1372 lines
40 KiB
C
1372 lines
40 KiB
C
|
/* Target-dependent code for the Motorola 68000 series.
|
|||
|
|
|||
|
Copyright (C) 1990-2022 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 3 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "dwarf2/frame.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "frame-base.h"
|
|||
|
#include "frame-unwind.h"
|
|||
|
#include "gdbtypes.h"
|
|||
|
#include "symtab.h"
|
|||
|
#include "gdbcore.h"
|
|||
|
#include "value.h"
|
|||
|
#include "inferior.h"
|
|||
|
#include "regcache.h"
|
|||
|
#include "arch-utils.h"
|
|||
|
#include "osabi.h"
|
|||
|
#include "dis-asm.h"
|
|||
|
#include "target-descriptions.h"
|
|||
|
#include "floatformat.h"
|
|||
|
#include "target-float.h"
|
|||
|
#include "elf-bfd.h"
|
|||
|
#include "elf/m68k.h"
|
|||
|
|
|||
|
#include "m68k-tdep.h"
|
|||
|
|
|||
|
|
|||
|
#define P_LINKL_FP 0x480e
|
|||
|
#define P_LINKW_FP 0x4e56
|
|||
|
#define P_PEA_FP 0x4856
|
|||
|
#define P_MOVEAL_SP_FP 0x2c4f
|
|||
|
#define P_ADDAW_SP 0xdefc
|
|||
|
#define P_ADDAL_SP 0xdffc
|
|||
|
#define P_SUBQW_SP 0x514f
|
|||
|
#define P_SUBQL_SP 0x518f
|
|||
|
#define P_LEA_SP_SP 0x4fef
|
|||
|
#define P_LEA_PC_A5 0x4bfb0170
|
|||
|
#define P_FMOVEMX_SP 0xf227
|
|||
|
#define P_MOVEL_SP 0x2f00
|
|||
|
#define P_MOVEML_SP 0x48e7
|
|||
|
|
|||
|
/* Offset from SP to first arg on stack at first instruction of a function. */
|
|||
|
#define SP_ARG0 (1 * 4)
|
|||
|
|
|||
|
#if !defined (BPT_VECTOR)
|
|||
|
#define BPT_VECTOR 0xf
|
|||
|
#endif
|
|||
|
|
|||
|
constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
|
|||
|
|
|||
|
typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
|
|||
|
|
|||
|
|
|||
|
/* Construct types for ISA-specific registers. */
|
|||
|
static struct type *
|
|||
|
m68k_ps_type (struct gdbarch *gdbarch)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (!tdep->m68k_ps_type)
|
|||
|
{
|
|||
|
struct type *type;
|
|||
|
|
|||
|
type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 32);
|
|||
|
append_flags_type_flag (type, 0, "C");
|
|||
|
append_flags_type_flag (type, 1, "V");
|
|||
|
append_flags_type_flag (type, 2, "Z");
|
|||
|
append_flags_type_flag (type, 3, "N");
|
|||
|
append_flags_type_flag (type, 4, "X");
|
|||
|
append_flags_type_flag (type, 8, "I0");
|
|||
|
append_flags_type_flag (type, 9, "I1");
|
|||
|
append_flags_type_flag (type, 10, "I2");
|
|||
|
append_flags_type_flag (type, 12, "M");
|
|||
|
append_flags_type_flag (type, 13, "S");
|
|||
|
append_flags_type_flag (type, 14, "T0");
|
|||
|
append_flags_type_flag (type, 15, "T1");
|
|||
|
|
|||
|
tdep->m68k_ps_type = type;
|
|||
|
}
|
|||
|
|
|||
|
return tdep->m68k_ps_type;
|
|||
|
}
|
|||
|
|
|||
|
static struct type *
|
|||
|
m68881_ext_type (struct gdbarch *gdbarch)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (!tdep->m68881_ext_type)
|
|||
|
tdep->m68881_ext_type
|
|||
|
= arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
|
|||
|
floatformats_m68881_ext);
|
|||
|
|
|||
|
return tdep->m68881_ext_type;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the GDB type object for the "standard" data type of data in
|
|||
|
register N. This should be int for D0-D7, SR, FPCONTROL and
|
|||
|
FPSTATUS, long double for FP0-FP7, and void pointer for all others
|
|||
|
(A0-A7, PC, FPIADDR). Note, for registers which contain
|
|||
|
addresses return pointer to void, not pointer to char, because we
|
|||
|
don't want to attempt to print the string after printing the
|
|||
|
address. */
|
|||
|
|
|||
|
static struct type *
|
|||
|
m68k_register_type (struct gdbarch *gdbarch, int regnum)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (tdep->fpregs_present)
|
|||
|
{
|
|||
|
if (regnum >= gdbarch_fp0_regnum (gdbarch)
|
|||
|
&& regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
|
|||
|
{
|
|||
|
if (tdep->flavour == m68k_coldfire_flavour)
|
|||
|
return builtin_type (gdbarch)->builtin_double;
|
|||
|
else
|
|||
|
return m68881_ext_type (gdbarch);
|
|||
|
}
|
|||
|
|
|||
|
if (regnum == M68K_FPI_REGNUM)
|
|||
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|||
|
|
|||
|
if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
|
|||
|
return builtin_type (gdbarch)->builtin_int32;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
|
|||
|
return builtin_type (gdbarch)->builtin_int0;
|
|||
|
}
|
|||
|
|
|||
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
|||
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|||
|
|
|||
|
if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
|
|||
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|||
|
|
|||
|
if (regnum == M68K_PS_REGNUM)
|
|||
|
return m68k_ps_type (gdbarch);
|
|||
|
|
|||
|
return builtin_type (gdbarch)->builtin_int32;
|
|||
|
}
|
|||
|
|
|||
|
static const char * const m68k_register_names[] = {
|
|||
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
|||
|
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
