1490 lines
42 KiB
C
1490 lines
42 KiB
C
|
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
|
|||
|
Copyright (C) 1999-2022 Free Software Foundation, Inc.
|
|||
|
Contributed by Stephane Carrez (stcarrez@nerim.fr)
|
|||
|
|
|||
|
This file is part of BFD, the Binary File Descriptor library.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 3 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|||
|
MA 02110-1301, USA. */
|
|||
|
|
|||
|
#include "sysdep.h"
|
|||
|
#include "bfd.h"
|
|||
|
#include "bfdlink.h"
|
|||
|
#include "libbfd.h"
|
|||
|
#include "elf-bfd.h"
|
|||
|
#include "elf32-m68hc1x.h"
|
|||
|
#include "elf/m68hc11.h"
|
|||
|
#include "opcode/m68hc11.h"
|
|||
|
#include "libiberty.h"
|
|||
|
|
|||
|
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
|
|||
|
((struct elf32_m68hc11_stub_hash_entry *) \
|
|||
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|||
|
|
|||
|
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
|
|||
|
(const char *stub_name,
|
|||
|
asection *section,
|
|||
|
struct m68hc11_elf_link_hash_table *htab);
|
|||
|
|
|||
|
static struct bfd_hash_entry *stub_hash_newfunc
|
|||
|
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
|||
|
|
|||
|
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
|
|||
|
const char* name, bfd_vma value,
|
|||
|
asection* sec);
|
|||
|
|
|||
|
static bool m68hc11_elf_export_one_stub
|
|||
|
(struct bfd_hash_entry *gen_entry, void *in_arg);
|
|||
|
|
|||
|
static void scan_sections_for_abi (bfd*, asection*, void *);
|
|||
|
|
|||
|
struct m68hc11_scan_param
|
|||
|
{
|
|||
|
struct m68hc11_page_info* pinfo;
|
|||
|
bool use_memory_banks;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/* Destroy a 68HC11/68HC12 ELF linker hash table. */
|
|||
|
|
|||
|
static void
|
|||
|
m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
|
|||
|
{
|
|||
|
struct m68hc11_elf_link_hash_table *ret
|
|||
|
= (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
|
|||
|
|
|||
|
bfd_hash_table_free (ret->stub_hash_table);
|
|||
|
free (ret->stub_hash_table);
|
|||
|
_bfd_elf_link_hash_table_free (obfd);
|
|||
|
}
|
|||
|
|
|||
|
/* Create a 68HC11/68HC12 ELF linker hash table. */
|
|||
|
|
|||
|
struct m68hc11_elf_link_hash_table*
|
|||
|
m68hc11_elf_hash_table_create (bfd *abfd)
|
|||
|
{
|
|||
|
struct m68hc11_elf_link_hash_table *ret;
|
|||
|
size_t amt = sizeof (struct m68hc11_elf_link_hash_table);
|
|||
|
|
|||
|
ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
|
|||
|
if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|||
|
_bfd_elf_link_hash_newfunc,
|
|||
|
sizeof (struct elf_link_hash_entry),
|
|||
|
M68HC11_ELF_DATA))
|
|||
|
{
|
|||
|
free (ret);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Init the stub hash table too. */
|
|||
|
amt = sizeof (struct bfd_hash_table);
|
|||
|
ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
|
|||
|
if (ret->stub_hash_table == NULL)
|
|||
|
{
|
|||
|
_bfd_elf_link_hash_table_free (abfd);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
|
|||
|
sizeof (struct elf32_m68hc11_stub_hash_entry)))
|
|||
|
{
|
|||
|
free (ret->stub_hash_table);
|
|||
|
_bfd_elf_link_hash_table_free (abfd);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
|
|||
|
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
/* Assorted hash table functions. */
|
|||
|
|
|||
|
/* Initialize an entry in the stub hash table. */
|
|||
|
|
|||
|
static struct bfd_hash_entry *
|
|||
|
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
|||
|
const char *string)
|
|||
|
{
|
|||
|
/* Allocate the structure if it has not already been allocated by a
|
|||
|
subclass. */
|
|||
|
if (entry == NULL)
|
|||
|
{
|
|||
|
entry = bfd_hash_allocate (table,
|
|||
|
sizeof (struct elf32_m68hc11_stub_hash_entry));
|
|||
|
if (entry == NULL)
|
|||
|
return entry;
|
|||
|
}
|
|||
|
|
|||
|
/* Call the allocation method of the superclass. */
|
|||
|
entry = bfd_hash_newfunc (entry, table, string);
|
|||
|
if (entry != NULL)
|
|||
|
{
|
|||
|
struct elf32_m68hc11_stub_hash_entry *eh;
|
|||
|
|
|||
|
/* Initialize the local fields. */
|
|||
|
eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
|
|||
|
eh->stub_sec = NULL;
|
|||
|
eh->stub_offset = 0;
|
|||
|
eh->target_value = 0;
|
|||
|
eh->target_section = NULL;
|
|||
|
}
|
|||
|
|
|||
|
return entry;
|
|||
|
}
|
|||
|
|
|||
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|||
|
stub entry are initialised. */
|
|||
|
|
|||
|
static struct elf32_m68hc11_stub_hash_entry *
|
|||
|
m68hc12_add_stub (const char *stub_name, asection *section,
|
|||
|
struct m68hc11_elf_link_hash_table *htab)
|
|||
|
{
|
|||
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
|||
|
|
|||
|
/* Enter this entry into the linker stub hash table. */
|
|||
|
stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
|
|||
|
true, false);
|
|||
|
if (stub_entry == NULL)
|
|||
|
{
|
|||
|
/* xgettext:c-format */
|
|||
|
_bfd_error_handler (_("%pB: cannot create stub entry %s"),
|
|||
|
section->owner, stub_name);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
if (htab->stub_section == 0)
|
|||
|
{
|
|||
|
htab->stub_section = (*htab->add_stub_section) (".tramp",
|
|||
|
htab->tramp_section);
|
|||
|
}
|
|||
|
|
|||
|
stub_entry->stub_sec = htab->stub_section;
|
|||
|
stub_entry->stub_offset = 0;
|
|||
|
return stub_entry;
|
|||
|
}
|
|||
|
|
|||
|
/* Hook called by the linker routine which adds symbols from an object
|
|||
|
file. We use it for identify far symbols and force a loading of
|
|||
|
the trampoline handler. */
|
|||
|
|
|||
|
bool
|
|||
|
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
|||
|
Elf_Internal_Sym *sym,
|
|||
|
const char **namep ATTRIBUTE_UNUSED,
|
|||
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
|||
|
asection **secp ATTRIBUTE_UNUSED,
|
|||
|
bfd_vma *valp ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (sym->st_other & STO_M68HC12_FAR)
|
|||
|
{
|
|||
|
struct elf_link_hash_entry *h;
|
|||
|
|
|||
|
h = (struct elf_link_hash_entry *)
|
|||
|
bfd_link_hash_lookup (info->hash, "__far_trampoline",
|
|||
|
false, false, false);
|
|||
|
if (h == NULL)
|
|||
|
{
|
|||
|
struct bfd_link_hash_entry* entry = NULL;
|
|||
|
|
|||
|
_bfd_generic_link_add_one_symbol (info, abfd,
|
|||
|
"__far_trampoline",
|
|||
|
BSF_GLOBAL,
|
|||
|
bfd_und_section_ptr,
|
|||
|
(bfd_vma) 0, (const char*) NULL,
|
|||
|
false, false, &entry);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
/* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
|
|||
|
STO_M68HC12_INTERRUPT. */
|
|||
|
|
|||
|
void
|
|||
|
elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
|||
|
unsigned int st_other,
|
|||
|
bool definition,
|
|||
|
bool dynamic ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (definition)
|
|||
|
h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
|
|||
|
| ELF_ST_VISIBILITY (h->other));
|
|||
|
}
|
|||
|
|
|||
|
/* External entry points for sizing and building linker stubs. */
|
|||
|
|
|||
|
/* Set up various things so that we can make a list of input sections
|
|||
|
for each output section included in the link. Returns -1 on error,
|
|||
|
0 when no stubs will be needed, and 1 on success. */
|
|||
|
|
|||
|
int
|
|||
|
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
|||
|
{
|
|||
|
bfd *input_bfd;
|
|||
|
unsigned int bfd_count;
|
|||
|
unsigned int top_id, top_index;
|
|||
|
asection *section;
|
|||
|
asection **input_list, **list;
|
|||
|
size_t amt;
|
|||
|
asection *text_section;
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
|
|||
|
htab = m68hc11_elf_hash_table (info);
|
|||
|
if (htab == NULL)
|
|||
|
return -1;
|
|||
|
|
|||
|
if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* Count the number of input BFDs and find the top input section id.
