i] = REG_SD_RESP_RST;
}
s->irq_mask = REG_SD_IMKR_RST;
s->irq_status = REG_SD_RISR_RST;
s->status = REG_SD_STAR_RST;
s->fifo_wlevel = REG_SD_FWLR_RST;
s->fifo_func_sel = REG_SD_FUNS_RST;
s->debug_enable = REG_SD_DBGC_RST;
s->auto12_arg = REG_SD_A12A_RST;
s->newtiming_set = REG_SD_NTSR_RST;
s->newtiming_debug = REG_SD_SDBG_RST;
s->hardware_rst = REG_SD_HWRST_RST;
s->dmac = REG_SD_DMAC_RST;
s->desc_base = REG_SD_DLBA_RST;
s->dmac_status = REG_SD_IDST_RST;
s->dmac_irq = REG_SD_IDIE_RST;
s->card_threshold = REG_SD_THLDC_RST;
s->startbit_detect = REG_SD_DSBD_RST;
s->response_crc = REG_SD_RES_CRC_RST;
for (int i = 0; i < ARRAY_SIZE(s->data_crc); i++) {
s->data_crc[i] = REG_SD_DATA_CRC_RST;
}
s->status_crc = REG_SD_CRC_STA_RST;
}
static void allwinner_sdhost_bus_class_init(ObjectClass *klass, void *data)
{
SDBusClass *sbc = SD_BUS_CLASS(klass);
sbc->set_inserted = allwinner_sdhost_set_inserted;
}
static void allwinner_sdhost_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = allwinner_sdhost_reset;
dc->vmsd = &vmstate_allwinner_sdhost;
dc->realize = allwinner_sdhost_realize;
device_class_set_props(dc, allwinner_sdhost_properties);
}
static void allwinner_sdhost_sun4i_class_init(ObjectClass *klass, void *data)
{
AwSdHostClass *sc = AW_SDHOST_CLASS(klass);
sc->max_desc_size = 8 * KiB;
}
static void allwinner_sdhost_sun5i_class_init(ObjectClass *klass, void *data)
{
AwSdHostClass *sc = AW_SDHOST_CLASS(klass);
sc->max_desc_size = 64 * KiB;
}
static const TypeInfo allwinner_sdhost_info = {
.name = TYPE_AW_SDHOST,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = allwinner_sdhost_init,
.instance_size = sizeof(AwSdHostState),
.class_init = allwinner_sdhost_class_init,
.class_size = sizeof(AwSdHostClass),
.abstract = true,
};
static const TypeInfo allwinner_sdhost_sun4i_info = {
.name = TYPE_AW_SDHOST_SUN4I,
.parent = TYPE_AW_SDHOST,
.class_init = allwinner_sdhost_sun4i_class_init,
};
static const TypeInfo allwinner_sdhost_sun5i_info = {
.name = TYPE_AW_SDHOST_SUN5I,
.parent = TYPE_AW_SDHOST,
.class_init = allwinner_sdhost_sun5i_class_init,
};
static const TypeInfo allwinner_sdhost_bus_info = {
.name = TYPE_AW_SDHOST_BUS,
.parent = TYPE_SD_BUS,
.instance_size = sizeof(SDBus),
.class_init = allwinner_sdhost_bus_class_init,
};
static void allwinner_sdhost_register_types(void)
{
type_register_static(&allwinner_sdhost_info);
type_register_static(&allwinner_sdhost_sun4i_info);
type_register_static(&allwinner_sdhost_sun5i_info);
type_register_static(&allwinner_sdhost_bus_info);
}
type_init(allwinner_sdhost_register_types)