|
|||
|
"ps", "pc",
|
|||
|
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
|
|||
|
"fpcontrol", "fpstatus", "fpiaddr"
|
|||
|
};
|
|||
|
|
|||
|
/* Function: m68k_register_name
|
|||
|
Returns the name of the standard m68k register regnum. */
|
|||
|
|
|||
|
static const char *
|
|||
|
m68k_register_name (struct gdbarch *gdbarch, int regnum)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
|
|||
|
internal_error (__FILE__, __LINE__,
|
|||
|
_("m68k_register_name: illegal register number %d"),
|
|||
|
regnum);
|
|||
|
else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
|
|||
|
&& tdep->fpregs_present == 0)
|
|||
|
return "";
|
|||
|
else
|
|||
|
return m68k_register_names[regnum];
|
|||
|
}
|
|||
|
|
|||
|
/* Return nonzero if a value of type TYPE stored in register REGNUM
|
|||
|
needs any special handling. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_convert_register_p (struct gdbarch *gdbarch,
|
|||
|
int regnum, struct type *type)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (!tdep->fpregs_present)
|
|||
|
return 0;
|
|||
|
return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
|
|||
|
/* We only support floating-point values. */
|
|||
|
&& type->code () == TYPE_CODE_FLT
|
|||
|
&& type != register_type (gdbarch, M68K_FP0_REGNUM));
|
|||
|
}
|
|||
|
|
|||
|
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
|
|||
|
return its contents in TO. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_register_to_value (struct frame_info *frame, int regnum,
|
|||
|
struct type *type, gdb_byte *to,
|
|||
|
int *optimizedp, int *unavailablep)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|||
|
gdb_byte from[M68K_MAX_REGISTER_SIZE];
|
|||
|
struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
|
|||
|
|
|||
|
gdb_assert (type->code () == TYPE_CODE_FLT);
|
|||
|
|
|||
|
/* Convert to TYPE. */
|
|||
|
if (!get_frame_register_bytes (frame, regnum, 0,
|
|||
|
gdb::make_array_view (from,
|
|||
|
register_size (gdbarch,
|
|||
|
regnum)),
|
|||
|
optimizedp, unavailablep))
|
|||
|
return 0;
|
|||
|
|
|||
|
target_float_convert (from, fpreg_type, to, type);
|
|||
|
*optimizedp = *unavailablep = 0;
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Write the contents FROM of a value of type TYPE into register
|
|||
|
REGNUM in frame FRAME. */
|
|||
|
|
|||
|
static void
|
|||
|
m68k_value_to_register (struct frame_info *frame, int regnum,
|
|||
|
struct type *type, const gdb_byte *from)
|
|||
|
{
|
|||
|
gdb_byte to[M68K_MAX_REGISTER_SIZE];
|
|||
|
struct type *fpreg_type = register_type (get_frame_arch (frame),
|
|||
|
M68K_FP0_REGNUM);
|
|||
|
|
|||
|
/* We only support floating-point values. */
|
|||
|
if (type->code () != TYPE_CODE_FLT)
|
|||
|
{
|
|||
|
warning (_("Cannot convert non-floating-point type "
|
|||
|
"to floating-point register value."));
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* Convert from TYPE. */
|
|||
|
target_float_convert (from, type, to, fpreg_type);
|
|||
|
put_frame_register (frame, regnum, to);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* There is a fair number of calling conventions that are in somewhat
|
|||
|
wide use. The 68000/08/10 don't support an FPU, not even as a
|
|||
|
coprocessor. All function return values are stored in %d0/%d1.
|
|||
|
Structures are returned in a static buffer, a pointer to which is
|
|||
|
returned in %d0. This means that functions returning a structure
|
|||
|
are not re-entrant. To avoid this problem some systems use a
|
|||
|
convention where the caller passes a pointer to a buffer in %a1
|
|||
|
where the return values is to be stored. This convention is the
|
|||
|
default, and is implemented in the function m68k_return_value.
|
|||
|
|
|||
|
The 68020/030/040/060 do support an FPU, either as a coprocessor
|
|||
|
(68881/2) or built-in (68040/68060). That's why System V release 4
|
|||
|
(SVR4) introduces a new calling convention specified by the SVR4
|
|||
|
psABI. Integer values are returned in %d0/%d1, pointer return
|
|||
|
values in %a0 and floating values in %fp0. When calling functions
|
|||
|
returning a structure the caller should pass a pointer to a buffer
|
|||
|
for the return value in %a0. This convention is implemented in the
|
|||
|
function m68k_svr4_return_value, and by appropriately setting the
|
|||
|
struct_value_regnum member of `struct gdbarch_tdep'.
|
|||
|
|
|||
|
GNU/Linux returns values in the same way as SVR4 does, but uses %a1
|
|||
|
for passing the structure return value buffer.
|
|||
|
|
|||
|
GCC can also generate code where small structures are returned in
|
|||
|
%d0/%d1 instead of in memory by using -freg-struct-return. This is
|
|||
|
the default on NetBSD a.out, OpenBSD and GNU/Linux and several
|
|||
|
embedded systems. This convention is implemented by setting the
|
|||
|
struct_return member of `struct gdbarch_tdep' to reg_struct_return.
