356 lines
11 KiB
C
356 lines
11 KiB
C
|
/*
|
||
|
* ARM MPS2 AN505 FPGAIO emulation
|
||
|
*
|
||
|
* Copyright (c) 2018 Linaro Limited
|
||
|
* Written by Peter Maydell
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 or
|
||
|
* (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
/* This is a model of the "FPGA system control and I/O" block found
|
||
|
* in the AN505 FPGA image for the MPS2 devboard.
|
||
|
* It is documented in AN505:
|
||
|
* https://developer.arm.com/documentation/dai0505/latest/
|
||
|
*/
|
||
|
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "qemu/log.h"
|
||
|
#include "qemu/module.h"
|
||
|
#include "qapi/error.h"
|
||
|
#include "trace.h"
|
||
|
#include "hw/sysbus.h"
|
||
|
#include "migration/vmstate.h"
|
||
|
#include "hw/registerfields.h"
|
||
|
#include "hw/misc/mps2-fpgaio.h"
|
||
|
#include "hw/misc/led.h"
|
||
|
#include "hw/qdev-properties.h"
|
||
|
#include "qemu/timer.h"
|
||
|
|
||
|
REG32(LED0, 0)
|
||
|
REG32(DBGCTRL, 4)
|
||
|
REG32(BUTTON, 8)
|
||
|
REG32(CLK1HZ, 0x10)
|
||
|
REG32(CLK100HZ, 0x14)
|
||
|
REG32(COUNTER, 0x18)
|
||
|
REG32(PRESCALE, 0x1c)
|
||
|
REG32(PSCNTR, 0x20)
|
||
|
REG32(SWITCH, 0x28)
|
||
|
REG32(MISC, 0x4c)
|
||
|
|
||
|
static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
|
||
|
{
|
||
|
return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
|
||
|
}
|
||
|
|
||
|
static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
|
||
|
{
|
||
|
return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
|
||
|
}
|
||
|
|
||
|
static void resync_counter(MPS2FPGAIO *s)
|
||
|
{
|
||
|
/*
|
||
|
* Update s->counter and s->pscntr to their true current values
|
||
|
* by calculating how many times PSCNTR has ticked since the
|
||
|
* last time we did a resync.
|
||
|
*/
|
||
|
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
int64_t elapsed = now - s->pscntr_sync_ticks;
|
||
|
|
||
|
/*
|
||
|
* Round elapsed down to a whole number of PSCNTR ticks, so we don't
|
||
|
* lose time if we do multiple resyncs in a single tick.
|
||
|
*/
|
||
|
uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
|
||
|
|
||
|
/*
|
||
|
* Work out what PSCNTR and COUNTER have moved to. We assume that
|
||
|
* PSCNTR reloads from PRESCALE one tick-period after it hits zero,
|
||
|
* and that COUNTER increments at the same moment.
|
||
|
*/
|
||
|
if (ticks == 0) {
|
||
|
/* We haven't ticked since the last time we were asked */
|
||
|
return;
|
||
|
} else if (ticks < s->pscntr) {
|
||
|
/* We haven't yet reached zero, just reduce the PSCNTR */
|
||
|
s->pscntr -= ticks;
|
||
|
} else {
|
||
|
if (s->prescale == 0) {
|
||
|
/*
|
||
|
* If the reload value is zero then the PSCNTR will stick
|
||
|
* at zero once it reaches it, and so we will increment
|
||
|
* COUNTER every tick after that.
|
||
|
*/
|
||
|
s->counter += ticks - s->pscntr;
|
||
|
s->pscntr = 0;
|
||
|
} else {
|
||
|
/*
|
||
|
* This is the complicated bit. This ASCII art diagram gives an
|
||
|
* example with PRESCALE==5 PSCNTR==7:
|
||
|
*
|
||
|
* ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
||
|
* PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5
|
||
|
* cinc 1 2
|
||
|
* y 0 1 2 3 4 5 6 7 8 9 10 11 12
|
||
|
* x 0 1 2 3 4 5 0 1 2 3 4 5 0
|
||
|
*
|
||
|
* where x = y % (s->prescale + 1)
|
||
|
* and so PSCNTR = s->prescale - x
|
||
|
* and COUNTER is incremented by y / (s->prescale + 1)
|
||
|
*
|
||
|
* The case where PSCNTR < PRESCALE works out the same,
|
||
|
* though we must be careful to calculate y as 64-bit unsigned
|
||
|
* for all parts of the expression.
