711 lines
16 KiB
Go
711 lines
16 KiB
Go
|
// Copyright 2009 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package strconv
|
||
|
|
||
|
// decimal to binary floating point conversion.
|
||
|
// Algorithm:
|
||
|
// 1) Store input in multiprecision decimal.
|
||
|
// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
|
||
|
// 3) Multiply by 2^precision and round to get mantissa.
|
||
|
|
||
|
import "math"
|
||
|
import "runtime"
|
||
|
|
||
|
var optimize = true // set to false to force slow-path conversions for testing
|
||
|
|
||
|
// commonPrefixLenIgnoreCase returns the length of the common
|
||
|
// prefix of s and prefix, with the character case of s ignored.
|
||
|
// The prefix argument must be all lower-case.
|
||
|
func commonPrefixLenIgnoreCase(s, prefix string) int {
|
||
|
n := len(prefix)
|
||
|
if n > len(s) {
|
||
|
n = len(s)
|
||
|
}
|
||
|
for i := 0; i < n; i++ {
|
||
|
c := s[i]
|
||
|
if 'A' <= c && c <= 'Z' {
|
||
|
c += 'a' - 'A'
|
||
|
}
|
||
|
if c != prefix[i] {
|
||
|
return i
|
||
|
}
|
||
|
}
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// special returns the floating-point value for the special,
|
||
|
// possibly signed floating-point representations inf, infinity,
|
||
|
// and NaN. The result is ok if a prefix of s contains one
|
||
|
// of these representations and n is the length of that prefix.
|
||
|
// The character case is ignored.
|
||
|
func special(s string) (f float64, n int, ok bool) {
|
||
|
if len(s) == 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
sign := 1
|
||
|
nsign := 0
|
||
|
switch s[0] {
|
||
|
case '+', '-':
|
||
|
if s[0] == '-' {
|
||
|
sign = -1
|
||
|
}
|
||
|
nsign = 1
|
||
|
s = s[1:]
|
||
|
fallthrough
|
||
|
case 'i', 'I':
|
||
|
n := commonPrefixLenIgnoreCase(s, "infinity")
|
||
|
// Anything longer than "inf" is ok, but if we
|
||
|
// don't have "infinity", only consume "inf".
|
||
|
if 3 < n && n < 8 {
|
||
|
n = 3
|
||
|
}
|
||
|
if n == 3 || n == 8 {
|
||
|
return math.Inf(sign), nsign + n, true
|
||
|
}
|
||
|
case 'n', 'N':
|
||
|
if commonPrefixLenIgnoreCase(s, "nan") == 3 {
|
||
|
return math.NaN(), 3, true
|
||
|
}
|
||
|
}
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
|
||
|
func (b *decimal) set(s string) (ok bool) {
|
||
|
i := 0
|
||
|
b.neg = false
|
||
|
b.trunc = false
|
||
|
|
||
|
// optional sign
|
||
|
if i >= len(s) {
|
||
|
return
|
||
|
}
|
||
|
switch {
|
||
|
case s[i] == '+':
|
||
|
i++
|
||
|
case s[i] == '-':
|
||
|
b.neg = true
|
||
|
i++
|
||
|
}
|
||
|
|
||
|
// digits
|
||
|
sawdot := false
|
||
|
sawdigits := false
|
||
|
for ; i < len(s); i++ {
|
||
|
switch {
|
||
|
case s[i] == '_':
|
||
|
// readFloat already checked underscores
|
||
|
continue
|
||
|
case s[i] == '.':
|
||
|
if sawdot {
|
||
|
return
|
||
|
}
|
||
|
sawdot = true
|
||
|
b.dp = b.nd
|
||
|
continue
|
||
|
|
||
|
case '0' <= s[i] && s[i] <= '9':
|
||
|
sawdigits = true
|
||
|
if s[i] == '0' && b.nd == 0 { // ignore leading zeros
|
||
|
b.dp--
|
||
|
continue
|
||
|
}
|
||
|
if b.nd < len(b.d) {
|
||
|
b.d[b.nd] = s[i]
|
||
|
b.nd++
|
||
|
} else if s[i] != '0' {
|
||
|
b.trunc = true
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
if !sawdigits {
|
||
|
return
|
||
|
}
|
||
|
if !sawdot {
|
||
|
b.dp = b.nd
|
||
|
}
|
||
|
|
||
|
// optional exponent moves decimal point.