|
|||
|
|
|||
|
GCC also has an "embedded" ABI. This works like the SVR4 ABI,
|
|||
|
except that pointers are returned in %D0. This is implemented by
|
|||
|
setting the pointer_result_regnum member of `struct gdbarch_tdep'
|
|||
|
as appropriate. */
|
|||
|
|
|||
|
/* Read a function return value of TYPE from REGCACHE, and copy that
|
|||
|
into VALBUF. */
|
|||
|
|
|||
|
static void
|
|||
|
m68k_extract_return_value (struct type *type, struct regcache *regcache,
|
|||
|
gdb_byte *valbuf)
|
|||
|
{
|
|||
|
int len = TYPE_LENGTH (type);
|
|||
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
|||
|
|
|||
|
if (type->code () == TYPE_CODE_PTR && len == 4)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch = regcache->arch ();
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
regcache->raw_read (tdep->pointer_result_regnum, valbuf);
|
|||
|
}
|
|||
|
else if (len <= 4)
|
|||
|
{
|
|||
|
regcache->raw_read (M68K_D0_REGNUM, buf);
|
|||
|
memcpy (valbuf, buf + (4 - len), len);
|
|||
|
}
|
|||
|
else if (len <= 8)
|
|||
|
{
|
|||
|
regcache->raw_read (M68K_D0_REGNUM, buf);
|
|||
|
memcpy (valbuf, buf + (8 - len), len - 4);
|
|||
|
regcache->raw_read (M68K_D1_REGNUM, valbuf + (len - 4));
|
|||
|
}
|
|||
|
else
|
|||
|
internal_error (__FILE__, __LINE__,
|
|||
|
_("Cannot extract return value of %d bytes long."), len);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
|
|||
|
gdb_byte *valbuf)
|
|||
|
{
|
|||
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
|||
|
struct gdbarch *gdbarch = regcache->arch ();
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (tdep->float_return && type->code () == TYPE_CODE_FLT)
|
|||
|
{
|
|||
|
struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
|
|||
|
regcache->raw_read (M68K_FP0_REGNUM, buf);
|
|||
|
target_float_convert (buf, fpreg_type, valbuf, type);
|
|||
|
}
|
|||
|
else
|
|||
|
m68k_extract_return_value (type, regcache, valbuf);
|
|||
|
}
|
|||
|
|
|||
|
/* Write a function return value of TYPE from VALBUF into REGCACHE. */
|
|||
|
|
|||
|
static void
|
|||
|
m68k_store_return_value (struct type *type, struct regcache *regcache,
|
|||
|
const gdb_byte *valbuf)
|
|||
|
{
|
|||
|
int len = TYPE_LENGTH (type);
|
|||
|
|
|||
|
if (type->code () == TYPE_CODE_PTR && len == 4)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch = regcache->arch ();
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
regcache->raw_write (tdep->pointer_result_regnum, valbuf);
|
|||
|
/* gdb historically also set D0 in the SVR4 case. */
|
|||
|
if (tdep->pointer_result_regnum != M68K_D0_REGNUM)
|
|||
|
regcache->raw_write (M68K_D0_REGNUM, valbuf);
|
|||
|
}
|
|||
|
else if (len <= 4)
|
|||
|
regcache->raw_write_part (M68K_D0_REGNUM, 4 - len, len, valbuf);
|
|||
|
else if (len <= 8)
|
|||
|
{
|
|||
|
regcache->raw_write_part (M68K_D0_REGNUM, 8 - len, len - 4, valbuf);
|
|||
|
regcache->raw_write (M68K_D1_REGNUM, valbuf + (len - 4));
|
|||
|
}
|
|||
|
else
|
|||
|
internal_error (__FILE__, __LINE__,
|
|||
|
_("Cannot store return value of %d bytes long."), len);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
|
|||
|
const gdb_byte *valbuf)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch = regcache->arch ();
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (tdep->float_return && type->code () == TYPE_CODE_FLT)
|
|||
|
{
|
|||
|
struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
|
|||
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
|||
|
target_float_convert (valbuf, type, buf, fpreg_type);
|
|||
|
regcache->raw_write (M68K_FP0_REGNUM, buf);
|
|||
|
}
|
|||
|
else
|
|||
|
m68k_store_return_value (type, regcache, valbuf);
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if TYPE, which is assumed to be a structure, union or
|
|||
|
complex type, should be returned in registers for architecture
|
|||
|
GDBARCH. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
enum type_code code = type->code ();
|
|||
|
int len = TYPE_LENGTH (type);
|
|||
|
|
|||
|
gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
|
|||
|
|| code == TYPE_CODE_COMPLEX || code == TYPE_CODE_ARRAY);
|
|||
|
|
|||
|
if (tdep->struct_return == pcc_struct_return)
|
|||
|
return 0;
|
|||
|
|
|||
|
const bool is_vector = code == TYPE_CODE_ARRAY && type->is_vector ();
|
|||
|
|
|||
|
if (is_vector
|
|||
|
&& check_typedef (TYPE_TARGET_TYPE (type))->code () == TYPE_CODE_FLT)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* According to m68k_return_in_memory in the m68k GCC back-end,
|
|||
|
strange things happen for small aggregate types. Aggregate types
|
|||
|
with only one component are always returned like the type of the
|
|||
|
component. Aggregate types whose size is 2, 4, or 8 are returned
|
|||
|
in registers if their natural alignment is at least 16 bits.
|
|||
|
|
|||
|
We reject vectors here, as experimentally this gives the correct
|
|||
|
answer. */
|
|||
|
if (!is_vector && (len == 2 || len == 4 || len == 8))
|
|||
|
return type_align (type) >= 2;
|
|||
|
|
|||
|
return (len == 1 || len == 2 || len == 4 || len == 8);
|
|||
|
}
|
|||
|
|
|||
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
|||
|
should be returned. If it is supposed to be returned in registers,
|
|||
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
|||
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
|||
|
from WRITEBUF into REGCACHE. */
|
|||
|
|
|||
|
static enum return_value_convention
|
|||
|
m68k_return_value (struct gdbarch *gdbarch, struct value *function,
|
|||
|
struct type *type, struct regcache *regcache,
|
|||
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|||
|
{
|
|||
|
enum type_code code = type->code ();
|
|||
|
|
|||
|
/* GCC returns a `long double' in memory too. */
|
|||
|
if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
|
|||
|
|| code == TYPE_CODE_COMPLEX || code == TYPE_CODE_ARRAY)
|
|||
|
&& !m68k_reg_struct_return_p (gdbarch, type))
|
|||
|
|| (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
|
|||
|
{
|
|||
|
/* The default on m68k is to return structures in static memory.
|
|||
|
Consequently a function must return the address where we can
|
|||
|
find the return value. */
|
|||
|
|
|||
|
if (readbuf)
|
|||
|
{
|
|||
|
ULONGEST addr;
|
|||
|
|
|||
|
regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
|
|||
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
|||
|
}
|
|||
|
|
|||
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
|||
|
}
|
|||
|
|
|||
|
if (readbuf)
|
|||
|
m68k_extract_return_value (type, regcache, readbuf);
|
|||
|
if (writebuf)
|
|||
|
m68k_store_return_value (type, regcache, writebuf);
|
|||
|
|
|||
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|||
|
}
|
|||
|
|
|||
|
static enum return_value_convention
|
|||
|
m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
|
|||
|
struct type *type, struct regcache *regcache,
|
|||
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|||
|
{
|
|||
|
enum type_code code = type->code ();
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
/* Aggregates with a single member are always returned like their
|
|||
|
sole element. */
|
|||
|
if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
|
|||
|
&& type->num_fields () == 1)
|
|||
|
{
|
|||
|
type = check_typedef (type->field (0).type ());
|
|||
|
return m68k_svr4_return_value (gdbarch, function, type, regcache,
|
|||
|
readbuf, writebuf);
|
|||
|
}
|
|||
|
|
|||
|
if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
|
|||
|
|| code == TYPE_CODE_COMPLEX || code == TYPE_CODE_ARRAY)
|
|||
|
&& !m68k_reg_struct_return_p (gdbarch, type))
|
|||
|
/* GCC may return a `long double' in memory too. */
|
|||
|
|| (!tdep->float_return
|
|||
|
&& code == TYPE_CODE_FLT
|
|||
|
&& TYPE_LENGTH (type) == 12))
|
|||
|
{
|
|||
|
/* The System V ABI says that:
|
|||
|
|
|||
|
"A function returning a structure or union also sets %a0 to
|
|||
|
the value it finds in %a0. Thus when the caller receives
|
|||
|
control again, the address of the returned object resides in
|
|||
|
register %a0."
