nerf_plus_plus/colmap_runner/run_colmap.py
2021-06-10 18:17:59 +02:00

168 lines
5.4 KiB
Python

import os
import subprocess
from extract_sfm import extract_all_to_dir
from normalize_cam_dict import normalize_cam_dict
#########################################################################
# Note: configure the colmap_bin to the colmap executable on your machine
#########################################################################
def bash_run(cmd):
colmap_bin = "/usr/local/bin/colmap"
cmd = colmap_bin + " " + cmd
print("\nRunning cmd: ", cmd)
subprocess.check_call(["/bin/bash", "-c", cmd])
gpu_index = "-1"
def run_sift_matching(img_dir, db_file, remove_exist=False):
print("Running sift matching...")
if remove_exist and os.path.exists(db_file):
os.remove(db_file) # otherwise colmap will skip sift matching
# feature extraction
# if there's no attached display, cannot use feature extractor with GPU
cmd = f" feature_extractor --database_path {db_file}"\
f" --image_path {img_dir}"\
f" --ImageReader.single_camera 1"\
f" --ImageReader.camera_model SIMPLE_RADIAL"\
f" --SiftExtraction.max_image_size 5000 "\
f" --SiftExtraction.estimate_affine_shape 0"\
f" --SiftExtraction.domain_size_pooling 1"\
f" --SiftExtraction.use_gpu 1"\
f" --SiftExtraction.max_num_features 16384"\
f" --SiftExtraction.gpu_index {gpu_index}"
bash_run(cmd)
# feature matching
cmd = f" exhaustive_matcher --database_path {db_file}"\
f" --SiftMatching.guided_matching 1"\
f" --SiftMatching.use_gpu 1"\
f" --SiftMatching.max_num_matches 65536"\
f" --SiftMatching.max_error 3"\
f" --SiftMatching.gpu_index {gpu_index}"
bash_run(cmd)
def run_sfm(img_dir, db_file, out_dir):
print("Running SfM...")
cmd = f" mapper"\
f" --database_path {db_file}"\
f" --image_path {img_dir}"\
f" --output_path {out_dir}"\
f" --Mapper.tri_min_angle 3.0"\
f" --Mapper.filter_min_tri_angle 3.0"
bash_run(cmd)
def prepare_mvs(img_dir, sparse_dir, mvs_dir):
print("Preparing for MVS...")
cmd = f" image_undistorter"\
f" --image_path {img_dir}"\
f" --input_path {sparse_dir}"\
f" --output_path {mvs_dir}"\
f" --output_type COLMAP"\
f" --max_image_size 2000"
bash_run(cmd)
def run_photometric_mvs(mvs_dir, window_radius):
print("Running photometric MVS...")
cmd = f" patch_match_stereo --workspace_path {mvs_dir}"\
f" --PatchMatchStereo.window_radius {window_radius}"\
f" --PatchMatchStereo.min_triangulation_angle 3.0"\
f" --PatchMatchStereo.filter 1"\
f" --PatchMatchStereo.geom_consistency 1"\
f" --PatchMatchStereo.gpu_index={gpu_index}"\
f" --PatchMatchStereo.num_samples 15"\
f" --PatchMatchStereo.num_iterations 12"
bash_run(cmd)
def run_fuse(mvs_dir, out_ply):
print("Running depth fusion...")
cmd = f"stereo_fusion"\
f" --workspace_path {mvs_dir}"\
f" --output_path {out_ply}"\
f" --input_type geometric"
bash_run(cmd)
def run_possion_mesher(in_ply, out_ply, trim):
print("Running possion mesher...")
cmd = f" poisson_mesher"\
f" --input_path {in_ply}"\
f" --output_path {out_ply}"\
f" --PoissonMeshing.trim {trim}"
bash_run(cmd)
def main(img_dir, out_dir, run_mvs=False):
os.makedirs(out_dir, exist_ok=True)
#### run sfm
sfm_dir = os.path.join(out_dir, "sfm")
os.makedirs(sfm_dir, exist_ok=True)
img_dir_link = os.path.join(sfm_dir, "images")
if os.path.exists(img_dir_link):
os.remove(img_dir_link)
os.symlink(img_dir, img_dir_link)
db_file = os.path.join(sfm_dir, "database.db")
run_sift_matching(img_dir, db_file, remove_exist=False)
sparse_dir = os.path.join(sfm_dir, "sparse/0")
os.makedirs(sparse_dir, exist_ok=True)
run_sfm(img_dir, db_file, sparse_dir)
# undistort images
mvs_dir = os.path.join(out_dir, "mvs")
os.makedirs(mvs_dir, exist_ok=True)
prepare_mvs(img_dir, sparse_dir, mvs_dir)
# extract camera parameters and undistorted images
os.makedirs(os.path.join(out_dir, "posed_images"), exist_ok=True)
extract_all_to_dir(
os.path.join(mvs_dir, "sparse"), os.path.join(out_dir, "posed_images")
)
undistorted_img_dir = os.path.join(mvs_dir, "images")
posed_img_dir_link = os.path.join(out_dir, "posed_images/images")
if os.path.exists(posed_img_dir_link):
os.remove(posed_img_dir_link)
os.symlink(undistorted_img_dir, posed_img_dir_link)
# normalize average camera center to origin, and put all cameras inside the unit sphere
normalize_cam_dict(
os.path.join(out_dir, "posed_images/kai_cameras.json"),
os.path.join(out_dir, "posed_images/kai_cameras_normalized.json"),
)
if run_mvs:
# run mvs
run_photometric_mvs(mvs_dir, window_radius=7)
out_ply = os.path.join(out_dir, "mvs/fused.ply")
run_fuse(mvs_dir, out_ply)
out_mesh_ply = os.path.join(out_dir, "mvs/meshed_trim_3.ply")
run_possion_mesher(out_ply, out_mesh_ply, trim=3)
if __name__ == "__main__":
### note: this script is intended for the case where all images are taken by the same camera, i.e., intrinisics are shared.
# CHANGE THIS TWO PATHS
img_dir = "~/code/my_awesome_dataset/"
out_dir = "~/home/code/nerfplusplus/outdir/"
run_mvs = False
main(img_dir, out_dir, run_mvs=run_mvs)