|
|||
|
Also search for an existing ".tramp" section so that we know
|
|||
|
where generated trampolines must go. Default to ".text" if we
|
|||
|
can't find it. */
|
|||
|
htab->tramp_section = 0;
|
|||
|
text_section = 0;
|
|||
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|||
|
input_bfd != NULL;
|
|||
|
input_bfd = input_bfd->link.next)
|
|||
|
{
|
|||
|
bfd_count += 1;
|
|||
|
for (section = input_bfd->sections;
|
|||
|
section != NULL;
|
|||
|
section = section->next)
|
|||
|
{
|
|||
|
const char *name = bfd_section_name (section);
|
|||
|
|
|||
|
if (!strcmp (name, ".tramp"))
|
|||
|
htab->tramp_section = section;
|
|||
|
|
|||
|
if (!strcmp (name, ".text"))
|
|||
|
text_section = section;
|
|||
|
|
|||
|
if (top_id < section->id)
|
|||
|
top_id = section->id;
|
|||
|
}
|
|||
|
}
|
|||
|
htab->bfd_count = bfd_count;
|
|||
|
if (htab->tramp_section == 0)
|
|||
|
htab->tramp_section = text_section;
|
|||
|
|
|||
|
/* We can't use output_bfd->section_count here to find the top output
|
|||
|
section index as some sections may have been removed, and
|
|||
|
strip_excluded_output_sections doesn't renumber the indices. */
|
|||
|
for (section = output_bfd->sections, top_index = 0;
|
|||
|
section != NULL;
|
|||
|
section = section->next)
|
|||
|
{
|
|||
|
if (top_index < section->index)
|
|||
|
top_index = section->index;
|
|||
|
}
|
|||
|
|
|||
|
htab->top_index = top_index;
|
|||
|
amt = sizeof (asection *) * (top_index + 1);
|
|||
|
input_list = (asection **) bfd_malloc (amt);
|
|||
|
htab->input_list = input_list;
|
|||
|
if (input_list == NULL)
|
|||
|
return -1;
|
|||
|
|
|||
|
/* For sections we aren't interested in, mark their entries with a
|
|||
|
value we can check later. */
|
|||
|
list = input_list + top_index;
|
|||
|
do
|
|||
|
*list = bfd_abs_section_ptr;
|
|||
|
while (list-- != input_list);
|
|||
|
|
|||
|
for (section = output_bfd->sections;
|
|||
|
section != NULL;
|
|||
|
section = section->next)
|
|||
|
{
|
|||
|
if ((section->flags & SEC_CODE) != 0)
|
|||
|
input_list[section->index] = NULL;
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Determine and set the size of the stub section for a final link.
|
|||
|
|
|||
|
The basic idea here is to examine all the relocations looking for
|
|||
|
PC-relative calls to a target that is unreachable with a "bl"
|
|||
|
instruction. */
|
|||
|
|
|||
|
bool
|
|||
|
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
|
|||
|
struct bfd_link_info *info,
|
|||
|
asection * (*add_stub_section) (const char*, asection*))
|
|||
|
{
|
|||
|
bfd *input_bfd;
|
|||
|
asection *section;
|
|||
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|||
|
unsigned int bfd_indx, bfd_count;
|
|||
|
size_t amt;
|
|||
|
asection *stub_sec;
|
|||
|
struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
|
|||
|
|
|||
|
if (htab == NULL)
|
|||
|
return false;
|
|||
|
|
|||
|
/* Stash our params away. */
|
|||
|
htab->stub_bfd = stub_bfd;
|
|||
|
htab->add_stub_section = add_stub_section;
|
|||
|
|
|||
|
/* Count the number of input BFDs and find the top input section id. */
|
|||
|
for (input_bfd = info->input_bfds, bfd_count = 0;
|
|||
|
input_bfd != NULL;
|
|||
|
input_bfd = input_bfd->link.next)
|
|||
|
bfd_count += 1;
|
|||
|
|
|||
|
/* We want to read in symbol extension records only once. To do this
|
|||
|
we need to read in the local symbols in parallel and save them for
|
|||
|
later use; so hold pointers to the local symbols in an array. */
|
|||
|
amt = sizeof (Elf_Internal_Sym *) * bfd_count;
|
|||
|
all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
|
|||
|
if (all_local_syms == NULL)
|
|||
|
return false;
|
|||
|
|
|||
|
/* Walk over all the input BFDs, swapping in local symbols. */
|
|||
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|||
|
input_bfd != NULL;
|
|||
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|||
|
{
|
|||
|
Elf_Internal_Shdr *symtab_hdr;
|
|||
|
|
|||
|
/* We'll need the symbol table in a second. */
|
|||
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|||
|
if (symtab_hdr->sh_info == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
/* We need an array of the local symbols attached to the input bfd. */
|
|||
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|||
|
if (local_syms == NULL)
|
|||
|
{
|
|||
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|||
|
symtab_hdr->sh_info, 0,
|
|||
|
NULL, NULL, NULL);
|
|||
|
/* Cache them for elf_link_input_bfd. */
|
|||
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|||
|
}
|
|||
|
if (local_syms == NULL)
|
|||
|
{
|
|||
|
free (all_local_syms);
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
all_local_syms[bfd_indx] = local_syms;
|
|||
|
}
|
|||
|
|
|||
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|||
|
input_bfd != NULL;
|
|||
|
input_bfd = input_bfd->link.next, bfd_indx++)
|
|||
|
{
|
|||
|
Elf_Internal_Shdr *symtab_hdr;
|
|||
|
struct elf_link_hash_entry ** sym_hashes;
|
|||
|
|
|||
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|||
|
|
|||
|
/* We'll need the symbol table in a second. */
|
|||
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|||
|
if (symtab_hdr->sh_info == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
local_syms = all_local_syms[bfd_indx];
|
|||
|
|
|||
|
/* Walk over each section attached to the input bfd. */
|
|||
|
for (section = input_bfd->sections;
|
|||
|
section != NULL;
|
|||
|
section = section->next)
|
|||
|
{
|
|||
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|||
|
|
|||
|
/* If there aren't any relocs, then there's nothing more