|
|||
|
|
|||
|
So the ABI guarantees that we can always find the return
|
|||
|
value just after the function has returned.
|
|||
|
|
|||
|
However, GCC also implements the "embedded" ABI. That ABI
|
|||
|
does not preserve %a0 across calls, but does write the value
|
|||
|
back to %d0. */
|
|||
|
|
|||
|
if (readbuf)
|
|||
|
{
|
|||
|
ULONGEST addr;
|
|||
|
|
|||
|
regcache_raw_read_unsigned (regcache, tdep->pointer_result_regnum,
|
|||
|
&addr);
|
|||
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
|||
|
}
|
|||
|
|
|||
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
|||
|
}
|
|||
|
|
|||
|
if (readbuf)
|
|||
|
m68k_svr4_extract_return_value (type, regcache, readbuf);
|
|||
|
if (writebuf)
|
|||
|
m68k_svr4_store_return_value (type, regcache, writebuf);
|
|||
|
|
|||
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Always align the frame to a 4-byte boundary. This is required on
|
|||
|
coldfire and harmless on the rest. */
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|||
|
{
|
|||
|
/* Align the stack to four bytes. */
|
|||
|
return sp & ~3;
|
|||
|
}
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|||
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
|||
|
struct value **args, CORE_ADDR sp,
|
|||
|
function_call_return_method return_method,
|
|||
|
CORE_ADDR struct_addr)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
gdb_byte buf[4];
|
|||
|
int i;
|
|||
|
|
|||
|
/* Push arguments in reverse order. */
|
|||
|
for (i = nargs - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
struct type *value_type = value_enclosing_type (args[i]);
|
|||
|
int len = TYPE_LENGTH (value_type);
|
|||
|
int container_len = (len + 3) & ~3;
|
|||
|
int offset;
|
|||
|
|
|||
|
/* Non-scalars bigger than 4 bytes are left aligned, others are
|
|||
|
right aligned. */
|
|||
|
if ((value_type->code () == TYPE_CODE_STRUCT
|
|||
|
|| value_type->code () == TYPE_CODE_UNION
|
|||
|
|| value_type->code () == TYPE_CODE_ARRAY)
|
|||
|
&& len > 4)
|
|||
|
offset = 0;
|
|||
|
else
|
|||
|
offset = container_len - len;
|
|||
|
sp -= container_len;
|
|||
|
write_memory (sp + offset, value_contents_all (args[i]).data (), len);
|
|||
|
}
|
|||
|
|
|||
|
/* Store struct value address. */
|
|||
|
if (return_method == return_method_struct)
|
|||
|
{
|
|||
|
store_unsigned_integer (buf, 4, byte_order, struct_addr);
|
|||
|
regcache->cooked_write (tdep->struct_value_regnum, buf);
|
|||
|
}
|
|||
|
|
|||
|
/* Store return address. */
|
|||
|
sp -= 4;
|
|||
|
store_unsigned_integer (buf, 4, byte_order, bp_addr);
|
|||
|
write_memory (sp, buf, 4);
|
|||
|
|
|||
|
/* Finally, update the stack pointer... */
|
|||
|
store_unsigned_integer (buf, 4, byte_order, sp);
|
|||
|
regcache->cooked_write (M68K_SP_REGNUM, buf);
|
|||
|
|
|||
|
/* ...and fake a frame pointer. */
|
|||
|
regcache->cooked_write (M68K_FP_REGNUM, buf);
|
|||
|
|
|||
|
/* DWARF2/GCC uses the stack address *before* the function call as a
|
|||
|
frame's CFA. */
|
|||
|
return sp + 8;
|
|||
|
}
|
|||
|
|
|||
|
/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (num < 8)
|
|||
|
/* d0..7 */
|
|||
|
return (num - 0) + M68K_D0_REGNUM;
|
|||
|
else if (num < 16)
|
|||
|
/* a0..7 */
|
|||
|
return (num - 8) + M68K_A0_REGNUM;
|
|||
|
else if (num < 24 && tdep->fpregs_present)
|
|||
|
/* fp0..7 */
|
|||
|
return (num - 16) + M68K_FP0_REGNUM;
|
|||
|
else if (num == 25)
|
|||
|
/* pc */
|
|||
|
return M68K_PC_REGNUM;
|
|||
|
else
|
|||
|
return -1;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
struct m68k_frame_cache
|
|||
|
{
|
|||
|
/* Base address. */
|
|||
|
CORE_ADDR base;
|
|||
|
CORE_ADDR sp_offset;
|
|||
|
CORE_ADDR pc;
|
|||
|
|
|||
|
/* Saved registers. */
|
|||
|
CORE_ADDR saved_regs[M68K_NUM_REGS];
|
|||
|
CORE_ADDR saved_sp;
|
|||
|
|
|||
|
/* Stack space reserved for local variables. */
|
|||
|
long locals;
|
|||
|
};
|
|||
|
|
|||
|
/* Allocate and initialize a frame cache. */
|
|||
|
|
|||
|
static struct m68k_frame_cache *
|
|||
|
m68k_alloc_frame_cache (void)
|
|||
|
{
|
|||
|
struct m68k_frame_cache *cache;
|
|||
|
int i;
|
|||
|
|
|||
|
cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
|
|||
|
|
|||
|
/* Base address. */
|
|||
|
cache->base = 0;
|
|||
|
cache->sp_offset = -4;
|
|||
|
cache->pc = 0;
|
|||
|
|
|||
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
|||
|
offset (that's where %fp is supposed to be stored). */
|
|||
|
for (i = 0; i < M68K_NUM_REGS; i++)
|
|||
|
cache->saved_regs[i] = -1;
|
|||
|
|
|||
|
/* Frameless until proven otherwise. */
|
|||
|
cache->locals = -1;
|
|||
|
|
|||
|
return cache;
|
|||
|
}
|
|||
|
|
|||
|
/* Check whether PC points at a code that sets up a new stack frame.
