black and isort pass + some extra reshaping

master
otthorn 3 years ago
parent 42678ac5bb
commit 1ab064da7e

@ -7,49 +7,44 @@
#
# Copyright (c) 2021 Solal Nathan
# Author: Solal "Otthorn" Nathan <otthorn@crans.org>
# SPDX-License-Identifier: BSD-3-Clause
# SPDX-License-Identifier: BSD-3-Clause
#
###############################################################################
import glob
import json
import math
import os
import sys
import time
import json
import glob
import torch
import math
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
from pytorch3d.renderer import (EmissionAbsorptionRaymarcher,
FoVPerspectiveCameras, ImplicitRenderer,
MonteCarloRaysampler, NDCGridRaysampler,
RayBundle, ray_bundle_to_ray_points)
# Data structures and functions for rendering
from pytorch3d.structures import Volumes
from pytorch3d.transforms import so3_exponential_map
from pytorch3d.renderer import (
FoVPerspectiveCameras,
NDCGridRaysampler,
MonteCarloRaysampler,
EmissionAbsorptionRaymarcher,
ImplicitRenderer,
RayBundle,
ray_bundle_to_ray_points,
)
from tqdm import tqdm
# add path for demo utils functions
sys.path.append(os.path.abspath(''))
from utils.plot_image_grid import image_grid
sys.path.append(os.path.abspath(""))
from utils.generate_cow_renders import generate_cow_renders
from utils.plot_image_grid import image_grid
# Intialize CUDA gpu
device = torch.device("cuda:0")
torch.cuda.set_device(device)
# Generate dataset
target_cameras, target_images, target_silhouettes = \
generate_cow_renders(num_views=40, azimuth_range=180)
print(f'Generated {len(target_images)} images/silhouettes/cameras.')
target_cameras, target_images, target_silhouettes = generate_cow_renders(
num_views=40, azimuth_range=180
)
print(f"Generated {len(target_images)} images/silhouettes/cameras.")
###############################################################################
# Intitialize the implicit rendered
@ -84,10 +79,10 @@ raysampler_grid = NDCGridRaysampler(
# MonteCarloRaysampler generates a random subset
# of `n_rays_per_image` rays emitted from the image plane.
raysampler_mc = MonteCarloRaysampler(
min_x = -1.0,
max_x = 1.0,
min_y = -1.0,
max_y = 1.0,
min_x=-1.0,
max_x=1.0,
min_y=-1.0,
max_y=1.0,
n_rays_per_image=750,
n_pts_per_ray=128,
min_depth=0.1,
@ -104,16 +99,19 @@ raymarcher = EmissionAbsorptionRaymarcher()
# Finally, instantiate the implicit renders
# for both raysamplers.
renderer_grid = ImplicitRenderer(
raysampler=raysampler_grid, raymarcher=raymarcher,
raysampler=raysampler_grid,
raymarcher=raymarcher,
)
renderer_mc = ImplicitRenderer(
raysampler=raysampler_mc, raymarcher=raymarcher,
raysampler=raysampler_mc,
raymarcher=raymarcher,
)
###############################################################################
# Define the NeRF model
###############################################################################
class HarmonicEmbedding(torch.nn.Module):
def __init__(self, n_harmonic_functions=60, omega0=0.1):
"""
@ -133,15 +131,16 @@ class HarmonicEmbedding(torch.nn.Module):
...
cos(2**self.n_harmonic_functions * x[..., i])
]
Note that `x` is also premultiplied by `omega0` before
evaluting the harmonic functions.
"""
super().__init__()
self.register_buffer(
'frequencies',
"frequencies",
omega0 * (2.0 ** torch.arange(n_harmonic_functions)),
)
def forward(self, x):
"""
Args:
@ -164,15 +163,15 @@ class NeuralRadianceField(torch.nn.Module):
n_hidden_neurons: The number of hidden units in the
fully connected layers of the MLPs of the model.
"""
# The harmonic embedding layer converts input 3D coordinates
# to a representation that is more suitable for
# processing with a deep neural network.
self.harmonic_embedding = HarmonicEmbedding(n_harmonic_functions)
# The dimension of the harmonic embedding.
embedding_dim = n_harmonic_functions * 2 * 3
# self.mlp is a simple 2-layer multi-layer perceptron
# which converts the input per-point harmonic embeddings
# to a latent representation.
@ -182,8 +181,8 @@ class NeuralRadianceField(torch.nn.Module):
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, n_hidden_neurons),
torch.nn.Softplus(beta=10.0),
)
)
