310 lines
9.4 KiB
Go
310 lines
9.4 KiB
Go
|
// Copyright 2016 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package flate
|
||
|
|
||
|
import "math"
|
||
|
|
||
|
// This encoding algorithm, which prioritizes speed over output size, is
|
||
|
// based on Snappy's LZ77-style encoder: github.com/golang/snappy
|
||
|
|
||
|
const (
|
||
|
tableBits = 14 // Bits used in the table.
|
||
|
tableSize = 1 << tableBits // Size of the table.
|
||
|
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
|
||
|
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
|
||
|
|
||
|
// Reset the buffer offset when reaching this.
|
||
|
// Offsets are stored between blocks as int32 values.
|
||
|
// Since the offset we are checking against is at the beginning
|
||
|
// of the buffer, we need to subtract the current and input
|
||
|
// buffer to not risk overflowing the int32.
|
||
|
bufferReset = math.MaxInt32 - maxStoreBlockSize*2
|
||
|
)
|
||
|
|
||
|
func load32(b []byte, i int32) uint32 {
|
||
|
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
|
||
|
}
|
||
|
|
||
|
func load64(b []byte, i int32) uint64 {
|
||
|
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
|
||
|
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
|
||
|
}
|
||
|
|
||
|
func hash(u uint32) uint32 {
|
||
|
return (u * 0x1e35a7bd) >> tableShift
|
||
|
}
|
||
|
|
||
|
// These constants are defined by the Snappy implementation so that its
|
||
|
// assembly implementation can fast-path some 16-bytes-at-a-time copies. They
|
||
|
// aren't necessary in the pure Go implementation, as we don't use those same
|
||
|
// optimizations, but using the same thresholds doesn't really hurt.
|
||
|
const (
|
||
|
inputMargin = 16 - 1
|
||
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||
|
)
|
||
|
|
||
|
type tableEntry struct {
|
||
|
val uint32 // Value at destination
|
||
|
offset int32
|
||
|
}
|
||
|
|
||
|
// deflateFast maintains the table for matches,
|
||
|
// and the previous byte block for cross block matching.
|
||
|
type deflateFast struct {
|
||
|
table [tableSize]tableEntry
|
||
|
prev []byte // Previous block, zero length if unknown.
|
||
|
cur int32 // Current match offset.
|
||
|
}
|
||
|
|
||
|
func newDeflateFast() *deflateFast {
|
||
|
return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}
|
||
|
}
|
||
|
|
||
|
// encode encodes a block given in src and appends tokens
|
||
|
// to dst and returns the result.
|
||
|
func (e *deflateFast) encode(dst []token, src []byte) []token {
|
||
|
// Ensure that e.cur doesn't wrap.
|
||
|
if e.cur >= bufferReset {
|
||
|
e.shiftOffsets()
|
||
|
}
|
||
|
|
||
|
// This check isn't in the Snappy implementation, but there, the caller
|
||
|
// instead of the callee handles this case.
|
||
|
if len(src) < minNonLiteralBlockSize {
|
||
|
e.cur += maxStoreBlockSize
|
||
|
e.prev = e.prev[:0]
|
||
|
return emitLiteral(dst, src)
|
||
|
}
|
||
|
|
||
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
||
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
||
|
// looking for copies.
|
||
|
sLimit := int32(len(src) - inputMargin)
|
||
|
|
||
|
// nextEmit is where in src the next emitLiteral should start from.
|
||
|
nextEmit := int32(0)
|
||
|
s := int32(0)
|
||
|
cv := load32(src, s)
|
||
|
nextHash := hash(cv)
|
||
|
|
||
|
for {
|
||
|
// Copied from the C++ snappy implementation:
|
||
|
//
|
||
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||
|
// found, start looking only at every other byte. If 32 more bytes are
|
||
|
// scanned (or skipped), look at every third byte, etc.. When a match
|
||
|
// is found, immediately go back to looking at every byte. This is a
|
||
|
// small loss (~5% performance, ~0.1% density) for compressible data
|
||
|
// due to more bookkeeping, but for non-compressible data (such as
|
||
|
// JPEG) it's a huge win since the compressor quickly "realizes" the
|
||
|
// data is incompressible and doesn't bother looking for matches
|
||
|
// everywhere.
|
||
|
//
|
||
|
// The "skip" variable keeps track of how many bytes there are since
|
||
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||
|
// the number of bytes to move ahead for each iteration.
|
||
|
skip := int32(32)
|
||
|
|
||
|
nextS := s
|
||
|
var candidate tableEntry
|
||
|
for {
|
||
|
s = nextS
|
||
|
bytesBetweenHashLookups := skip >> 5
|
||
|
nextS = s + bytesBetweenHashLookups
|
||
|
skip += bytesBetweenHashLookups
|
||
|
if nextS > sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
candidate = e.table[nextHash&tableMask]
|
||
|
now := load32(src, nextS)
|
||
|
e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
|
||
|
nextHash = hash(now)
|
||
|
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset > maxMatchOffset || cv != candidate.val {
|
||
|
// Out of range or not matched.
|
||
|
cv = now
|
||
|
continue
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
|
||
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
||
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
||
|
// them as literal bytes.
|
||
|
dst = emitLiteral(dst, src[nextEmit:s])
|
||
|
|
||
|
// Call emitCopy, and then see if another emitCopy could be our next
|
||
|
// move. Repeat until we find no match for the input immediately after
|
||
|
// what was consumed by the last emitCopy call.
|
||
|
//
|
||
|
// If we exit this loop normally then we need to call emitLiteral next,
|
||
|
// though we don't yet know how big the literal will be. We handle that
|
||
|
// by proceeding to the next iteration of the main loop. We also can
|
||
|
// exit this loop via goto if we get close to exhausting the input.