|
|||
|
If so, it updates CACHE and returns the address of the first
|
|||
|
instruction after the sequence that sets removes the "hidden"
|
|||
|
argument from the stack or CURRENT_PC, whichever is smaller.
|
|||
|
Otherwise, return PC. */
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_analyze_frame_setup (struct gdbarch *gdbarch,
|
|||
|
CORE_ADDR pc, CORE_ADDR current_pc,
|
|||
|
struct m68k_frame_cache *cache)
|
|||
|
{
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
int op;
|
|||
|
|
|||
|
if (pc >= current_pc)
|
|||
|
return current_pc;
|
|||
|
|
|||
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
|||
|
|
|||
|
if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
|
|||
|
{
|
|||
|
cache->saved_regs[M68K_FP_REGNUM] = 0;
|
|||
|
cache->sp_offset += 4;
|
|||
|
if (op == P_LINKW_FP)
|
|||
|
{
|
|||
|
/* link.w %fp, #-N */
|
|||
|
/* link.w %fp, #0; adda.l #-N, %sp */
|
|||
|
cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
|
|||
|
|
|||
|
if (pc + 4 < current_pc && cache->locals == 0)
|
|||
|
{
|
|||
|
op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
|
|||
|
if (op == P_ADDAL_SP)
|
|||
|
{
|
|||
|
cache->locals = read_memory_integer (pc + 6, 4, byte_order);
|
|||
|
return pc + 10;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return pc + 4;
|
|||
|
}
|
|||
|
else if (op == P_LINKL_FP)
|
|||
|
{
|
|||
|
/* link.l %fp, #-N */
|
|||
|
cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
|
|||
|
return pc + 6;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* pea (%fp); movea.l %sp, %fp */
|
|||
|
cache->locals = 0;
|
|||
|
|
|||
|
if (pc + 2 < current_pc)
|
|||
|
{
|
|||
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|||
|
|
|||
|
if (op == P_MOVEAL_SP_FP)
|
|||
|
{
|
|||
|
/* move.l %sp, %fp */
|
|||
|
return pc + 4;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return pc + 2;
|
|||
|
}
|
|||
|
}
|
|||
|
else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
|
|||
|
{
|
|||
|
/* subq.[wl] #N,%sp */
|
|||
|
/* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
|
|||
|
cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
|
|||
|
if (pc + 2 < current_pc)
|
|||
|
{
|
|||
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|||
|
if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
|
|||
|
{
|
|||
|
cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
|
|||
|
return pc + 4;
|
|||
|
}
|
|||
|
}
|
|||
|
return pc + 2;
|
|||
|
}
|
|||
|
else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
|
|||
|
{
|
|||
|
/* adda.w #-N,%sp */
|
|||
|
/* lea (-N,%sp),%sp */
|
|||
|
cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
|
|||
|
return pc + 4;
|
|||
|
}
|
|||
|
else if (op == P_ADDAL_SP)
|
|||
|
{
|
|||
|
/* adda.l #-N,%sp */
|
|||
|
cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
|
|||
|
return pc + 6;
|
|||
|
}
|
|||
|
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
/* Check whether PC points at code that saves registers on the stack.
|
|||
|
If so, it updates CACHE and returns the address of the first
|
|||
|
instruction after the register saves or CURRENT_PC, whichever is
|
|||
|
smaller. Otherwise, return PC. */
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|||
|
CORE_ADDR current_pc,
|
|||
|
struct m68k_frame_cache *cache)
|
|||
|
{
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (cache->locals >= 0)
|
|||
|
{
|
|||
|
CORE_ADDR offset;
|
|||
|
int op;
|
|||
|
int i, mask, regno;
|
|||
|
|
|||
|
offset = -4 - cache->locals;
|
|||
|
while (pc < current_pc)
|
|||
|
{
|
|||
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
|||
|
if (op == P_FMOVEMX_SP
|
|||
|
&& tdep->fpregs_present)
|
|||
|
{
|
|||
|
/* fmovem.x REGS,-(%sp) */
|
|||
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|||
|
if ((op & 0xff00) == 0xe000)
|
|||
|
{
|
|||
|
mask = op & 0xff;
|
|||
|
for (i = 0; i < 16; i++, mask >>= 1)
|
|||
|
{
|
|||
|
if (mask & 1)
|
|||
|
{
|
|||
|
cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
|
|||
|
offset -= 12;
|
|||
|
}
|
|||
|
}
|
|||
|
pc += 4;
|
|||
|
}
|
|||
|
else
|
|||
|
break;
|
|||
|
}
|
|||
|
else if ((op & 0177760) == P_MOVEL_SP)
|
|||
|
{
|
|||
|
/* move.l %R,-(%sp) */
|
|||
|
regno = op & 017;
|
|||
|
cache->saved_regs[regno] = offset;
|
|||
|
offset -= 4;
|
|||
|
pc += 2;
|
|||
|
}
|
|||
|
else if (op == P_MOVEML_SP)
|
|||
|
{
|
|||
|
/* movem.l REGS,-(%sp) */
|
|||
|
mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|||
|
for (i = 0; i < 16; i++, mask >>= 1)
|
|||
|
{
|
|||
|
if (mask & 1)
|
|||
|
{
|
|||
|
cache->saved_regs[15 - i] = offset;
|
|||
|
offset -= 4;
|
|||
|
}
|
|||
|
}
|
|||
|
pc += 4;
|
|||
|
}
|
|||
|
else
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Do a full analysis of the prologue at PC and update CACHE
|
|||
|
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
|||
|
address where the analysis stopped.
|
|||
|
|
|||
|
We handle all cases that can be generated by gcc.