|
||
|
* y < 0 is not possible because that implies ticks < s->pscntr.
|
||
|
*/
|
||
|
uint64_t y = ticks - s->pscntr + s->prescale;
|
||
|
s->pscntr = s->prescale - (y % (s->prescale + 1));
|
||
|
s->counter += y / (s->prescale + 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Only advance the sync time to the timestamp of the last PSCNTR tick,
|
||
|
* not all the way to 'now', so we don't lose time if we do multiple
|
||
|
* resyncs in a single tick.
|
||
|
*/
|
||
|
s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
|
||
|
s->prescale_clk);
|
||
|
}
|
||
|
|
||
|
static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
|
||
|
{
|
||
|
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
|
||
|
uint64_t r;
|
||
|
int64_t now;
|
||
|
|
||
|
switch (offset) {
|
||
|
case A_LED0:
|
||
|
r = s->led0;
|
||
|
break;
|
||
|
case A_DBGCTRL:
|
||
|
if (!s->has_dbgctrl) {
|
||
|
goto bad_offset;
|
||
|
}
|
||
|
r = s->dbgctrl;
|
||
|
break;
|
||
|
case A_BUTTON:
|
||
|
/* User-pressable board buttons. We don't model that, so just return
|
||
|
* zeroes.
|
||
|
*/
|
||
|
r = 0;
|
||
|
break;
|
||
|
case A_PRESCALE:
|
||
|
r = s->prescale;
|
||
|
break;
|
||
|
case A_MISC:
|
||
|
r = s->misc;
|
||
|
break;
|
||
|
case A_CLK1HZ:
|
||
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
|
||
|
break;
|
||
|
case A_CLK100HZ:
|
||
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
|
||
|
break;
|
||
|
case A_COUNTER:
|
||
|
resync_counter(s);
|
||
|
r = s->counter;
|
||
|
break;
|
||
|
case A_PSCNTR:
|
||
|
resync_counter(s);
|
||
|
r = s->pscntr;
|
||
|
break;
|
||
|
case A_SWITCH:
|
||
|
if (!s->has_switches) {
|
||
|
goto bad_offset;
|
||
|
}
|
||
|
/* User-togglable board switches. We don't model that, so report 0. */
|
||
|
r = 0;
|
||
|
break;
|
||
|
default:
|
||
|
bad_offset:
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"MPS2 FPGAIO read: bad offset %x\n", (int) offset);
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
trace_mps2_fpgaio_read(offset, r, size);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
|
||
|
unsigned size)
|
||
|
{
|
||
|
MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
|
||
|
int64_t now;
|
||
|
|
||
|
trace_mps2_fpgaio_write(offset, value, size);
|
||
|
|
||
|
switch (offset) {
|
||
|
case A_LED0:
|
||
|
if (s->num_leds != 0) {
|
||
|
uint32_t i;
|
||
|
|
||
|
s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
|
||
|
for (i = 0; i < s->num_leds; i++) {
|
||
|
led_set_state(s->led[i], value & (1 << i));
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case A_DBGCTRL:
|
||
|
if (!s->has_dbgctrl) {
|
||
|
goto bad_offset;
|
||
|
}
|
||
|
qemu_log_mask(LOG_UNIMP,
|
||
|
"MPS2 FPGAIO: DBGCTRL unimplemented\n");
|
||
|
s->dbgctrl = value;
|
||
|
break;
|
||
|
case A_PRESCALE:
|
||
|
resync_counter(s);
|
||
|
s->prescale = value;
|
||
|
break;
|
||
|
case A_MISC:
|
||
|
/* These are control bits for some of the other devices on the
|
||
|
* board (SPI, CLCD, etc). We don't implement that yet, so just
|
||
|
* make the bits read as written.