|
|||
|
to do. */
|
|||
|
if ((section->flags & SEC_RELOC) == 0
|
|||
|
|| section->reloc_count == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
/* If this section is a link-once section that will be
|
|||
|
discarded, then don't create any stubs. */
|
|||
|
if (section->output_section == NULL
|
|||
|
|| section->output_section->owner != output_bfd)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Get the relocs. */
|
|||
|
internal_relocs
|
|||
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
|
|||
|
(Elf_Internal_Rela *) NULL,
|
|||
|
info->keep_memory);
|
|||
|
if (internal_relocs == NULL)
|
|||
|
goto error_ret_free_local;
|
|||
|
|
|||
|
/* Now examine each relocation. */
|
|||
|
irela = internal_relocs;
|
|||
|
irelaend = irela + section->reloc_count;
|
|||
|
for (; irela < irelaend; irela++)
|
|||
|
{
|
|||
|
unsigned int r_type, r_indx;
|
|||
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
|||
|
asection *sym_sec;
|
|||
|
bfd_vma sym_value;
|
|||
|
struct elf_link_hash_entry *hash;
|
|||
|
const char *stub_name;
|
|||
|
Elf_Internal_Sym *sym;
|
|||
|
|
|||
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|||
|
|
|||
|
/* Only look at 16-bit relocs. */
|
|||
|
if (r_type != (unsigned int) R_M68HC11_16)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Now determine the call target, its name, value,
|
|||
|
section. */
|
|||
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|||
|
if (r_indx < symtab_hdr->sh_info)
|
|||
|
{
|
|||
|
/* It's a local symbol. */
|
|||
|
Elf_Internal_Shdr *hdr;
|
|||
|
bool is_far;
|
|||
|
|
|||
|
sym = local_syms + r_indx;
|
|||
|
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
|||
|
if (!is_far)
|
|||
|
continue;
|
|||
|
|
|||
|
if (sym->st_shndx >= elf_numsections (input_bfd))
|
|||
|
sym_sec = NULL;
|
|||
|
else
|
|||
|
{
|
|||
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|||
|
sym_sec = hdr->bfd_section;
|
|||
|
}
|
|||
|
stub_name = (bfd_elf_string_from_elf_section
|
|||
|
(input_bfd, symtab_hdr->sh_link,
|
|||
|
sym->st_name));
|
|||
|
sym_value = sym->st_value;
|
|||
|
hash = NULL;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* It's an external symbol. */
|
|||
|
int e_indx;
|
|||
|
|
|||
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|||
|
hash = (struct elf_link_hash_entry *)
|
|||
|
(sym_hashes[e_indx]);
|
|||
|
|
|||
|
while (hash->root.type == bfd_link_hash_indirect
|
|||
|
|| hash->root.type == bfd_link_hash_warning)
|
|||
|
hash = ((struct elf_link_hash_entry *)
|
|||
|
hash->root.u.i.link);
|
|||
|
|
|||
|
if (hash->root.type == bfd_link_hash_defined
|
|||
|
|| hash->root.type == bfd_link_hash_defweak
|
|||
|
|| hash->root.type == bfd_link_hash_new)
|
|||
|
{
|
|||
|
if (!(hash->other & STO_M68HC12_FAR))
|
|||
|
continue;
|
|||
|
}
|
|||
|
else if (hash->root.type == bfd_link_hash_undefweak)
|
|||
|
{
|
|||
|
continue;
|
|||
|
}
|
|||
|
else if (hash->root.type == bfd_link_hash_undefined)
|
|||
|
{
|
|||
|
continue;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
bfd_set_error (bfd_error_bad_value);
|
|||
|
goto error_ret_free_internal;
|
|||
|
}
|
|||
|
sym_sec = hash->root.u.def.section;
|
|||
|
sym_value = hash->root.u.def.value;
|
|||
|
stub_name = hash->root.root.string;
|
|||
|
}
|
|||
|
|
|||
|
if (!stub_name)
|
|||
|
goto error_ret_free_internal;
|
|||
|
|
|||
|
stub_entry = m68hc12_stub_hash_lookup
|
|||
|
(htab->stub_hash_table,
|
|||
|
stub_name,
|
|||
|
false, false);
|
|||
|
if (stub_entry == NULL)
|
|||
|
{
|
|||
|
if (add_stub_section == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
stub_entry = m68hc12_add_stub (stub_name, section, htab);
|
|||
|
if (stub_entry == NULL)
|
|||
|
{
|
|||
|
error_ret_free_internal:
|
|||
|
if (elf_section_data (section)->relocs == NULL)
|
|||
|
free (internal_relocs);
|
|||
|
goto error_ret_free_local;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
stub_entry->target_value = sym_value;
|
|||
|
stub_entry->target_section = sym_sec;
|
|||
|
}
|
|||
|
|
|||
|
/* We're done with the internal relocs, free them. */
|
|||
|
if (elf_section_data (section)->relocs == NULL)
|
|||
|
free (internal_relocs);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (add_stub_section)
|
|||
|
{
|
|||
|
/* OK, we've added some stubs. Find out the new size of the
|
|||
|
stub sections. */
|
|||
|
for (stub_sec = htab->stub_bfd->sections;
|
|||
|
stub_sec != NULL;
|
|||
|
stub_sec = stub_sec->next)
|
|||
|
{
|
|||
|
stub_sec->size = 0;
|
|||
|
}
|
|||
|
|
|||
|
bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
|
|||
|
}
|
|||
|
free (all_local_syms);
|
|||
|
return true;
|
|||
|
|
|||
|
error_ret_free_local:
|
|||
|
free (all_local_syms);
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
/* Export the trampoline addresses in the symbol table. */
|
|||
|
static bool
|
|||
|
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
|
|||
|
{
|
|||
|
struct bfd_link_info *info;
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
|||
|
char* name;
|
|||
|
bool result;
|
|||
|
|
|||
|
info = (struct bfd_link_info *) in_arg;
|
|||
|
htab = m68hc11_elf_hash_table (info);
|
|||
|
if (htab == NULL)
|
|||
|
return false;
|
|||
|
|
|||
|
/* Massage our args to the form they really have. */
|
|||
|
stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
|
|||
|
|
|||
|
/* Generate the trampoline according to HC11 or HC12. */
|
|||
|
result = (* htab->build_one_stub) (gen_entry, in_arg);
|
|||
|
|
|||
|
/* Make a printable name that does not conflict with the real function. */
|
|||
|
name = concat ("tramp.", stub_entry->root.string, NULL);