|
|||
|
|
|||
|
For allocating a stack frame:
|
|||
|
|
|||
|
link.w %a6,#-N
|
|||
|
link.l %a6,#-N
|
|||
|
pea (%fp); move.l %sp,%fp
|
|||
|
link.w %a6,#0; add.l #-N,%sp
|
|||
|
subq.l #N,%sp
|
|||
|
subq.w #N,%sp
|
|||
|
subq.w #8,%sp; subq.w #N-8,%sp
|
|||
|
add.w #-N,%sp
|
|||
|
lea (-N,%sp),%sp
|
|||
|
add.l #-N,%sp
|
|||
|
|
|||
|
For saving registers:
|
|||
|
|
|||
|
fmovem.x REGS,-(%sp)
|
|||
|
move.l R1,-(%sp)
|
|||
|
move.l R1,-(%sp); move.l R2,-(%sp)
|
|||
|
movem.l REGS,-(%sp)
|
|||
|
|
|||
|
For setting up the PIC register:
|
|||
|
|
|||
|
lea (%pc,N),%a5
|
|||
|
|
|||
|
*/
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|||
|
CORE_ADDR current_pc, struct m68k_frame_cache *cache)
|
|||
|
{
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
unsigned int op;
|
|||
|
|
|||
|
pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
|
|||
|
pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
|
|||
|
if (pc >= current_pc)
|
|||
|
return current_pc;
|
|||
|
|
|||
|
/* Check for GOT setup. */
|
|||
|
op = read_memory_unsigned_integer (pc, 4, byte_order);
|
|||
|
if (op == P_LEA_PC_A5)
|
|||
|
{
|
|||
|
/* lea (%pc,N),%a5 */
|
|||
|
return pc + 8;
|
|||
|
}
|
|||
|
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
/* Return PC of first real instruction. */
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
|||
|
{
|
|||
|
struct m68k_frame_cache cache;
|
|||
|
CORE_ADDR pc;
|
|||
|
|
|||
|
cache.locals = -1;
|
|||
|
pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
|
|||
|
if (cache.locals < 0)
|
|||
|
return start_pc;
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|||
|
{
|
|||
|
gdb_byte buf[8];
|
|||
|
|
|||
|
frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
|
|||
|
return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
|||
|
}
|
|||
|
|
|||
|
/* Normal frames. */
|
|||
|
|
|||
|
static struct m68k_frame_cache *
|
|||
|
m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
struct m68k_frame_cache *cache;
|
|||
|
gdb_byte buf[4];
|
|||
|
int i;
|
|||
|
|
|||
|
if (*this_cache)
|
|||
|
return (struct m68k_frame_cache *) *this_cache;
|
|||
|
|
|||
|
cache = m68k_alloc_frame_cache ();
|
|||
|
*this_cache = cache;
|
|||
|
|
|||
|
/* In principle, for normal frames, %fp holds the frame pointer,
|
|||
|
which holds the base address for the current stack frame.
|
|||
|
However, for functions that don't need it, the frame pointer is
|
|||
|
optional. For these "frameless" functions the frame pointer is
|
|||
|
actually the frame pointer of the calling frame. Signal
|
|||
|
trampolines are just a special case of a "frameless" function.
|
|||
|
They (usually) share their frame pointer with the frame that was
|
|||
|
in progress when the signal occurred. */
|
|||
|
|
|||
|
get_frame_register (this_frame, M68K_FP_REGNUM, buf);
|
|||
|
cache->base = extract_unsigned_integer (buf, 4, byte_order);
|
|||
|
if (cache->base == 0)
|
|||
|
return cache;
|
|||
|
|
|||
|
/* For normal frames, %pc is stored at 4(%fp). */
|
|||
|
cache->saved_regs[M68K_PC_REGNUM] = 4;
|
|||
|
|
|||
|
cache->pc = get_frame_func (this_frame);
|
|||
|
if (cache->pc != 0)
|
|||
|
m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
|
|||
|
get_frame_pc (this_frame), cache);
|
|||
|
|
|||
|
if (cache->locals < 0)
|
|||
|
{
|
|||
|
/* We didn't find a valid frame, which means that CACHE->base
|
|||
|
currently holds the frame pointer for our calling frame. If
|
|||
|
we're at the start of a function, or somewhere half-way its
|
|||
|
prologue, the function's frame probably hasn't been fully
|
|||
|
setup yet. Try to reconstruct the base address for the stack
|
|||
|
frame by looking at the stack pointer. For truly "frameless"
|
|||
|
functions this might work too. */
|
|||
|
|
|||
|
get_frame_register (this_frame, M68K_SP_REGNUM, buf);
|
|||
|
cache->base = extract_unsigned_integer (buf, 4, byte_order)
|
|||
|
+ cache->sp_offset;
|
|||
|
}
|
|||
|
|
|||
|
/* Now that we have the base address for the stack frame we can
|
|||
|
calculate the value of %sp in the calling frame. */
|
|||
|
cache->saved_sp = cache->base + 8;
|
|||
|
|
|||
|
/* Adjust all the saved registers such that they contain addresses
|
|||
|
instead of offsets. */
|
|||
|
for (i = 0; i < M68K_NUM_REGS; i++)
|
|||
|
if (cache->saved_regs[i] != -1)
|
|||
|
cache->saved_regs[i] += cache->base;
|
|||
|
|
|||
|
return cache;
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|||
|
struct frame_id *this_id)
|
|||
|
{
|
|||
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
|||
|
|
|||
|
/* This marks the outermost frame. */
|
|||
|
if (cache->base == 0)
|
|||
|
return;
|
|||
|
|
|||
|
/* See the end of m68k_push_dummy_call. */
|
|||
|
*this_id = frame_id_build (cache->base + 8, cache->pc);
|
|||
|
}
|
|||
|
|
|||
|
static struct value *
|
|||
|
m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
|||
|
int regnum)
|
|||
|
{
|
|||
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
|||
|
|
|||
|
gdb_assert (regnum >= 0);
|
|||
|
|
|||
|
if (regnum == M68K_SP_REGNUM && cache->saved_sp)
|
|||
|
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
|||
|
|
|||
|
if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
|
|||
|
return frame_unwind_got_memory (this_frame, regnum,
|
|||
|
cache->saved_regs[regnum]);
|
|||
|
|
|||
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|||
|
}
|
|||
|
|
|||
|
static const struct frame_unwind m68k_frame_unwind =
|
|||
|
{
|
|||
|
"m68k prologue",
|
|||
|
NORMAL_FRAME,
|
|||
|
default_frame_unwind_stop_reason,
|
|||
|
m68k_frame_this_id,
|
|||
|
m68k_frame_prev_register,
|
|||
|
NULL,
|
|||
|
default_frame_sniffer
|
|||
|
};
|
|||
|
|
|||
|
static CORE_ADDR