# Given features predicted by self.mlp, self.color_layer
# is responsible for predicting a 3-D per-point vector
# that represents the RGB color of the point.
@ -192,89 +191,80 @@ class NeuralRadianceField(torch.nn.Module):
torch.nn.Softplus(beta=10.0),
torch.nn.Linear(n_hidden_neurons, 3),
torch.nn.Sigmoid(),
# To ensure that the colors correctly range between [0-1],
# the layer is terminated with a sigmoid layer.
)
# The density layer converts the features of self.mlp
# to a 1D density value representing the raw opacity
# of each point.
# To ensure that the colors correctly range between [0-1], the
# layer is terminated with a sigmoid layer.
)
# The density layer converts the features of self.mlp to a 1D density
# value representing the raw opacity of each point.
self.density_layer = torch.nn.Sequential(
torch.nn.Linear(n_hidden_neurons, 1),
torch.nn.Softplus(beta=10.0),
# Sofplus activation ensures that the raw opacity
# is a non-negative number.
)
# We set the bias of the density layer to -1.5
# in order to initialize the opacities of the
# ray points to values close to 0.
# This is a crucial detail for ensuring convergence
# of the model.
self.density_layer[0].bias.data[0] = -1.5
# We set the bias of the density layer to -1.5 in order to initialize
# the opacities of the ray points to values close to 0. This is a
# crucial detail for ensuring convergence of the model.
self.density_layer[0].bias.data[0] = -1.5
def _get_densities(self, features):
"""
This function takes `features` predicted by `self.mlp`
and converts them to `raw_densities` with `self.density_layer`.
`raw_densities` are later mapped to [0-1] range with
1 - inverse exponential of `raw_densities`.
This function takes `features` predicted by `self.mlp` and converts
them to `raw_densities` with `self.density_layer`. `raw_densities` are
later mapped to [0-1] range with 1 - inverse exponential of
`raw_densities`.
"""
raw_densities = self.density_layer(features)
return 1 - (-raw_densities).exp()
def _get_colors(self, features, rays_directions):
"""
This function takes per-point `features` predicted by `self.mlp`
and evaluates the color model in order to attach to each
point a 3D vector of its RGB color.
In order to represent viewpoint dependent effects,
before evaluating `self.color_layer`, `NeuralRadianceField`
concatenates to the `features` a harmonic embedding
of `ray_directions`, which are per-point directions
of point rays expressed as 3D l2-normalized vectors
in world coordinates.
This function takes per-point `features` predicted by `self.mlp` and
evaluates the color model in order to attach to each point a 3D vector
of its RGB color.
In order to represent viewpoint dependent effects, before evaluating
`self.color_layer`, `NeuralRadianceField` concatenates to the
`features` a harmonic embedding of `ray_directions`, which are
per-point directions of point rays expressed as 3D l2-normalized
vectors in world coordinates.
"""
spatial_size = features.shape[:-1]
# Normalize the ray_directions to unit l2 norm.
rays_directions_normed = torch.nn.functional.normalize(
rays_directions, dim=-1
)
# Obtain the harmonic embedding of the normalized ray directions.
rays_embedding = self.harmonic_embedding(
rays_directions_normed
)
rays_embedding = self.harmonic_embedding(rays_directions_normed)
# Expand the ray directions tensor so that its spatial size
# is equal to the size of features.
rays_embedding_expand = rays_embedding[..., None, :].expand(
*spatial_size, rays_embedding.shape[-1]
)
# Concatenate ray direction embeddings with
# Concatenate ray direction embeddings with
# features and evaluate the color model.
color_layer_input = torch.cat(
(features, rays_embedding_expand),
dim=-1
(features, rays_embedding_expand), dim=-1
)
return self.color_layer(color_layer_input)
def forward(
self,
self,
ray_bundle: RayBundle,
**kwargs,
):
"""
The forward function accepts the parametrizations of
3D points sampled along projection rays. The forward
pass is responsible for attaching a 3D vector
and a 1D scalar representing the point's
RGB color and opacity respectively.
The forward function accepts the parametrizations of 3D points sampled
along projection rays. The forward pass is responsible for attaching a
3D vector and a 1D scalar representing the point's RGB color and
opacity respectively.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
@ -294,44 +284,42 @@ class NeuralRadianceField(torch.nn.Module):
# coordinates with `ray_bundle_to_ray_points`.
rays_points_world = ray_bundle_to_ray_points(ray_bundle)
# rays_points_world.shape = [minibatch x ... x 3]
# For each 3D world coordinate, we obtain its harmonic embedding.
embeds = self.harmonic_embedding(
rays_points_world
)
embeds = self.harmonic_embedding(rays_points_world)