|
|||
|
|
|||
|
/* Export the symbol for debugging/disassembling. */
|
|||
|
m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
|
|||
|
stub_entry->stub_offset,
|
|||
|
stub_entry->stub_sec);
|
|||
|
free (name);
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
/* Export a symbol or set its value and section. */
|
|||
|
static void
|
|||
|
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
|
|||
|
const char *name, bfd_vma value, asection *sec)
|
|||
|
{
|
|||
|
struct elf_link_hash_entry *h;
|
|||
|
|
|||
|
h = (struct elf_link_hash_entry *)
|
|||
|
bfd_link_hash_lookup (info->hash, name, false, false, false);
|
|||
|
if (h == NULL)
|
|||
|
{
|
|||
|
_bfd_generic_link_add_one_symbol (info, abfd,
|
|||
|
name,
|
|||
|
BSF_GLOBAL,
|
|||
|
sec,
|
|||
|
value,
|
|||
|
(const char*) NULL,
|
|||
|
true, false, NULL);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
h->root.type = bfd_link_hash_defined;
|
|||
|
h->root.u.def.value = value;
|
|||
|
h->root.u.def.section = sec;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Build all the stubs associated with the current output file. The
|
|||
|
stubs are kept in a hash table attached to the main linker hash
|
|||
|
table. This function is called via m68hc12elf_finish in the
|
|||
|
linker. */
|
|||
|
|
|||
|
bool
|
|||
|
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
|
|||
|
{
|
|||
|
asection *stub_sec;
|
|||
|
struct bfd_hash_table *table;
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
struct m68hc11_scan_param param;
|
|||
|
|
|||
|
m68hc11_elf_get_bank_parameters (info);
|
|||
|
htab = m68hc11_elf_hash_table (info);
|
|||
|
if (htab == NULL)
|
|||
|
return false;
|
|||
|
|
|||
|
for (stub_sec = htab->stub_bfd->sections;
|
|||
|
stub_sec != NULL;
|
|||
|
stub_sec = stub_sec->next)
|
|||
|
{
|
|||
|
bfd_size_type size;
|
|||
|
|
|||
|
/* Allocate memory to hold the linker stubs. */
|
|||
|
size = stub_sec->size;
|
|||
|
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
|
|||
|
if (stub_sec->contents == NULL && size != 0)
|
|||
|
return false;
|
|||
|
stub_sec->size = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Build the stubs as directed by the stub hash table. */
|
|||
|
table = htab->stub_hash_table;
|
|||
|
bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
|
|||
|
|
|||
|
/* Scan the output sections to see if we use the memory banks.
|
|||
|
If so, export the symbols that define how the memory banks
|
|||
|
are mapped. This is used by gdb and the simulator to obtain
|
|||
|
the information. It can be used by programs to burn the eprom
|
|||
|
at the good addresses. */
|
|||
|
param.use_memory_banks = false;
|
|||
|
param.pinfo = &htab->pinfo;
|
|||
|
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
|||
|
if (param.use_memory_banks)
|
|||
|
{
|
|||
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
|
|||
|
htab->pinfo.bank_physical,
|
|||
|
bfd_abs_section_ptr);
|
|||
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
|||
|
htab->pinfo.bank_virtual,
|
|||
|
bfd_abs_section_ptr);
|
|||
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
|
|||
|
htab->pinfo.bank_size,
|
|||
|
bfd_abs_section_ptr);
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
|
|||
|
{
|
|||
|
unsigned i;
|
|||
|
struct m68hc11_page_info *pinfo;
|
|||
|
struct bfd_link_hash_entry *h;
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
|
|||
|
htab = m68hc11_elf_hash_table (info);
|
|||
|
if (htab == NULL)
|
|||
|
return;
|
|||
|
|
|||
|
pinfo = & htab->pinfo;
|
|||
|
if (pinfo->bank_param_initialized)
|
|||
|
return;
|
|||
|
|
|||
|
pinfo->bank_virtual = M68HC12_BANK_VIRT;
|
|||
|
pinfo->bank_mask = M68HC12_BANK_MASK;
|
|||
|
pinfo->bank_physical = M68HC12_BANK_BASE;
|
|||
|
pinfo->bank_shift = M68HC12_BANK_SHIFT;
|
|||
|
pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
|
|||
|
|
|||
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
|
|||
|
false, false, true);
|
|||
|
if (h != (struct bfd_link_hash_entry*) NULL
|
|||
|
&& h->type == bfd_link_hash_defined)
|
|||
|
pinfo->bank_physical = (h->u.def.value
|
|||
|
+ h->u.def.section->output_section->vma
|
|||
|
+ h->u.def.section->output_offset);
|
|||
|
|
|||
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
|||
|
false, false, true);
|
|||
|
if (h != (struct bfd_link_hash_entry*) NULL
|
|||
|
&& h->type == bfd_link_hash_defined)
|
|||
|
pinfo->bank_virtual = (h->u.def.value
|
|||
|
+ h->u.def.section->output_section->vma
|
|||
|
+ h->u.def.section->output_offset);
|
|||
|
|
|||
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
|
|||
|
false, false, true);
|
|||
|
if (h != (struct bfd_link_hash_entry*) NULL
|
|||
|
&& h->type == bfd_link_hash_defined)
|
|||
|
pinfo->bank_size = (h->u.def.value
|
|||
|
+ h->u.def.section->output_section->vma
|
|||
|
+ h->u.def.section->output_offset);
|
|||
|
|
|||
|
pinfo->bank_shift = 0;
|
|||
|
for (i = pinfo->bank_size; i != 0; i >>= 1)
|
|||
|
pinfo->bank_shift++;
|
|||
|
pinfo->bank_shift--;
|
|||
|
pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
|
|||
|
pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
|
|||
|
pinfo->bank_param_initialized = 1;
|
|||
|
|
|||
|
h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false,
|
|||
|
false, true);
|
|||
|
if (h != (struct bfd_link_hash_entry*) NULL
|
|||
|
&& h->type == bfd_link_hash_defined)
|
|||
|
pinfo->trampoline_addr = (h->u.def.value
|
|||
|
+ h->u.def.section->output_section->vma
|
|||
|
+ h->u.def.section->output_offset);
|
|||
|
}
|
|||
|
|
|||
|
/* Return 1 if the address is in banked memory.