|
||
|
// if we read a very large, very long number,
|
||
|
// just be sure to move the decimal point by
|
||
|
// a lot (say, 100000). it doesn't matter if it's
|
||
|
// not the exact number.
|
||
|
if i < len(s) && lower(s[i]) == 'e' {
|
||
|
i++
|
||
|
if i >= len(s) {
|
||
|
return
|
||
|
}
|
||
|
esign := 1
|
||
|
if s[i] == '+' {
|
||
|
i++
|
||
|
} else if s[i] == '-' {
|
||
|
i++
|
||
|
esign = -1
|
||
|
}
|
||
|
if i >= len(s) || s[i] < '0' || s[i] > '9' {
|
||
|
return
|
||
|
}
|
||
|
e := 0
|
||
|
for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
|
||
|
if s[i] == '_' {
|
||
|
// readFloat already checked underscores
|
||
|
continue
|
||
|
}
|
||
|
if e < 10000 {
|
||
|
e = e*10 + int(s[i]) - '0'
|
||
|
}
|
||
|
}
|
||
|
b.dp += e * esign
|
||
|
}
|
||
|
|
||
|
if i != len(s) {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
ok = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// readFloat reads a decimal or hexadecimal mantissa and exponent from a float
|
||
|
// string representation in s; the number may be followed by other characters.
|
||
|
// readFloat reports the number of bytes consumed (i), and whether the number
|
||
|
// is valid (ok).
|
||
|
func readFloat(s string) (mantissa uint64, exp int, neg, trunc, hex bool, i int, ok bool) {
|
||
|
underscores := false
|
||
|
|
||
|
// optional sign
|
||
|
if i >= len(s) {
|
||
|
return
|
||
|
}
|
||
|
switch {
|
||
|
case s[i] == '+':
|
||
|
i++
|
||
|
case s[i] == '-':
|
||
|
neg = true
|
||
|
i++
|
||
|
}
|
||
|
|
||
|
// digits
|
||
|
base := uint64(10)
|
||
|
maxMantDigits := 19 // 10^19 fits in uint64
|
||
|
expChar := byte('e')
|
||
|
if i+2 < len(s) && s[i] == '0' && lower(s[i+1]) == 'x' {
|
||
|
base = 16
|
||
|
maxMantDigits = 16 // 16^16 fits in uint64
|
||
|
i += 2
|
||
|
expChar = 'p'
|
||
|
hex = true
|
||
|
}
|
||
|
sawdot := false
|
||
|
sawdigits := false
|
||
|
nd := 0
|
||
|
ndMant := 0
|
||
|
dp := 0
|
||
|
loop:
|
||
|
for ; i < len(s); i++ {
|
||
|
switch c := s[i]; true {
|
||
|
case c == '_':
|
||
|
underscores = true
|
||
|
continue
|
||
|
|
||
|
case c == '.':
|
||
|
if sawdot {
|
||
|
break loop
|
||
|
}
|
||
|
sawdot = true
|
||
|
dp = nd
|
||
|
continue
|
||
|
|
||
|
case '0' <= c && c <= '9':
|
||
|
sawdigits = true
|
||
|
if c == '0' && nd == 0 { // ignore leading zeros
|
||
|
dp--
|
||
|
continue
|
||
|
}
|
||
|
nd++
|
||
|
if ndMant < maxMantDigits {
|
||
|
mantissa *= base
|
||
|
mantissa += uint64(c - '0')
|
||
|
ndMant++
|
||
|
} else if c != '0' {
|
||
|
trunc = true
|
||
|
}
|
||
|
continue
|
||
|
|
||
|
case base == 16 && 'a' <= lower(c) && lower(c) <= 'f':
|
||
|
sawdigits = true
|
||
|
nd++
|
||
|
if ndMant < maxMantDigits {
|
||
|
mantissa *= 16
|
||
|
mantissa += uint64(lower(c) - 'a' + 10)
|
||
|
ndMant++
|
||
|
} else {
|
||
|
trunc = true
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
if !sawdigits {
|
||
|
return
|
||
|
}
|
||
|
if !sawdot {
|
||
|
dp = nd
|
||
|
}
|
||
|
|
||
|
if base == 16 {
|
||
|
dp *= 4
|
||
|
ndMant *= 4
|
||
|
}
|
||
|
|
||
|
// optional exponent moves decimal point.