# embeds.shape = [minibatch x ... x self.n_harmonic_functions*6]
# self.mlp maps each harmonic embedding to a latent feature space.
features = self.mlp(embeds)
# features.shape = [minibatch x ... x n_hidden_neurons]
# Finally, given the per-point features,
# Finally, given the per-point features,
# execute the density and color branches.
rays_densities = self._get_densities(features)
# rays_densities.shape = [minibatch x ... x 1]
rays_colors = self._get_colors(features, ray_bundle.directions)
# rays_colors.shape = [minibatch x ... x 3]
return rays_densities, rays_colors
def batched_forward(
self,
self,
ray_bundle: RayBundle,
n_batches: int = 16,
**kwargs,
**kwargs,
):
"""
This function is used to allow for memory efficient processing
of input rays. The input rays are first split to `n_batches`
chunks and passed through the `self.forward` function one at a time
in a for loop. Combined with disabling Pytorch gradient caching
(`torch.no_grad()`), this allows for rendering large batches
of rays that do not all fit into GPU memory in a single forward pass.
In our case, batched_forward is used to export a fully-sized render
of the radiance field for visualisation purposes.
This function is used to allow for memory efficient processing of input
rays. The input rays are first split to `n_batches` chunks and passed
through the `self.forward` function one at a time in a for loop.
Combined with disabling Pytorch gradient caching (`torch.no_grad()`),
this allows for rendering large batches of rays that do not all fit
into GPU memory in a single forward pass. In our case, batched_forward
is used to export a fully-sized render of the radiance field for
visualisation purposes.
Args:
ray_bundle: A RayBundle object containing the following variables:
origins: A tensor of shape `(minibatch, ..., 3)` denoting the
@ -353,7 +341,7 @@ class NeuralRadianceField(torch.nn.Module):
"""
# Parse out shapes needed for tensor reshaping in this function.
n_pts_per_ray = ray_bundle.lengths.shape[-1]
n_pts_per_ray = ray_bundle.lengths.shape[-1]
spatial_size = [*ray_bundle.origins.shape[:-1], n_pts_per_ray]
# Split the rays to `n_batches` batches.
@ -366,34 +354,44 @@ class NeuralRadianceField(torch.nn.Module):
RayBundle(
origins=ray_bundle.origins.view(-1, 3)[batch_idx],
directions=ray_bundle.directions.view(-1, 3)[batch_idx],
lengths=ray_bundle.lengths.view(-1, n_pts_per_ray)[batch_idx],
lengths=ray_bundle.lengths.view(-1, n_pts_per_ray)[
batch_idx
],
xys=None,
)
) for batch_idx in batches
)
for batch_idx in batches
]
# Concatenate the per-batch rays_densities and rays_colors
# and reshape according to the sizes of the inputs.
rays_densities, rays_colors = [
torch.cat(
[batch_output[output_i] for batch_output in batch_outputs], dim=0
).view(*spatial_size, -1) for output_i in (0, 1)
[batch_output[output_i] for batch_output in batch_outputs],
dim=0,
).view(*spatial_size, -1)
for output_i in (0, 1)
]
return rays_densities, rays_colors
###############################################################################
# Helper functions
###############################################################################
def huber(x, y, scaling=0.1):
"""
A helper function for evaluating the smooth L1 (huber) loss
between the rendered silhouettes and colors.
"""
diff_sq = (x - y) ** 2
loss = ((1 + diff_sq / (scaling**2)).clamp(1e-4).sqrt() - 1) * float(scaling)
loss = ((1 + diff_sq / (scaling ** 2)).clamp(1e-4).sqrt() - 1) * float(
scaling
)
return loss
def sample_images_at_mc_locs(target_images, sampled_rays_xy):
"""
Given a set of Monte Carlo pixel locations `sampled_rays_xy`,
@ -407,39 +405,36 @@ def sample_images_at_mc_locs(target_images, sampled_rays_xy):
ba = target_images.shape[0]
dim = target_images.shape[-1]
spatial_size = sampled_rays_xy.shape[1:-1]
# In order to sample target_images, we utilize
# the grid_sample function which implements a
# bilinear image sampler.
# Note that we have to invert the sign of the
# sampled ray positions to convert the NDC xy locations
# of the MonteCarloRaysampler to the coordinate
# convention of grid_sample.
# In order to sample target_images, we utilize the grid_sample function
# which implements a bilinear image sampler. Note that we have to invert
# the sign of the sampled ray positions to convert the NDC xy locations of
# the MonteCarloRaysampler to the coordinate convention of grid_sample.
images_sampled = torch.nn.functional.grid_sample(
target_images.permute(0, 3, 1, 2),
-sampled_rays_xy.view(ba, -1, 1, 2), # note the sign inversion
align_corners=True
)
return images_sampled.permute(0, 2, 3, 1).view(
ba, *spatial_size, dim
align_corners=True,
)
return images_sampled.permute(0, 2, 3, 1).view(ba, *spatial_size, dim)
def show_full_render(
neural_radiance_field, camera,
target_image, target_silhouette,
loss_history_color, loss_history_sil,
neural_radiance_field,
camera,
target_image,
target_silhouette,
loss_history_color,
loss_history_sil,
):
"""
This is a helper function for visualizing the
intermediate results of the learning.