|
|||
|
This can be applied to a virtual address and to a physical address. */
|
|||
|
int
|
|||
|
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
|||
|
{
|
|||
|
if (addr >= pinfo->bank_virtual)
|
|||
|
return 1;
|
|||
|
|
|||
|
if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
|
|||
|
return 1;
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the physical address seen by the processor, taking
|
|||
|
into account banked memory. */
|
|||
|
bfd_vma
|
|||
|
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
|||
|
{
|
|||
|
if (addr < pinfo->bank_virtual)
|
|||
|
return addr;
|
|||
|
|
|||
|
/* Map the address to the memory bank. */
|
|||
|
addr -= pinfo->bank_virtual;
|
|||
|
addr &= pinfo->bank_mask;
|
|||
|
addr += pinfo->bank_physical;
|
|||
|
return addr;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the page number corresponding to an address in banked memory. */
|
|||
|
bfd_vma
|
|||
|
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
|||
|
{
|
|||
|
if (addr < pinfo->bank_virtual)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* Map the address to the memory bank. */
|
|||
|
addr -= pinfo->bank_virtual;
|
|||
|
addr >>= pinfo->bank_shift;
|
|||
|
addr &= 0x0ff;
|
|||
|
return addr;
|
|||
|
}
|
|||
|
|
|||
|
/* This function is used for relocs which are only used for relaxing,
|
|||
|
which the linker should otherwise ignore. */
|
|||
|
|
|||
|
bfd_reloc_status_type
|
|||
|
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
|||
|
arelent *reloc_entry,
|
|||
|
asymbol *symbol ATTRIBUTE_UNUSED,
|
|||
|
void *data ATTRIBUTE_UNUSED,
|
|||
|
asection *input_section,
|
|||
|
bfd *output_bfd,
|
|||
|
char **error_message ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (output_bfd != NULL)
|
|||
|
reloc_entry->address += input_section->output_offset;
|
|||
|
return bfd_reloc_ok;
|
|||
|
}
|
|||
|
|
|||
|
bfd_reloc_status_type
|
|||
|
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
|||
|
arelent *reloc_entry,
|
|||
|
asymbol *symbol,
|
|||
|
void *data ATTRIBUTE_UNUSED,
|
|||
|
asection *input_section,
|
|||
|
bfd *output_bfd,
|
|||
|
char **error_message ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (output_bfd != (bfd *) NULL
|
|||
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
|||
|
&& (! reloc_entry->howto->partial_inplace
|
|||
|
|| reloc_entry->addend == 0))
|
|||
|
{
|
|||
|
reloc_entry->address += input_section->output_offset;
|
|||
|
return bfd_reloc_ok;
|
|||
|
}
|
|||
|
|
|||
|
if (output_bfd != NULL)
|
|||
|
return bfd_reloc_continue;
|
|||
|
|
|||
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
|||
|
return bfd_reloc_outofrange;
|
|||
|
|
|||
|
abort();
|
|||
|
}
|
|||
|
|
|||
|
/* Look through the relocs for a section during the first phase.
|
|||
|
Since we don't do .gots or .plts, we just need to consider the
|
|||
|
virtual table relocs for gc. */
|
|||
|
|
|||
|
bool
|
|||
|
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
|||
|
asection *sec, const Elf_Internal_Rela *relocs)
|
|||
|
{
|
|||
|
Elf_Internal_Shdr * symtab_hdr;
|
|||
|
struct elf_link_hash_entry ** sym_hashes;
|
|||
|
const Elf_Internal_Rela * rel;
|
|||
|
const Elf_Internal_Rela * rel_end;
|
|||
|
|
|||
|
if (bfd_link_relocatable (info))
|
|||
|
return true;
|
|||
|
|
|||
|
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
|
|||
|
sym_hashes = elf_sym_hashes (abfd);
|
|||
|
rel_end = relocs + sec->reloc_count;
|
|||
|
|
|||
|
for (rel = relocs; rel < rel_end; rel++)
|
|||
|
{
|
|||
|
struct elf_link_hash_entry * h;
|
|||
|
unsigned long r_symndx;
|
|||
|
|
|||
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|||
|
|
|||
|
if (r_symndx < symtab_hdr->sh_info)
|
|||
|
h = NULL;
|
|||
|
else
|
|||
|
{
|
|||
|
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
|
|||
|
while (h->root.type == bfd_link_hash_indirect
|
|||
|
|| h->root.type == bfd_link_hash_warning)
|
|||
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|||
|
}
|
|||
|
|
|||
|
switch (ELF32_R_TYPE (rel->r_info))
|
|||
|
{
|
|||
|
/* This relocation describes the C++ object vtable hierarchy.
|
|||
|
Reconstruct it for later use during GC. */
|
|||
|
case R_M68HC11_GNU_VTINHERIT:
|
|||
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
|
|||
|
/* This relocation describes which C++ vtable entries are actually
|
|||
|
used. Record for later use during GC. */
|
|||
|
case R_M68HC11_GNU_VTENTRY:
|
|||
|
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
static bool ATTRIBUTE_PRINTF (6, 7)
|
|||
|
reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd,
|
|||
|
asection *input_section, const Elf_Internal_Rela *rel,
|
|||
|
const char *fmt, ...)