|
||
|
// if we read a very large, very long number,
|
||
|
// just be sure to move the decimal point by
|
||
|
// a lot (say, 100000). it doesn't matter if it's
|
||
|
// not the exact number.
|
||
|
if i < len(s) && lower(s[i]) == expChar {
|
||
|
i++
|
||
|
if i >= len(s) {
|
||
|
return
|
||
|
}
|
||
|
esign := 1
|
||
|
if s[i] == '+' {
|
||
|
i++
|
||
|
} else if s[i] == '-' {
|
||
|
i++
|
||
|
esign = -1
|
||
|
}
|
||
|
if i >= len(s) || s[i] < '0' || s[i] > '9' {
|
||
|
return
|
||
|
}
|
||
|
e := 0
|
||
|
for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
|
||
|
if s[i] == '_' {
|
||
|
underscores = true
|
||
|
continue
|
||
|
}
|
||
|
if e < 10000 {
|
||
|
e = e*10 + int(s[i]) - '0'
|
||
|
}
|
||
|
}
|
||
|
dp += e * esign
|
||
|
} else if base == 16 {
|
||
|
// Must have exponent.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if mantissa != 0 {
|
||
|
exp = dp - ndMant
|
||
|
}
|
||
|
|
||
|
if underscores && !underscoreOK(s[:i]) {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
ok = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// decimal power of ten to binary power of two.
|
||
|
var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
|
||
|
|
||
|
func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) {
|
||
|
var exp int
|
||
|
var mant uint64
|
||
|
|
||
|
// Zero is always a special case.
|
||
|
if d.nd == 0 {
|
||
|
mant = 0
|
||
|
exp = flt.bias
|
||
|
goto out
|
||
|
}
|
||
|
|
||
|
// Obvious overflow/underflow.
|
||
|
// These bounds are for 64-bit floats.
|
||
|
// Will have to change if we want to support 80-bit floats in the future.
|
||
|
if d.dp > 310 {
|
||
|
goto overflow
|
||
|
}
|
||
|
if d.dp < -330 {
|
||
|
// zero
|
||
|
mant = 0
|
||
|
exp = flt.bias
|
||
|
goto out
|
||
|
}
|
||
|
|
||
|
// Scale by powers of two until in range [0.5, 1.0)
|
||
|
exp = 0
|
||
|
for d.dp > 0 {
|
||
|
var n int
|
||
|
if d.dp >= len(powtab) {
|
||
|
n = 27
|
||
|
} else {
|
||
|
n = powtab[d.dp]
|
||
|
}
|
||
|
d.Shift(-n)
|
||
|
exp += n
|
||
|
}
|
||
|
for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
|
||
|
var n int
|
||
|
if -d.dp >= len(powtab) {
|
||
|
n = 27
|
||
|
} else {
|
||
|
n = powtab[-d.dp]
|
||
|
}
|
||
|
d.Shift(n)
|
||
|
exp -= n
|
||
|
}
|
||
|
|
||
|
// Our range is [0.5,1) but floating point range is [1,2).
|
||
|
exp--
|
||
|
|
||
|
// Minimum representable exponent is flt.bias+1.
|
||
|
// If the exponent is smaller, move it up and
|
||
|
// adjust d accordingly.
|
||
|
if exp < flt.bias+1 {
|
||
|
n := flt.bias + 1 - exp
|
||
|
d.Shift(-n)
|
||
|
exp += n
|
||
|
}
|
||
|
|
||
|
if exp-flt.bias >= 1<<flt.expbits-1 {
|
||
|
goto overflow
|
||
|
}
|
||
|
|
||
|
// Extract 1+flt.mantbits bits.
|
||
|
d.Shift(int(1 + flt.mantbits))
|
||
|
mant = d.RoundedInteger()
|
||
|
|
||
|
// Rounding might have added a bit; shift down.
|
||
|
if mant == 2<<flt.mantbits {
|
||
|
mant >>= 1
|
||
|
exp++
|
||
|
if exp-flt.bias >= 1<<flt.expbits-1 {
|
||
|
goto overflow
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Denormalized?