Since the `NeuralRadianceField` suffers from
a large memory footprint, which does not allow to
render the full image grid in a single forward pass,
we utilize the `NeuralRadianceField.batched_forward`
function in combination with disabling the gradient caching.
This chunks the set of emitted rays to batches and
evaluates the implicit function on one-batch at a time
to prevent GPU memory overflow.
This is a helper function for visualizing the intermediate results of the
learning.
Since the `NeuralRadianceField` suffers from a large memory footprint,
which does not allow to render the full image grid in a single forward
pass, we utilize the `NeuralRadianceField.batched_forward` function in
combination with disabling the gradient caching. This chunks the set of
emitted rays to batches and evaluates the implicit function on one-batch at
a time to prevent GPU memory overflow.
"""
# Prevent gradient caching.
@ -448,43 +443,52 @@ def show_full_render(
# batched_forward function of neural_radiance_field.
rendered_image_silhouette, _ = renderer_grid(
cameras=camera,
volumetric_function=neural_radiance_field.batched_forward
volumetric_function=neural_radiance_field.batched_forward,
)
# Split the rendering result to a silhouette render
# and the image render.
rendered_image, rendered_silhouette = (
rendered_image_silhouette[0].split([3, 1], dim=-1)
)
rendered_image, rendered_silhouette = rendered_image_silhouette[
0
].split([3, 1], dim=-1)
# Generate plots.
fig, ax = plt.subplots(2, 3, figsize=(15, 10))
ax = ax.ravel()
clamp_and_detach = lambda x: x.clamp(0.0, 1.0).cpu().detach().numpy()
ax[0].plot(list(range(len(loss_history_color))), loss_history_color, linewidth=1)
ax[0].plot(
list(range(len(loss_history_color))), loss_history_color, linewidth=1
)
ax[1].imshow(clamp_and_detach(rendered_image))
ax[2].imshow(clamp_and_detach(rendered_silhouette[..., 0]))
ax[3].plot(list(range(len(loss_history_sil))), loss_history_sil, linewidth=1)
ax[3].plot(
list(range(len(loss_history_sil))), loss_history_sil, linewidth=1
)
ax[4].imshow(clamp_and_detach(target_image))
ax[5].imshow(clamp_and_detach(target_silhouette))
for ax_, title_ in zip(
ax,
(
"loss color", "rendered image", "rendered silhouette",
"loss silhouette", "target image", "target silhouette",
)
"loss color",
"rendered image",
"rendered silhouette",
"loss silhouette",
"target image",
"target silhouette",
),
):
if not title_.startswith('loss'):
if not title_.startswith("loss"):
ax_.grid("off")
ax_.axis("off")
ax_.set_title(title_)
fig.canvas.draw(); fig.show()
fig.canvas.draw()
fig.show()
display.clear_output(wait=True)
display.display(fig)
return fig
###############################################################################
# Fit the radiance field
# Fit the radiance field
###############################################################################
# First move all relevant variables to the correct device.
@ -521,7 +525,7 @@ for iteration in range(n_iter):
# In case we reached the last 75% of iterations,
# decrease the learning rate of the optimizer 10-fold.
if iteration == round(n_iter * 0.75):
print('Decreasing LR 10-fold ...')
print("Decreasing LR 10-fold ...")
optimizer = torch.optim.Adam(
neural_radiance_field.parameters(), lr=lr * 0.1
)
@ -534,47 +538,52 @@ for iteration in range(n_iter):
# Sample the minibatch of cameras.
batch_cameras = FoVPerspectiveCameras(
R = target_cameras.R[batch_idx],
T = target_cameras.T[batch_idx],
znear = target_cameras.znear[batch_idx],
zfar = target_cameras.zfar[batch_idx],
aspect_ratio = target_cameras.aspect_ratio[batch_idx],
fov = target_cameras.fov[batch_idx],
device = device,
R=target_cameras.R[batch_idx],
T=target_cameras.T[batch_idx],
znear=target_cameras.znear[batch_idx],
zfar=target_cameras.zfar[batch_idx],
aspect_ratio=target_cameras.aspect_ratio[batch_idx],
fov=target_cameras.fov[batch_idx],
device=device,
)