|
|||
|
{
|
|||
|
va_list ap;
|
|||
|
char *buf;
|
|||
|
int ret;
|
|||
|
|
|||
|
va_start (ap, fmt);
|
|||
|
ret = vasprintf (&buf, fmt, ap);
|
|||
|
va_end (ap);
|
|||
|
if (ret < 0)
|
|||
|
{
|
|||
|
bfd_set_error (bfd_error_no_memory);
|
|||
|
return false;
|
|||
|
}
|
|||
|
info->callbacks->warning (info, buf, name, input_bfd, input_section,
|
|||
|
rel->r_offset);
|
|||
|
free (buf);
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
/* Relocate a 68hc11/68hc12 ELF section. */
|
|||
|
int
|
|||
|
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|||
|
struct bfd_link_info *info,
|
|||
|
bfd *input_bfd, asection *input_section,
|
|||
|
bfd_byte *contents, Elf_Internal_Rela *relocs,
|
|||
|
Elf_Internal_Sym *local_syms,
|
|||
|
asection **local_sections)
|
|||
|
{
|
|||
|
Elf_Internal_Shdr *symtab_hdr;
|
|||
|
struct elf_link_hash_entry **sym_hashes;
|
|||
|
Elf_Internal_Rela *rel, *relend;
|
|||
|
const char *name = NULL;
|
|||
|
struct m68hc11_page_info *pinfo;
|
|||
|
const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
unsigned long e_flags;
|
|||
|
|
|||
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|||
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|||
|
e_flags = elf_elfheader (input_bfd)->e_flags;
|
|||
|
|
|||
|
htab = m68hc11_elf_hash_table (info);
|
|||
|
if (htab == NULL)
|
|||
|
return false;
|
|||
|
|
|||
|
/* Get memory bank parameters. */
|
|||
|
m68hc11_elf_get_bank_parameters (info);
|
|||
|
|
|||
|
pinfo = & htab->pinfo;
|
|||
|
rel = relocs;
|
|||
|
relend = relocs + input_section->reloc_count;
|
|||
|
|
|||
|
for (; rel < relend; rel++)
|
|||
|
{
|
|||
|
int r_type;
|
|||
|
arelent arel;
|
|||
|
reloc_howto_type *howto;
|
|||
|
unsigned long r_symndx;
|
|||
|
Elf_Internal_Sym *sym;
|
|||
|
asection *sec;
|
|||
|
bfd_vma relocation = 0;
|
|||
|
bfd_reloc_status_type r = bfd_reloc_undefined;
|
|||
|
bfd_vma phys_page;
|
|||
|
bfd_vma phys_addr;
|
|||
|
bfd_vma insn_addr;
|
|||
|
bfd_vma insn_page;
|
|||
|
bool is_far = false;
|
|||
|
bool is_xgate_symbol = false;
|
|||
|
bool is_section_symbol = false;
|
|||
|
struct elf_link_hash_entry *h;
|
|||
|
bfd_vma val;
|
|||
|
const char *msg;
|
|||
|
|
|||
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|||
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|||
|
|
|||
|
if (r_type == R_M68HC11_GNU_VTENTRY
|
|||
|
|| r_type == R_M68HC11_GNU_VTINHERIT)
|
|||
|
continue;
|
|||
|
|
|||
|
if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel))
|
|||
|
continue;
|
|||
|
howto = arel.howto;
|
|||
|
|
|||
|
h = NULL;
|
|||
|
sym = NULL;
|
|||
|
sec = NULL;
|
|||
|
if (r_symndx < symtab_hdr->sh_info)
|
|||
|
{
|
|||
|
sym = local_syms + r_symndx;
|
|||
|
sec = local_sections[r_symndx];
|
|||
|
relocation = (sec->output_section->vma
|
|||
|
+ sec->output_offset
|
|||
|
+ sym->st_value);
|
|||
|
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
|||
|
is_xgate_symbol = (sym && (sym->st_target_internal));
|
|||
|
is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
bool unresolved_reloc, warned, ignored;
|
|||
|
|
|||
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|||
|
r_symndx, symtab_hdr, sym_hashes,
|
|||
|
h, sec, relocation, unresolved_reloc,
|
|||
|
warned, ignored);
|
|||
|
|
|||
|
is_far = (h && (h->other & STO_M68HC12_FAR));
|
|||
|
is_xgate_symbol = (h && (h->target_internal));
|
|||
|
}
|
|||
|
|
|||
|
if (sec != NULL && discarded_section (sec))
|
|||
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|||
|
rel, 1, relend, howto, 0, contents);
|
|||
|
|
|||
|
if (bfd_link_relocatable (info))
|
|||
|
{
|
|||
|
/* This is a relocatable link. We don't have to change
|
|||
|
anything, unless the reloc is against a section symbol,
|
|||
|
in which case we have to adjust according to where the
|
|||
|
section symbol winds up in the output section. */
|
|||
|
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|||
|
rel->r_addend += sec->output_offset;
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
if (h != NULL)
|
|||
|
name = h->root.root.string;
|
|||
|
else
|
|||
|
{
|
|||
|
name = (bfd_elf_string_from_elf_section
|
|||
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
|||
|
if (name == NULL || *name == '\0')
|
|||
|
name = bfd_section_name (sec);
|
|||
|
}
|
|||
|
|
|||
|
if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
|
|||
|
{
|
|||
|
struct elf32_m68hc11_stub_hash_entry* stub;
|
|||
|
|
|||
|
stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
|
|||
|
name, false, false);
|
|||
|
if (stub)
|
|||
|
{
|
|||
|
relocation = stub->stub_offset
|
|||
|
+ stub->stub_sec->output_section->vma
|
|||
|
+ stub->stub_sec->output_offset;
|
|||
|
is_far = false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Do the memory bank mapping. */
|
|||
|
phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
|
|||
|
phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
|
|||
|
switch (r_type)
|
|||
|
{
|
|||
|
case R_M68HC12_LO8XG:
|
|||
|
/* This relocation is specific to XGATE IMM16 calls and will precede
|
|||
|
a HI8. tc-m68hc11 only generates them in pairs.
|
|||
|
Leave the relocation to the HI8XG step. */
|
|||
|
r = bfd_reloc_ok;
|
|||
|
r_type = R_M68HC11_NONE;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC12_HI8XG:
|
|||
|
/* This relocation is specific to XGATE IMM16 calls and must follow
|
|||
|
a LO8XG. Does not actually check that it was a LO8XG.