|
||
|
for {
|
||
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
||
|
// literal bytes prior to s.
|
||
|
|
||
|
// Extend the 4-byte match as long as possible.
|
||
|
//
|
||
|
s += 4
|
||
|
t := candidate.offset - e.cur + 4
|
||
|
l := e.matchLen(s, t, src)
|
||
|
|
||
|
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
|
||
|
dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)))
|
||
|
s += l
|
||
|
nextEmit = s
|
||
|
if s >= sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
|
||
|
// We could immediately start working at s now, but to improve
|
||
|
// compression we first update the hash table at s-1 and at s. If
|
||
|
// another emitCopy is not our next move, also calculate nextHash
|
||
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
||
|
// are faster as one load64 call (with some shifts) instead of
|
||
|
// three load32 calls.
|
||
|
x := load64(src, s-1)
|
||
|
prevHash := hash(uint32(x))
|
||
|
e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
|
||
|
x >>= 8
|
||
|
currHash := hash(uint32(x))
|
||
|
candidate = e.table[currHash&tableMask]
|
||
|
e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
|
||
|
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset > maxMatchOffset || uint32(x) != candidate.val {
|
||
|
cv = uint32(x >> 8)
|
||
|
nextHash = hash(cv)
|
||
|
s++
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emitRemainder:
|
||
|
if int(nextEmit) < len(src) {
|
||
|
dst = emitLiteral(dst, src[nextEmit:])
|
||
|
}
|
||
|
e.cur += int32(len(src))
|
||
|
e.prev = e.prev[:len(src)]
|
||
|
copy(e.prev, src)
|
||
|
return dst
|
||
|
}
|
||
|
|
||
|
func emitLiteral(dst []token, lit []byte) []token {
|
||
|
for _, v := range lit {
|
||
|
dst = append(dst, literalToken(uint32(v)))
|
||
|
}
|
||
|
return dst
|
||
|
}
|
||
|
|
||
|
// matchLen returns the match length between src[s:] and src[t:].
|
||
|
// t can be negative to indicate the match is starting in e.prev.
|
||
|
// We assume that src[s-4:s] and src[t-4:t] already match.
|
||
|
func (e *deflateFast) matchLen(s, t int32, src []byte) int32 {
|
||
|
s1 := int(s) + maxMatchLength - 4
|
||
|
if s1 > len(src) {
|
||
|
s1 = len(src)
|
||
|
}
|
||
|
|
||
|
// If we are inside the current block
|
||
|
if t >= 0 {
|
||
|
b := src[t:]
|
||
|
a := src[s:s1]
|
||
|
b = b[:len(a)]
|
||
|
// Extend the match to be as long as possible.
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i)
|
||
|
}
|
||
|
}
|
||
|
return int32(len(a))
|
||
|
}
|
||
|
|
||
|
// We found a match in the previous block.
|
||
|
tp := int32(len(e.prev)) + t
|
||
|
if tp < 0 {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// Extend the match to be as long as possible.
|
||
|
a := src[s:s1]
|
||
|
b := e.prev[tp:]
|
||
|
if len(b) > len(a) {
|
||
|
b = b[:len(a)]
|
||
|
}
|
||
|
a = a[:len(b)]
|
||
|
for i := range b {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we reached our limit, we matched everything we are
|
||
|
// allowed to in the previous block and we return.
|
||
|
n := int32(len(b))
|
||
|
if int(s+n) == s1 {
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// Continue looking for more matches in the current block.
|
||
|
a = src[s+n : s1]
|
||
|
b = src[:len(a)]
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i) + n
|
||
|
}
|
||
|
}
|
||
|
return int32(len(a)) + n
|
||
|
}
|
||
|
|
||
|
// Reset resets the encoding history.
|
||
|
// This ensures that no matches are made to the previous block.
|
||
|
func (e *deflateFast) reset() {
|
||
|
e.prev = e.prev[:0]
|
||
|
// Bump the offset, so all matches will fail distance check.
|
||
|
// Nothing should be >= e.cur in the table.
|
||
|
e.cur += maxMatchOffset
|
||
|
|
||
|
// Protect against e.cur wraparound.
|
||
|
if e.cur >= bufferReset {
|
||
|
e.shiftOffsets()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// shiftOffsets will shift down all match offset.
|
||
|
// This is only called in rare situations to prevent integer overflow.
|
||
|
//
|
||
|
// See https://golang.org/issue/18636 and https://github.com/golang/go/issues/34121.
|
||
|
func (e *deflateFast) shiftOffsets() {
|
||
|
if len(e.prev) == 0 {
|
||
|
// We have no history; just clear the table.
|
||
|
for i := range e.table[:] {
|
||
|
e.table[i] = tableEntry{}
|
||
|
}
|
||
|
e.cur = maxMatchOffset + 1
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Shift down everything in the table that isn't already too far away.
|
||
|
for i := range e.table[:] {
|
||
|
v := e.table[i].offset - e.cur + maxMatchOffset + 1
|
||
|
if v < 0 {
|
||
|
// We want to reset e.cur to maxMatchOffset + 1, so we need to shift
|
||
|
// all table entries down by (e.cur - (maxMatchOffset + 1)).
|
||
|
// Because we ignore matches > maxMatchOffset, we can cap
|
||
|
// any negative offsets at 0.
|
||
|
v = 0
|
||
|
}
|
||
|
e.table[i].offset = v
|
||
|
}
|
||
|
e.cur = maxMatchOffset + 1
|
||
|
}
|