|
||
|
*/
|
||
|
qemu_log_mask(LOG_UNIMP,
|
||
|
"MPS2 FPGAIO: MISC control bits unimplemented\n");
|
||
|
s->misc = value;
|
||
|
break;
|
||
|
case A_CLK1HZ:
|
||
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
|
||
|
break;
|
||
|
case A_CLK100HZ:
|
||
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
|
||
|
break;
|
||
|
case A_COUNTER:
|
||
|
resync_counter(s);
|
||
|
s->counter = value;
|
||
|
break;
|
||
|
case A_PSCNTR:
|
||
|
resync_counter(s);
|
||
|
s->pscntr = value;
|
||
|
break;
|
||
|
default:
|
||
|
bad_offset:
|
||
|
qemu_log_mask(LOG_GUEST_ERROR,
|
||
|
"MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const MemoryRegionOps mps2_fpgaio_ops = {
|
||
|
.read = mps2_fpgaio_read,
|
||
|
.write = mps2_fpgaio_write,
|
||
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
||
|
};
|
||
|
|
||
|
static void mps2_fpgaio_reset(DeviceState *dev)
|
||
|
{
|
||
|
MPS2FPGAIO *s = MPS2_FPGAIO(dev);
|
||
|
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||
|
|
||
|
trace_mps2_fpgaio_reset();
|
||
|
s->led0 = 0;
|
||
|
s->prescale = 0;
|
||
|
s->misc = 0;
|
||
|
s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
|
||
|
s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
|
||
|
s->counter = 0;
|
||
|
s->pscntr = 0;
|
||
|
s->pscntr_sync_ticks = now;
|
||
|
|
||
|
for (size_t i = 0; i < s->num_leds; i++) {
|
||
|
device_cold_reset(DEVICE(s->led[i]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void mps2_fpgaio_init(Object *obj)
|
||
|
{
|
||
|
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
|
||
|
MPS2FPGAIO *s = MPS2_FPGAIO(obj);
|
||
|
|
||
|
memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
|
||
|
"mps2-fpgaio", 0x1000);
|
||
|
sysbus_init_mmio(sbd, &s->iomem);
|
||
|
}
|
||
|
|
||
|
static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
|
||
|
{
|
||
|
MPS2FPGAIO *s = MPS2_FPGAIO(dev);
|
||
|
uint32_t i;
|
||
|
|
||
|
if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
|
||
|
error_setg(errp, "num-leds cannot be greater than %d",
|
||
|
MPS2FPGAIO_MAX_LEDS);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < s->num_leds; i++) {
|
||
|
g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
|
||
|
s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
|
||
|
LED_COLOR_GREEN, ledname);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const VMStateDescription mps2_fpgaio_vmstate = {
|
||
|
.name = "mps2-fpgaio",
|
||
|
.version_id = 3,
|
||
|
.minimum_version_id = 3,
|
||
|
.fields = (VMStateField[]) {
|
||
|
VMSTATE_UINT32(led0, MPS2FPGAIO),
|
||
|
VMSTATE_UINT32(prescale, MPS2FPGAIO),
|
||
|
VMSTATE_UINT32(misc, MPS2FPGAIO),
|
||
|
VMSTATE_UINT32(dbgctrl, MPS2FPGAIO),
|
||
|
VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
|
||
|
VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
|
||
|
VMSTATE_UINT32(counter, MPS2FPGAIO),
|
||
|
VMSTATE_UINT32(pscntr, MPS2FPGAIO),
|
||
|
VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
|
||
|
VMSTATE_END_OF_LIST()
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static Property mps2_fpgaio_properties[] = {
|
||
|
/* Frequency of the prescale counter */
|
||
|
DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
|
||
|
/* Number of LEDs controlled by LED0 register */
|
||
|
DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
|
||
|
DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
|
||
|
DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false),
|
||
|
DEFINE_PROP_END_OF_LIST(),
|
||
|
};
|
||
|
|
||
|
static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
|
||
|
{
|
||
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
||
|
|
||
|
dc->vmsd = &mps2_fpgaio_vmstate;
|
||
|
dc->realize = mps2_fpgaio_realize;
|
||
|
dc->reset = mps2_fpgaio_reset;
|
||
|
device_class_set_props(dc, mps2_fpgaio_properties);
|
||
|
}
|
||
|
|
||
|
static const TypeInfo mps2_fpgaio_info = {
|
||
|
.name = TYPE_MPS2_FPGAIO,
|
||
|
.parent = TYPE_SYS_BUS_DEVICE,
|
||
|
.instance_size = sizeof(MPS2FPGAIO),
|
||
|
.instance_init = mps2_fpgaio_init,
|
||
|
.class_init = mps2_fpgaio_class_init,
|
||
|
};
|
||
|
|
||
|
static void mps2_fpgaio_register_types(void)
|
||
|
{
|
||
|
type_register_static(&mps2_fpgaio_info);
|
||
|
}
|
||
|
|
||
|
type_init(mps2_fpgaio_register_types);
|