|
|||
|
Adjusts high and low bytes. */
|
|||
|
relocation = phys_addr;
|
|||
|
if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
|
|||
|
&& (relocation >= 0x2000))
|
|||
|
relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
|
|||
|
|
|||
|
/* Fetch 16 bit value including low byte in previous insn. */
|
|||
|
val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
|
|||
|
| bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
|
|||
|
|
|||
|
/* Add on value to preserve carry, then write zero to high byte. */
|
|||
|
relocation += val;
|
|||
|
|
|||
|
/* Write out top byte. */
|
|||
|
bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
|
|||
|
(bfd_byte*) contents + rel->r_offset);
|
|||
|
|
|||
|
/* Write out low byte to previous instruction. */
|
|||
|
bfd_put_8 (input_bfd, relocation & 0xff,
|
|||
|
(bfd_byte*) contents + rel->r_offset - 2);
|
|||
|
|
|||
|
/* Mark as relocation completed. */
|
|||
|
r = bfd_reloc_ok;
|
|||
|
r_type = R_M68HC11_NONE;
|
|||
|
break;
|
|||
|
|
|||
|
/* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
|
|||
|
assembler directives. %hi does not support carry. */
|
|||
|
case R_M68HC11_HI8:
|
|||
|
case R_M68HC11_LO8:
|
|||
|
relocation = phys_addr;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC11_24:
|
|||
|
/* Reloc used by 68HC12 call instruction. */
|
|||
|
bfd_put_16 (input_bfd, phys_addr,
|
|||
|
(bfd_byte*) contents + rel->r_offset);
|
|||
|
bfd_put_8 (input_bfd, phys_page,
|
|||
|
(bfd_byte*) contents + rel->r_offset + 2);
|
|||
|
r = bfd_reloc_ok;
|
|||
|
r_type = R_M68HC11_NONE;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC11_NONE:
|
|||
|
r = bfd_reloc_ok;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC11_LO16:
|
|||
|
/* Reloc generated by %addr(expr) gas to obtain the
|
|||
|
address as mapped in the memory bank window. */
|
|||
|
relocation = phys_addr;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC11_PAGE:
|
|||
|
/* Reloc generated by %page(expr) gas to obtain the
|
|||
|
page number associated with the address. */
|
|||
|
relocation = phys_page;
|
|||
|
break;
|
|||
|
|
|||
|
case R_M68HC11_16:
|
|||
|
if (is_far)
|
|||
|
{
|
|||
|
if (!reloc_warning (info, name, input_bfd, input_section, rel,
|
|||
|
_("reference to the far symbol `%s' using a "
|
|||
|
"wrong relocation may result in incorrect "
|
|||
|
"execution"), name))
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
/* Get virtual address of instruction having the relocation. */
|
|||
|
insn_addr = input_section->output_section->vma
|
|||
|
+ input_section->output_offset
|
|||
|
+ rel->r_offset;
|
|||
|
|
|||
|
insn_page = m68hc11_phys_page (pinfo, insn_addr);
|
|||
|
|
|||
|
/* If we are linking an S12 instruction against an XGATE symbol, we
|
|||
|
need to change the offset of the symbol value so that it's correct
|
|||
|
from the S12's perspective. */
|
|||
|
if (is_xgate_symbol)
|
|||
|
{
|
|||
|
/* The ram in the global space is mapped to 0x2000 in the 16-bit
|
|||
|
address space for S12 and 0xE000 in the 16-bit address space
|
|||
|
for XGATE. */
|
|||
|
if (relocation >= 0xE000)
|
|||
|
{
|
|||
|
/* We offset the address by the difference
|
|||
|
between these two mappings. */
|
|||
|
relocation -= 0xC000;
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (!reloc_warning (info, name, input_bfd, input_section, rel,
|
|||
|
_("XGATE address (%lx) is not within "
|
|||
|
"shared RAM(0xE000-0xFFFF), therefore "
|
|||
|
"you must manually offset the address, "
|
|||
|
"and possibly manage the page, in your "
|
|||
|
"code."), (long) phys_addr))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
|
|||
|
&& m68hc11_addr_is_banked (pinfo, insn_addr)
|
|||
|
&& phys_page != insn_page
|
|||
|
&& !(e_flags & E_M68HC11_NO_BANK_WARNING))
|
|||
|
{
|
|||
|
if (!reloc_warning (info, name, input_bfd, input_section, rel,
|
|||
|
_("banked address [%lx:%04lx] (%lx) is not "
|
|||
|
"in the same bank as current banked "
|
|||
|
"address [%lx:%04lx] (%lx)"),
|
|||
|
(long) phys_page, (long) phys_addr,
|
|||
|
(long) (relocation + rel->r_addend),
|
|||
|
(long) insn_page,
|
|||
|
(long) m68hc11_phys_addr (pinfo, insn_addr),
|
|||
|
(long) insn_addr))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (phys_page != 0 && insn_page == 0)
|
|||
|
{
|
|||
|
if (!reloc_warning (info, name, input_bfd, input_section, rel,
|
|||
|
_("reference to a banked address [%lx:%04lx] "
|
|||
|
"in the normal address space at %04lx"),
|
|||
|
(long) phys_page, (long) phys_addr,
|
|||
|
(long) insn_addr))
|
|||
|
return false;
|
|||
|
relocation = phys_addr;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a banked address use the phys_addr so that
|
|||
|
we stay in the banked window. */
|
|||
|
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
|
|||
|
relocation = phys_addr;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* If we are linking an XGATE instruction against an S12 symbol, we
|
|||
|
need to change the offset of the symbol value so that it's correct
|
|||
|
from the XGATE's perspective. */
|
|||
|
if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
|
|||
|
|| !strcmp (howto->name, "R_XGATE_IMM8_HI"))
|
|||
|
{
|
|||
|
/* We can only offset S12 addresses that lie within the non-paged
|
|||
|
area of RAM. */
|
|||
|
if (!is_xgate_symbol && !is_section_symbol)
|
|||
|
{
|
|||
|
/* The ram in the global space is mapped to 0x2000 and stops at
|
|||
|
0x4000 in the 16-bit address space for S12 and 0xE000 in the
|
|||
|
16-bit address space for XGATE. */
|
|||
|
if (relocation >= 0x2000 && relocation < 0x4000)
|
|||
|
/* We offset the address by the difference
|
|||
|
between these two mappings. */
|
|||
|
relocation += 0xC000;
|
|||
|
else
|
|||
|
{
|
|||
|
if (!reloc_warning (info, name, input_bfd, input_section, rel,
|
|||
|
_("S12 address (%lx) is not within "
|
|||
|
"shared RAM(0x2000-0x4000), therefore "
|
|||
|
"you must manually offset the address "
|
|||
|
"in your code"), (long) phys_addr))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (r_type != R_M68HC11_NONE)
|
|||
|
{
|
|||
|
if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
|
|||
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|||
|
contents, rel->r_offset,
|
|||
|
relocation - 2, rel->r_addend);
|
|||
|
else
|
|||
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|||
|
contents, rel->r_offset,
|
|||
|
relocation, rel->r_addend);
|
|||
|
}
|
|||
|
|
|||
|
if (r != bfd_reloc_ok)
|
|||
|
{
|
|||
|
switch (r)
|
|||
|
{
|
|||
|
case bfd_reloc_overflow:
|
|||
|
(*info->callbacks->reloc_overflow)
|
|||
|
(info, NULL, name, howto->name, (bfd_vma) 0,
|
|||
|
input_bfd, input_section, rel->r_offset);
|
|||
|
break;