|
||
|
if mant&(1<<flt.mantbits) == 0 {
|
||
|
exp = flt.bias
|
||
|
}
|
||
|
goto out
|
||
|
|
||
|
overflow:
|
||
|
// ±Inf
|
||
|
mant = 0
|
||
|
exp = 1<<flt.expbits - 1 + flt.bias
|
||
|
overflow = true
|
||
|
|
||
|
out:
|
||
|
// Assemble bits.
|
||
|
bits := mant & (uint64(1)<<flt.mantbits - 1)
|
||
|
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
|
||
|
if d.neg {
|
||
|
bits |= 1 << flt.mantbits << flt.expbits
|
||
|
}
|
||
|
return bits, overflow
|
||
|
}
|
||
|
|
||
|
// Exact powers of 10.
|
||
|
var float64pow10 = []float64{
|
||
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||
|
1e20, 1e21, 1e22,
|
||
|
}
|
||
|
var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
|
||
|
|
||
|
// If possible to convert decimal representation to 64-bit float f exactly,
|
||
|
// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
|
||
|
// Three common cases:
|
||
|
// value is exact integer
|
||
|
// value is exact integer * exact power of ten
|
||
|
// value is exact integer / exact power of ten
|
||
|
// These all produce potentially inexact but correctly rounded answers.
|
||
|
func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) {
|
||
|
if mantissa>>float64info.mantbits != 0 {
|
||
|
return
|
||
|
}
|
||
|
// gccgo gets this wrong on 32-bit i386 when not using -msse.
|
||
|
// See TestRoundTrip in atof_test.go for a test case.
|
||
|
if runtime.GOARCH == "386" {
|
||
|
return
|
||
|
}
|
||
|
f = float64(mantissa)
|
||
|
if neg {
|
||
|
f = -f
|
||
|
}
|
||
|
switch {
|
||
|
case exp == 0:
|
||
|
// an integer.
|
||
|
return f, true
|
||
|
// Exact integers are <= 10^15.
|
||
|
// Exact powers of ten are <= 10^22.
|
||
|
case exp > 0 && exp <= 15+22: // int * 10^k
|
||
|
// If exponent is big but number of digits is not,
|
||
|
// can move a few zeros into the integer part.
|
||
|
if exp > 22 {
|
||
|
f *= float64pow10[exp-22]
|
||
|
exp = 22
|
||
|
}
|
||
|
if f > 1e15 || f < -1e15 {
|
||
|
// the exponent was really too large.
|
||
|
return
|
||
|
}
|
||
|
return f * float64pow10[exp], true
|
||
|
case exp < 0 && exp >= -22: // int / 10^k
|
||
|
return f / float64pow10[-exp], true
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// If possible to compute mantissa*10^exp to 32-bit float f exactly,
|
||
|
// entirely in floating-point math, do so, avoiding the machinery above.
|
||
|
func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) {
|
||
|
if mantissa>>float32info.mantbits != 0 {
|
||
|
return
|
||
|
}
|
||
|
f = float32(mantissa)
|
||
|
if neg {
|
||
|
f = -f
|
||
|
}
|
||
|
switch {
|
||
|
case exp == 0:
|
||
|
return f, true
|
||
|
// Exact integers are <= 10^7.
|
||
|
// Exact powers of ten are <= 10^10.
|
||
|
case exp > 0 && exp <= 7+10: // int * 10^k
|
||
|
// If exponent is big but number of digits is not,
|
||
|
// can move a few zeros into the integer part.
|
||
|
if exp > 10 {
|
||
|
f *= float32pow10[exp-10]
|
||
|
exp = 10
|
||
|
}
|
||
|
if f > 1e7 || f < -1e7 {
|
||
|
// the exponent was really too large.
|
||
|
return
|
||
|
}
|
||
|
return f * float32pow10[exp], true
|
||
|
case exp < 0 && exp >= -10: // int / 10^k
|
||
|
return f / float32pow10[-exp], true
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// atofHex converts the hex floating-point string s
|
||
|
// to a rounded float32 or float64 value (depending on flt==&float32info or flt==&float64info)
|
||
|
// and returns it as a float64.
|
||
|
// The string s has already been parsed into a mantissa, exponent, and sign (neg==true for negative).
|
||
|
// If trunc is true, trailing non-zero bits have been omitted from the mantissa.