# Evaluate the nerf model.
rendered_images_silhouettes, sampled_rays = renderer_mc(
cameras=batch_cameras,
volumetric_function=neural_radiance_field
cameras=batch_cameras, volumetric_function=neural_radiance_field
)
rendered_images, rendered_silhouettes = (
rendered_images_silhouettes.split([3, 1], dim=-1)
rendered_images, rendered_silhouettes = rendered_images_silhouettes.split(
[3, 1], dim=-1
)
# Compute the silhoutte error as the mean huber
# loss between the predicted masks and the
# sampled target silhouettes.
silhouettes_at_rays = sample_images_at_mc_locs(
target_silhouettes[batch_idx, ..., None],
sampled_rays.xys
target_silhouettes[batch_idx, ..., None], sampled_rays.xys
)
sil_err = (
huber(
rendered_silhouettes,
silhouettes_at_rays,
)
.abs()
.mean()
)
sil_err = huber(
rendered_silhouettes,
silhouettes_at_rays,
).abs().mean()
# Compute the color error as the mean huber
# loss between the rendered colors and the
# sampled target images.
colors_at_rays = sample_images_at_mc_locs(
target_images[batch_idx],
sampled_rays.xys
target_images[batch_idx], sampled_rays.xys
)
color_err = (
huber(
rendered_images,
colors_at_rays,
)
.abs()
.mean()
)
color_err = huber(
rendered_images,
colors_at_rays,
).abs().mean()
# The optimization loss is a simple
# sum of the color and silhouette errors.
@ -587,9 +596,9 @@ for iteration in range(n_iter):
# Every 10 iterations, print the current values of the losses.
if iteration % 10 == 0:
print(
f'Iteration {iteration:05d}:'
+ f' loss color = {float(color_err):1.2e}'
+ f' loss silhouette = {float(sil_err):1.2e}'
f"Iteration {iteration:05d}:"
+ f" loss color = {float(color_err):1.2e}"
+ f" loss silhouette = {float(sil_err):1.2e}"
)
# Take the optimization step.
@ -602,13 +611,13 @@ for iteration in range(n_iter):
show_full_render(
neural_radiance_field,
FoVPerspectiveCameras(
R = target_cameras.R[show_idx],
T = target_cameras.T[show_idx],
znear = target_cameras.znear[show_idx],
zfar = target_cameras.zfar[show_idx],
aspect_ratio = target_cameras.aspect_ratio[show_idx],
fov = target_cameras.fov[show_idx],
device = device,
R=target_cameras.R[show_idx],
T=target_cameras.T[show_idx],
znear=target_cameras.znear[show_idx],
zfar=target_cameras.zfar[show_idx],
aspect_ratio=target_cameras.aspect_ratio[show_idx],
fov=target_cameras.fov[show_idx],
device=device,
),
target_images[show_idx][0],
target_silhouettes[show_idx][0],
@ -617,17 +626,18 @@ for iteration in range(n_iter):
)
###############################################################################
# Visualizing the optimized neural radiance field
# Visualizing the optimized neural radiance field
###############################################################################
def generate_rotating_nerf(neural_radiance_field, n_frames = 50):
def generate_rotating_nerf(neural_radiance_field, n_frames=50):
logRs = torch.zeros(n_frames, 3, device=device)
logRs[:, 1] = torch.linspace(-3.14, 3.14, n_frames, device=device)
Rs = so3_exponential_map(logRs)
Ts = torch.zeros(n_frames, 3, device=device)
Ts[:, 2] = 2.7
frames = []
print('Rendering rotating NeRF ...')
print("Rendering rotating NeRF ...")
for R, T in zip(tqdm(Rs), Ts):
camera = FoVPerspectiveCameras(
R=R[None],
@ -648,8 +658,18 @@ def generate_rotating_nerf(neural_radiance_field, n_frames = 50):
)
return torch.cat(frames)
with torch.no_grad():
rotating_nerf_frames = generate_rotating_nerf(neural_radiance_field, n_frames=3*5)
rotating_nerf_frames = generate_rotating_nerf(
neural_radiance_field, n_frames=3 * 5
)
image_grid(
rotating_nerf_frames.clamp(0.0, 1.0).cpu().numpy(),
rows=3,
cols=5,
rgb=True,
fill=True,
)
image_grid(rotating_nerf_frames.clamp(0., 1.).cpu().numpy(), rows=3, cols=5, rgb=True, fill=True)
plt.show()

Loading…
Cancel
Save