|
|||
|
m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|||
|
{
|
|||
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
|||
|
|
|||
|
return cache->base;
|
|||
|
}
|
|||
|
|
|||
|
static const struct frame_base m68k_frame_base =
|
|||
|
{
|
|||
|
&m68k_frame_unwind,
|
|||
|
m68k_frame_base_address,
|
|||
|
m68k_frame_base_address,
|
|||
|
m68k_frame_base_address
|
|||
|
};
|
|||
|
|
|||
|
static struct frame_id
|
|||
|
m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|||
|
{
|
|||
|
CORE_ADDR fp;
|
|||
|
|
|||
|
fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
|
|||
|
|
|||
|
/* See the end of m68k_push_dummy_call. */
|
|||
|
return frame_id_build (fp + 8, get_frame_pc (this_frame));
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
|||
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
|||
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
|||
|
This routine returns true on success. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
|||
|
{
|
|||
|
gdb_byte *buf;
|
|||
|
CORE_ADDR sp, jb_addr;
|
|||
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|||
|
|
|||
|
if (tdep->jb_pc < 0)
|
|||
|
{
|
|||
|
internal_error (__FILE__, __LINE__,
|
|||
|
_("m68k_get_longjmp_target: not implemented"));
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
|
|||
|
sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
|
|||
|
|
|||
|
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
|
|||
|
buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
|
|||
|
return 0;
|
|||
|
|
|||
|
jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
|
|||
|
/ TARGET_CHAR_BIT, byte_order);
|
|||
|
|
|||
|
if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
|
|||
|
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
|
|||
|
byte_order)
|
|||
|
return 0;
|
|||
|
|
|||
|
*pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
|
|||
|
/ TARGET_CHAR_BIT, byte_order);
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* This is the implementation of gdbarch method
|
|||
|
return_in_first_hidden_param_p. */
|
|||
|
|
|||
|
static int
|
|||
|
m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
|
|||
|
struct type *type)
|
|||
|
{
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* System V Release 4 (SVR4). */
|
|||
|
|
|||
|
void
|
|||
|
m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
/* SVR4 uses a different calling convention. */
|
|||
|
set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
|
|||
|
|
|||
|
/* SVR4 uses %a0 instead of %a1. */
|
|||
|
tdep->struct_value_regnum = M68K_A0_REGNUM;
|
|||
|
|
|||
|
/* SVR4 returns pointers in %a0. */
|
|||
|
tdep->pointer_result_regnum = M68K_A0_REGNUM;
|
|||
|
}
|
|||
|
|
|||
|
/* GCC's m68k "embedded" ABI. This is like the SVR4 ABI, but pointer
|
|||
|
values are returned in %d0, not %a0. */
|
|||
|
|
|||
|
static void
|
|||
|
m68k_embedded_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
m68k_svr4_init_abi (info, gdbarch);
|
|||
|
tdep->pointer_result_regnum = M68K_D0_REGNUM;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/* Function: m68k_gdbarch_init
|
|||
|
Initializer function for the m68k gdbarch vector.
|
|||
|
Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
|
|||
|
|
|||
|
static struct gdbarch *
|
|||
|
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|||
|
{
|
|||
|
struct gdbarch *gdbarch;
|
|||
|
struct gdbarch_list *best_arch;
|
|||
|
tdesc_arch_data_up tdesc_data;
|
|||
|
int i;
|
|||
|
enum m68k_flavour flavour = m68k_no_flavour;
|
|||
|
int has_fp = 1;
|
|||
|
const struct floatformat **long_double_format = floatformats_m68881_ext;
|
|||
|
|
|||
|
/* Check any target description for validity. */
|
|||
|
if (tdesc_has_registers (info.target_desc))
|
|||
|
{
|
|||
|
const struct tdesc_feature *feature;
|
|||
|
int valid_p;
|
|||
|
|
|||
|
feature = tdesc_find_feature (info.target_desc,
|
|||
|
"org.gnu.gdb.m68k.core");
|
|||
|
|
|||
|
if (feature == NULL)
|
|||
|
{
|
|||
|
feature = tdesc_find_feature (info.target_desc,
|
|||
|
"org.gnu.gdb.coldfire.core");
|
|||
|
if (feature != NULL)
|
|||
|
flavour = m68k_coldfire_flavour;
|
|||
|
}
|
|||
|
|
|||
|
if (feature == NULL)
|
|||
|
{
|
|||
|
feature = tdesc_find_feature (info.target_desc,
|
|||
|
"org.gnu.gdb.fido.core");
|
|||
|
if (feature != NULL)
|
|||
|
flavour = m68k_fido_flavour;
|
|||
|
}
|
|||
|
|
|||
|
if (feature == NULL)
|
|||
|
return NULL;
|
|||
|
|
|||
|
tdesc_data = tdesc_data_alloc ();
|
|||
|
|
|||
|
valid_p = 1;
|
|||
|
for (i = 0; i <= M68K_PC_REGNUM; i++)
|
|||
|
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
|
|||
|
m68k_register_names[i]);
|
|||
|
|
|||
|
if (!valid_p)
|
|||
|
return NULL;
|
|||
|
|
|||
|
feature = tdesc_find_feature (info.target_desc,
|
|||
|
"org.gnu.gdb.coldfire.fp");
|
|||
|
if (feature != NULL)
|
|||
|
{
|
|||
|
valid_p = 1;
|
|||
|
for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
|
|||
|
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
|
|||
|
m68k_register_names[i]);
|
|||
|
if (!valid_p)
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
else
|
|||
|
has_fp = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* The mechanism for returning floating values from function
|
|||
|
and the type of long double depend on whether we're
|
|||
|
on ColdFire or standard m68k. */
|
|||
|
|
|||
|
if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
|
|||
|
{
|
|||
|
const bfd_arch_info_type *coldfire_arch =
|
|||
|
bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
|
|||
|
|
|||
|
if (coldfire_arch
|
|||
|
&& ((*info.bfd_arch_info->compatible)
|
|||
|
(info.bfd_arch_info, coldfire_arch)))
|
|||
|
flavour = m68k_coldfire_flavour;
|