|
||
|
func atofHex(s string, flt *floatInfo, mantissa uint64, exp int, neg, trunc bool) (float64, error) {
|
||
|
maxExp := 1<<flt.expbits + flt.bias - 2
|
||
|
minExp := flt.bias + 1
|
||
|
exp += int(flt.mantbits) // mantissa now implicitly divided by 2^mantbits.
|
||
|
|
||
|
// Shift mantissa and exponent to bring representation into float range.
|
||
|
// Eventually we want a mantissa with a leading 1-bit followed by mantbits other bits.
|
||
|
// For rounding, we need two more, where the bottom bit represents
|
||
|
// whether that bit or any later bit was non-zero.
|
||
|
// (If the mantissa has already lost non-zero bits, trunc is true,
|
||
|
// and we OR in a 1 below after shifting left appropriately.)
|
||
|
for mantissa != 0 && mantissa>>(flt.mantbits+2) == 0 {
|
||
|
mantissa <<= 1
|
||
|
exp--
|
||
|
}
|
||
|
if trunc {
|
||
|
mantissa |= 1
|
||
|
}
|
||
|
for mantissa>>(1+flt.mantbits+2) != 0 {
|
||
|
mantissa = mantissa>>1 | mantissa&1
|
||
|
exp++
|
||
|
}
|
||
|
|
||
|
// If exponent is too negative,
|
||
|
// denormalize in hopes of making it representable.
|
||
|
// (The -2 is for the rounding bits.)
|
||
|
for mantissa > 1 && exp < minExp-2 {
|
||
|
mantissa = mantissa>>1 | mantissa&1
|
||
|
exp++
|
||
|
}
|
||
|
|
||
|
// Round using two bottom bits.
|
||
|
round := mantissa & 3
|
||
|
mantissa >>= 2
|
||
|
round |= mantissa & 1 // round to even (round up if mantissa is odd)
|
||
|
exp += 2
|
||
|
if round == 3 {
|
||
|
mantissa++
|
||
|
if mantissa == 1<<(1+flt.mantbits) {
|
||
|
mantissa >>= 1
|
||
|
exp++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if mantissa>>flt.mantbits == 0 { // Denormal or zero.
|
||
|
exp = flt.bias
|
||
|
}
|
||
|
var err error
|
||
|
if exp > maxExp { // infinity and range error
|
||
|
mantissa = 1 << flt.mantbits
|
||
|
exp = maxExp + 1
|
||
|
err = rangeError(fnParseFloat, s)
|
||
|
}
|
||
|
|
||
|
bits := mantissa & (1<<flt.mantbits - 1)
|
||
|
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
|
||
|
if neg {
|
||
|
bits |= 1 << flt.mantbits << flt.expbits
|
||
|
}
|
||
|
if flt == &float32info {
|
||
|
return float64(math.Float32frombits(uint32(bits))), err
|
||
|
}
|
||
|
return math.Float64frombits(bits), err
|
||
|
}
|
||
|
|
||
|
const fnParseFloat = "ParseFloat"
|
||
|
|
||
|
func atof32(s string) (f float32, n int, err error) {
|
||
|
if val, n, ok := special(s); ok {
|
||
|
return float32(val), n, nil
|
||
|
}
|
||
|
|
||
|
mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
|
||
|
if !ok {
|
||
|
return 0, n, syntaxError(fnParseFloat, s)
|
||
|
}
|
||
|
|
||
|
if hex {
|
||
|
f, err := atofHex(s[:n], &float32info, mantissa, exp, neg, trunc)
|
||
|
return float32(f), n, err
|
||
|
}
|
||
|
|
||
|
if optimize {
|
||
|
// Try pure floating-point arithmetic conversion, and if that fails,
|
||
|
// the Eisel-Lemire algorithm.
|
||
|
if !trunc {
|
||
|
if f, ok := atof32exact(mantissa, exp, neg); ok {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
}
|
||
|
f, ok := eiselLemire32(mantissa, exp, neg)
|
||
|
if ok {
|
||
|
if !trunc {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
// Even if the mantissa was truncated, we may
|
||
|
// have found the correct result. Confirm by
|
||
|
// converting the upper mantissa bound.
|
||
|
fUp, ok := eiselLemire32(mantissa+1, exp, neg)
|
||
|
if ok && f == fUp {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Slow fallback.
