548 lines
14 KiB
Text
548 lines
14 KiB
Text
|
dnl Support macro file for intrinsic functions.
|
||
|
dnl Contains the generic sections of the array functions.
|
||
|
dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
|
||
|
dnl Distributed under the GNU GPL with exception. See COPYING for details.
|
||
|
dnl
|
||
|
dnl Pass the implementation for a single section as the parameter to
|
||
|
dnl {MASK_}ARRAY_FUNCTION.
|
||
|
dnl The variables base, delta, and len describe the input section.
|
||
|
dnl For masked section the mask is described by mbase and mdelta.
|
||
|
dnl These should not be modified. The result should be stored in *dest.
|
||
|
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
|
||
|
dnl retarray, array, pdim and mstride should not be used.
|
||
|
dnl The variable n is declared as index_type and may be used.
|
||
|
dnl Other variable declarations may be placed at the start of the code,
|
||
|
dnl The types of the array parameter and the return value are
|
||
|
dnl atype_name and rtype_name respectively.
|
||
|
dnl Execution should be allowed to continue to the end of the block.
|
||
|
dnl You should not return or break from the inner loop of the implementation.
|
||
|
dnl Care should also be taken to avoid using the names defined in iparm.m4
|
||
|
define(START_ARRAY_FUNCTION,
|
||
|
`#include <string.h>
|
||
|
#include <assert.h>
|
||
|
|
||
|
static inline int
|
||
|
compare_fcn (const atype_name *a, const atype_name *b, gfc_charlen_type n)
|
||
|
{
|
||
|
if (sizeof ('atype_name`) == 1)
|
||
|
return memcmp (a, b, n);
|
||
|
else
|
||
|
return memcmp_char4 (a, b, n);
|
||
|
}
|
||
|
|
||
|
extern void name`'rtype_qual`_'atype_code (rtype` * const restrict,
|
||
|
'atype` * const restrict, const index_type * const restrict 'back_arg`,
|
||
|
gfc_charlen_type);
|
||
|
export_proto('name`'rtype_qual`_'atype_code`);
|
||
|
|
||
|
void
|
||
|
'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray,
|
||
|
'atype` * const restrict array,
|
||
|
const index_type * const restrict pdim'back_arg`,
|
||
|
gfc_charlen_type string_len)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
const 'atype_name * restrict base;
|
||
|
rtype_name * restrict dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type dim;
|
||
|
int continue_loop;
|
||
|
|
||
|
/* Make dim zero based to avoid confusion. */
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
dim = (*pdim) - 1;
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
||
|
if (len < 0)
|
||
|
len = 0;
|
||
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len;
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in"
|
||
|
" u_name intrinsic: is %ld, should be %ld",
|
||
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||
|
(long int) rank);
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
||
|
"return value", "u_name");
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
if (extent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
base = array->base_addr;
|
||
|
dest = retarray->base_addr;
|
||
|
|
||
|
continue_loop = 1;
|
||
|
while (continue_loop)
|
||
|
{
|
||
|
const atype_name * restrict src;
|
||
|
rtype_name result;
|
||
|
src = base;
|
||
|
{
|
||
|
')dnl
|
||
|
define(START_ARRAY_BLOCK,
|
||
|
` if (len <= 0)
|
||
|
*dest = '$1`;
|
||
|
else
|
||
|
{
|
||
|
for (n = 0; n < len; n++, src += delta)
|
||
|
{
|
||
|
')dnl
|
||
|
define(FINISH_ARRAY_FUNCTION,
|
||
|
` }
|
||
|
'$1`
|
||
|
*dest = result;
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
continue_loop = 0;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}')dnl
|
||
|
define(START_MASKED_ARRAY_FUNCTION,
|
||
|
`
|
||
|
extern void `m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict,
|
||
|
'atype` * const restrict, const index_type * const restrict,
|
||
|
gfc_array_l1 * const restrict'back_arg`, gfc_charlen_type);
|
||
|
export_proto(m'name`'rtype_qual`_'atype_code`);
|
||
|
|
||
|
void
|
||
|
m'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray,
|
||
|
'atype` * const restrict array,
|
||
|
const index_type * const restrict pdim,
|
||
|
gfc_array_l1 * const restrict mask'back_arg`,
|
||
|
gfc_charlen_type string_len)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
||
|
'rtype_name * restrict dest;
|
||
|
const atype_name * restrict base;
|
||
|
const GFC_LOGICAL_1 * restrict mbase;
|
||
|
index_type rank;
|
||
|
index_type dim;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type mdelta;
|
||
|
int mask_kind;
|
||
|
|
||
|
if (mask == NULL)
|
||
|
{
|
||
|
#ifdef HAVE_BACK_ARG
|
||
|
name`'rtype_qual`_'atype_code (retarray, array, pdim, back, string_len);
|
||
|
#else
|
||
|
name`'rtype_qual`_'atype_code (retarray, array, pdim, string_len);
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
||
|
if (len <= 0)
|
||
|
return;
|
||
|
|
||
|
mbase = mask->base_addr;
|
||
|
|
||
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||
|
|
||
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||
|
#ifdef HAVE_GFC_LOGICAL_16
|
||
|