|
|||
|
|
|||
|
case bfd_reloc_undefined:
|
|||
|
(*info->callbacks->undefined_symbol)
|
|||
|
(info, name, input_bfd, input_section, rel->r_offset, true);
|
|||
|
break;
|
|||
|
|
|||
|
case bfd_reloc_outofrange:
|
|||
|
msg = _ ("internal error: out of range error");
|
|||
|
goto common_error;
|
|||
|
|
|||
|
case bfd_reloc_notsupported:
|
|||
|
msg = _ ("internal error: unsupported relocation error");
|
|||
|
goto common_error;
|
|||
|
|
|||
|
case bfd_reloc_dangerous:
|
|||
|
msg = _ ("internal error: dangerous error");
|
|||
|
goto common_error;
|
|||
|
|
|||
|
default:
|
|||
|
msg = _ ("internal error: unknown error");
|
|||
|
/* fall through */
|
|||
|
|
|||
|
common_error:
|
|||
|
(*info->callbacks->warning) (info, msg, name, input_bfd,
|
|||
|
input_section, rel->r_offset);
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/* Set and control ELF flags in ELF header. */
|
|||
|
|
|||
|
bool
|
|||
|
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
|
|||
|
{
|
|||
|
BFD_ASSERT (!elf_flags_init (abfd)
|
|||
|
|| elf_elfheader (abfd)->e_flags == flags);
|
|||
|
|
|||
|
elf_elfheader (abfd)->e_flags = flags;
|
|||
|
elf_flags_init (abfd) = true;
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
/* Merge backend specific data from an object file to the output
|
|||
|
object file when linking. */
|
|||
|
|
|||
|
bool
|
|||
|
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
|
|||
|
{
|
|||
|
bfd *obfd = info->output_bfd;
|
|||
|
flagword old_flags;
|
|||
|
flagword new_flags;
|
|||
|
bool ok = true;
|
|||
|
|
|||
|
/* Check if we have the same endianness */
|
|||
|
if (!_bfd_generic_verify_endian_match (ibfd, info))
|
|||
|
return false;
|
|||
|
|
|||
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
|||
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
|||
|
return true;
|
|||
|
|
|||
|
new_flags = elf_elfheader (ibfd)->e_flags;
|
|||
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
|
|||
|
old_flags = elf_elfheader (obfd)->e_flags;
|
|||
|
|
|||
|
if (! elf_flags_init (obfd))
|
|||
|
{
|
|||
|
elf_flags_init (obfd) = true;
|
|||
|
elf_elfheader (obfd)->e_flags = new_flags;
|
|||
|
elf_elfheader (obfd)->e_ident[EI_CLASS]
|
|||
|
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
|
|||
|
|
|||
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
|||
|
&& bfd_get_arch_info (obfd)->the_default)
|
|||
|
{
|
|||
|
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
|||
|
bfd_get_mach (ibfd)))
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
/* Check ABI compatibility. */
|
|||
|
if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
|
|||
|
{
|
|||
|
_bfd_error_handler
|
|||
|
(_("%pB: linking files compiled for 16-bit integers (-mshort) "
|
|||
|
"and others for 32-bit integers"), ibfd);
|
|||
|
ok = false;
|
|||
|
}
|
|||
|
if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
|
|||
|
{
|
|||
|
_bfd_error_handler
|
|||
|
(_("%pB: linking files compiled for 32-bit double (-fshort-double) "
|
|||
|
"and others for 64-bit double"), ibfd);
|
|||
|
ok = false;
|
|||
|
}
|
|||
|
|
|||
|
/* Processor compatibility. */
|
|||
|
if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
|
|||
|
{
|
|||
|
_bfd_error_handler
|
|||
|
(_("%pB: linking files compiled for HCS12 with "
|
|||
|
"others compiled for HC12"), ibfd);
|
|||
|
ok = false;
|
|||
|
}
|
|||
|
new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
|
|||
|
| (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
|
|||
|
|
|||
|
elf_elfheader (obfd)->e_flags = new_flags;
|
|||
|
|
|||
|
new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
|||
|
old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
|||
|
|
|||
|
/* Warn about any other mismatches */
|
|||
|
if (new_flags != old_flags)
|
|||
|
{
|
|||
|
_bfd_error_handler
|
|||
|
/* xgettext:c-format */
|
|||
|
(_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
|
|||
|
ibfd, new_flags, old_flags);
|
|||
|
ok = false;
|
|||
|
}
|
|||
|
|
|||
|
if (! ok)
|
|||
|
{
|
|||
|
bfd_set_error (bfd_error_bad_value);
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
bool
|
|||
|
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
|
|||
|
{
|
|||
|
FILE *file = (FILE *) ptr;
|
|||
|
|
|||
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
|||
|
|
|||
|
/* Print normal ELF private data. */
|
|||
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
|||
|
|
|||
|
/* xgettext:c-format */
|
|||
|
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
|||
|
|
|||
|
if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
|
|||
|
fprintf (file, _("[abi=32-bit int, "));
|
|||
|
else
|
|||
|
fprintf (file, _("[abi=16-bit int, "));
|
|||
|
|
|||
|
if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
|
|||
|
fprintf (file, _("64-bit double, "));
|
|||
|
else
|
|||
|
fprintf (file, _("32-bit double, "));
|
|||
|
|
|||
|
if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
|
|||
|
fprintf (file, _("cpu=HC11]"));
|
|||
|
else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
|
|||
|
fprintf (file, _("cpu=HCS12]"));
|
|||
|
else
|
|||
|
fprintf (file, _("cpu=HC12]"));
|
|||
|
|
|||
|
if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
|
|||
|
fprintf (file, _(" [memory=bank-model]"));
|
|||
|
else
|
|||
|
fprintf (file, _(" [memory=flat]"));
|
|||
|
|
|||
|
if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
|
|||
|
fprintf (file, _(" [XGATE RAM offsetting]"));
|
|||
|
|
|||
|
fputc ('\n', file);
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
|
|||
|
asection *asect, void *arg)
|
|||
|
{
|
|||
|
struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
|
|||
|
|
|||
|
if (asect->vma >= p->pinfo->bank_virtual)
|
|||
|
p->use_memory_banks = true;
|
|||
|
}
|
|||
|
|
|||
|
/* Tweak the OSABI field of the elf header. */
|
|||
|
|
|||
|
bool
|
|||
|
elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
|
|||
|
{
|
|||
|
struct m68hc11_scan_param param;
|
|||
|
struct m68hc11_elf_link_hash_table *htab;
|
|||
|
|
|||
|
if (!_bfd_elf_init_file_header (abfd, link_info))
|
|||
|
return false;
|
|||
|
|
|||
|
if (link_info == NULL)
|
|||
|
return true;
|
|||
|
|
|||
|
htab = m68hc11_elf_hash_table (link_info);
|
|||
|
if (htab == NULL)
|
|||
|
return true;
|
|||
|
|
|||
|
m68hc11_elf_get_bank_parameters (link_info);
|
|||
|
|
|||
|
param.use_memory_banks = false;
|
|||
|
param.pinfo = & htab->pinfo;
|
|||
|
|
|||
|
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
|||
|
|
|||
|
if (param.use_memory_banks)
|
|||
|
{
|
|||
|
Elf_Internal_Ehdr * i_ehdrp;
|
|||
|
|
|||
|
i_ehdrp = elf_elfheader (abfd);
|
|||
|
i_ehdrp->e_flags |= E_M68HC12_BANKS;
|
|||
|
}
|
|||
|
return true;
|
|||
|
}
|