|||
|
}
|
|||
|
|
|||
|
/* Try to figure out if the arch uses floating registers to return
|
|||
|
floating point values from functions. On ColdFire, floating
|
|||
|
point values are returned in D0. */
|
|||
|
int float_return = 0;
|
|||
|
if (has_fp && flavour != m68k_coldfire_flavour)
|
|||
|
float_return = 1;
|
|||
|
#ifdef HAVE_ELF
|
|||
|
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|||
|
{
|
|||
|
int fp_abi = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
|||
|
Tag_GNU_M68K_ABI_FP);
|
|||
|
if (fp_abi == 1)
|
|||
|
float_return = 1;
|
|||
|
else if (fp_abi == 2)
|
|||
|
float_return = 0;
|
|||
|
}
|
|||
|
#endif /* HAVE_ELF */
|
|||
|
|
|||
|
/* If there is already a candidate, use it. */
|
|||
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
|||
|
best_arch != NULL;
|
|||
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep
|
|||
|
= (m68k_gdbarch_tdep *) gdbarch_tdep (best_arch->gdbarch);
|
|||
|
|
|||
|
if (flavour != tdep->flavour)
|
|||
|
continue;
|
|||
|
|
|||
|
if (has_fp != tdep->fpregs_present)
|
|||
|
continue;
|
|||
|
|
|||
|
if (float_return != tdep->float_return)
|
|||
|
continue;
|
|||
|
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (best_arch != NULL)
|
|||
|
return best_arch->gdbarch;
|
|||
|
|
|||
|
m68k_gdbarch_tdep *tdep = new m68k_gdbarch_tdep;
|
|||
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|||
|
tdep->fpregs_present = has_fp;
|
|||
|
tdep->float_return = float_return;
|
|||
|
tdep->flavour = flavour;
|
|||
|
|
|||
|
if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
|
|||
|
long_double_format = floatformats_ieee_double;
|
|||
|
set_gdbarch_long_double_format (gdbarch, long_double_format);
|
|||
|
set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
|
|||
|
|
|||
|
set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
|
|||
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
|
|||
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
|
|||
|
|
|||
|
/* Stack grows down. */
|
|||
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|||
|
set_gdbarch_frame_align (gdbarch, m68k_frame_align);
|
|||
|
|
|||
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|||
|
if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
|
|||
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
|||
|
|
|||
|
set_gdbarch_frame_args_skip (gdbarch, 8);
|
|||
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
|
|||
|
|
|||
|
set_gdbarch_register_type (gdbarch, m68k_register_type);
|
|||
|
set_gdbarch_register_name (gdbarch, m68k_register_name);
|
|||
|
set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
|
|||
|
set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
|
|||
|
set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
|
|||
|
set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
|
|||
|
set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
|
|||
|
set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
|
|||
|
set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
|
|||
|
|
|||
|
if (has_fp)
|
|||
|
set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
|
|||
|
|
|||
|
/* Function call & return. */
|
|||
|
set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
|
|||
|
set_gdbarch_return_value (gdbarch, m68k_return_value);
|
|||
|
set_gdbarch_return_in_first_hidden_param_p (gdbarch,
|
|||
|
m68k_return_in_first_hidden_param_p);
|
|||
|
|
|||
|
#if defined JB_PC && defined JB_ELEMENT_SIZE
|
|||
|
tdep->jb_pc = JB_PC;
|
|||
|
tdep->jb_elt_size = JB_ELEMENT_SIZE;
|
|||
|
#else
|
|||
|
tdep->jb_pc = -1;
|
|||
|
#endif
|
|||
|
tdep->pointer_result_regnum = M68K_D0_REGNUM;
|
|||
|
tdep->struct_value_regnum = M68K_A1_REGNUM;
|
|||
|
tdep->struct_return = reg_struct_return;
|
|||
|
|
|||
|
/* Frame unwinder. */
|
|||
|
set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
|
|||
|
set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
|
|||
|
|
|||
|
/* Hook in the DWARF CFI frame unwinder. */
|
|||
|
dwarf2_append_unwinders (gdbarch);
|
|||
|
|
|||
|
frame_base_set_default (gdbarch, &m68k_frame_base);
|
|||
|
|
|||
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|||
|
gdbarch_init_osabi (info, gdbarch);
|
|||
|
|
|||
|
/* Now we have tuned the configuration, set a few final things,
|
|||
|
based on what the OS ABI has told us. */
|
|||
|
|
|||
|
if (tdep->jb_pc >= 0)
|
|||
|
set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
|
|||
|
|
|||
|
frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
|
|||
|
|
|||
|
if (tdesc_data != nullptr)
|
|||
|
tdesc_use_registers (gdbarch, info.target_desc, std::move (tdesc_data));
|
|||
|
|
|||
|
return gdbarch;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
static void
|
|||
|
m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
|||
|
{
|
|||
|
m68k_gdbarch_tdep *tdep = (m68k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
|
|||
|
|
|||
|
if (tdep == NULL)
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* OSABI sniffer for m68k. */
|
|||
|
|
|||
|
static enum gdb_osabi
|
|||
|
m68k_osabi_sniffer (bfd *abfd)
|
|||
|
{
|
|||
|
unsigned int elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
|
|||
|
|
|||
|
if (elfosabi == ELFOSABI_NONE)
|
|||
|
return GDB_OSABI_SVR4;
|
|||
|
|
|||
|
return GDB_OSABI_UNKNOWN;
|
|||
|
}
|
|||
|
|
|||
|
void _initialize_m68k_tdep ();
|
|||
|
void
|
|||
|
_initialize_m68k_tdep ()
|
|||
|
{
|
|||
|
gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
|
|||
|
|
|||
|
gdbarch_register_osabi_sniffer (bfd_arch_m68k, bfd_target_elf_flavour,
|
|||
|
m68k_osabi_sniffer);
|
|||
|
gdbarch_register_osabi (bfd_arch_m68k, 0, GDB_OSABI_SVR4,
|
|||
|
m68k_embedded_init_abi);
|
|||
|
}
|