|| mask_kind == 16
|
||
|
#endif
|
||
|
)
|
||
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
||
|
else
|
||
|
runtime_error ("Funny sized logical array");
|
||
|
|
||
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
|
||
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
|
||
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len;
|
||
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
||
|
|
||
|
if (extent[n] < 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in u_name intrinsic");
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
||
|
"return value", "u_name");
|
||
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
||
|
"MASK argument", "u_name");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
if (extent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dest = retarray->base_addr;
|
||
|
base = array->base_addr;
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
const atype_name * restrict src;
|
||
|
const GFC_LOGICAL_1 * restrict msrc;
|
||
|
rtype_name result;
|
||
|
src = base;
|
||
|
msrc = mbase;
|
||
|
{
|
||
|
')dnl
|
||
|
define(START_MASKED_ARRAY_BLOCK,
|
||
|
` for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
||
|
{
|
||
|
')dnl
|
||
|
define(FINISH_MASKED_ARRAY_FUNCTION,
|
||
|
` }
|
||
|
*dest = result;
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
mbase -= mstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
mbase += mstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}')dnl
|
||
|
define(SCALAR_ARRAY_FUNCTION,
|
||
|
`
|
||
|
extern void `s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict,
|
||
|
'atype` * const restrict, const index_type * const restrict,
|
||
|
GFC_LOGICAL_4 *'back_arg`, gfc_charlen_type);
|
||
|
export_proto(s'name`'rtype_qual`_'atype_code`);
|
||
|
|
||
|
void
|
||
|
s'name`'rtype_qual`_'atype_code` ('rtype` * const restrict retarray,
|
||
|
'atype` * const restrict array,
|
||
|
const index_type * const restrict pdim,
|
||
|
GFC_LOGICAL_4 * mask 'back_arg`, gfc_charlen_type string_len)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
||
|
'rtype_name * restrict dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
index_type dim;
|
||
|
|
||
|
|
||
|
if (mask == NULL || *mask)
|
||
|
{
|
||
|
#ifdef HAVE_BACK_ARG
|
||
|
name`'rtype_qual`_'atype_code (retarray, array, pdim, back, string_len);
|
||
|
#else
|
||
|
name`'rtype_qual`_'atype_code (retarray, array, pdim, string_len);
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
/* Make dim zero based to avoid confusion. */
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
|
||
|
if (unlikely (dim < 0 || dim > rank))
|
||
|
{
|
||
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
||
|
"is %ld, should be between 1 and %ld",
|
||
|
(long int) dim + 1, (long int) rank + 1);
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n) * string_len;
|
||
|
|
||
|
if (extent[n] <= 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
extent[n] =
|
||
|
GFC_DESCRIPTOR_EXTENT(array,n + 1) * string_len;
|
||
|
|
||
|
if (extent[n] <= 0)
|
||
|
extent[n] = 0;
|
||
|
}
|
||
|
|
||
|
if (retarray->base_addr == NULL)
|
||
|
{
|
||
|
size_t alloc_size, str;
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
str = 1;
|
||
|
else
|
||
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
||
|
|
||
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
||
|
|
||
|
}
|
||
|
|
||
|
retarray->offset = 0;
|
||
|
retarray->dtype.rank = rank;
|
||
|
|
||
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
||
|
|
||
|
if (alloc_size == 0)
|
||
|
{
|
||
|
/* Make sure we have a zero-sized array. */
|
||
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||
|
runtime_error ("rank of return array incorrect in"
|
||
|
" u_name intrinsic: is %ld, should be %ld",
|
||
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||
|
(long int) rank);
|
||
|
|
||
|
if (unlikely (compile_options.bounds_check))
|
||
|
{
|
||
|
for (n=0; n < rank; n++)
|
||
|
{
|
||
|
index_type ret_extent;
|
||
|
|
||
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
||
|
if (extent[n] != ret_extent)
|
||
|
runtime_error ("Incorrect extent in return value of"
|
||
|
" u_name intrinsic in dimension %ld:"
|
||
|
" is %ld, should be %ld", (long int) n + 1,
|
||
|
(long int) ret_extent, (long int) extent[n]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
||
|
}
|
||
|
|
||
|
dest = retarray->base_addr;
|
||
|
|
||
|
while(1)
|
||
|
{
|
||
|
*dest = '$1`;
|
||
|
count[0]++;
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so probably not worth it. */
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n >= rank)
|
||
|
return;
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}')dnl
|
||
|
define(ARRAY_FUNCTION,
|
||
|
`START_ARRAY_FUNCTION
|
||
|
$2
|
||
|
START_ARRAY_BLOCK($1)
|
||
|
$3
|
||
|
FINISH_ARRAY_FUNCTION($4)')dnl
|
||
|
define(MASKED_ARRAY_FUNCTION,
|
||
|
`START_MASKED_ARRAY_FUNCTION
|
||
|
$2
|
||
|
START_MASKED_ARRAY_BLOCK
|
||
|
$3
|
||
|
FINISH_MASKED_ARRAY_FUNCTION')dnl
|