|
||
|
var d decimal
|
||
|
if !d.set(s[:n]) {
|
||
|
return 0, n, syntaxError(fnParseFloat, s)
|
||
|
}
|
||
|
b, ovf := d.floatBits(&float32info)
|
||
|
f = math.Float32frombits(uint32(b))
|
||
|
if ovf {
|
||
|
err = rangeError(fnParseFloat, s)
|
||
|
}
|
||
|
return f, n, err
|
||
|
}
|
||
|
|
||
|
func atof64(s string) (f float64, n int, err error) {
|
||
|
if val, n, ok := special(s); ok {
|
||
|
return val, n, nil
|
||
|
}
|
||
|
|
||
|
mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
|
||
|
if !ok {
|
||
|
return 0, n, syntaxError(fnParseFloat, s)
|
||
|
}
|
||
|
|
||
|
if hex {
|
||
|
f, err := atofHex(s[:n], &float64info, mantissa, exp, neg, trunc)
|
||
|
return f, n, err
|
||
|
}
|
||
|
|
||
|
if optimize {
|
||
|
// Try pure floating-point arithmetic conversion, and if that fails,
|
||
|
// the Eisel-Lemire algorithm.
|
||
|
if !trunc {
|
||
|
if f, ok := atof64exact(mantissa, exp, neg); ok {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
}
|
||
|
f, ok := eiselLemire64(mantissa, exp, neg)
|
||
|
if ok {
|
||
|
if !trunc {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
// Even if the mantissa was truncated, we may
|
||
|
// have found the correct result. Confirm by
|
||
|
// converting the upper mantissa bound.
|
||
|
fUp, ok := eiselLemire64(mantissa+1, exp, neg)
|
||
|
if ok && f == fUp {
|
||
|
return f, n, nil
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Slow fallback.
|
||
|
var d decimal
|
||
|
if !d.set(s[:n]) {
|
||
|
return 0, n, syntaxError(fnParseFloat, s)
|
||
|
}
|
||
|
b, ovf := d.floatBits(&float64info)
|
||
|
f = math.Float64frombits(b)
|
||
|
if ovf {
|
||
|
err = rangeError(fnParseFloat, s)
|
||
|
}
|
||
|
return f, n, err
|
||
|
}
|
||
|
|
||
|
// ParseFloat converts the string s to a floating-point number
|
||
|
// with the precision specified by bitSize: 32 for float32, or 64 for float64.
|
||
|
// When bitSize=32, the result still has type float64, but it will be
|
||
|
// convertible to float32 without changing its value.
|
||
|
//
|
||
|
// ParseFloat accepts decimal and hexadecimal floating-point number syntax.
|
||
|
// If s is well-formed and near a valid floating-point number,
|
||
|
// ParseFloat returns the nearest floating-point number rounded
|
||
|
// using IEEE754 unbiased rounding.
|
||
|
// (Parsing a hexadecimal floating-point value only rounds when
|
||
|
// there are more bits in the hexadecimal representation than
|
||
|
// will fit in the mantissa.)
|
||
|
//
|
||
|
// The errors that ParseFloat returns have concrete type *NumError
|
||
|
// and include err.Num = s.
|
||
|
//
|
||
|
// If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax.
|
||
|
//
|
||
|
// If s is syntactically well-formed but is more than 1/2 ULP
|
||
|
// away from the largest floating point number of the given size,
|
||
|
// ParseFloat returns f = ±Inf, err.Err = ErrRange.
|
||
|
//
|
||
|
// ParseFloat recognizes the strings "NaN", and the (possibly signed) strings "Inf" and "Infinity"
|
||
|
// as their respective special floating point values. It ignores case when matching.
|
||
|
func ParseFloat(s string, bitSize int) (float64, error) {
|
||
|
f, n, err := parseFloatPrefix(s, bitSize)
|
||
|
if n != len(s) && (err == nil || err.(*NumError).Err != ErrSyntax) {
|
||
|
return 0, syntaxError(fnParseFloat, s)
|
||
|
}
|
||
|
return f, err
|
||
|
}
|
||
|
|
||
|
func parseFloatPrefix(s string, bitSize int) (float64, int, error) {
|
||
|
if bitSize == 32 {
|
||
|
f, n, err := atof32(s)
|
||
|
return float64(f), n, err
|
||
|
}
|
||
|
return atof64(s)
|
||
|
}
|