57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
import numpy as np
|
|
import json
|
|
import copy
|
|
|
|
|
|
def get_tf_cams(cam_dict, target_radius=1.):
|
|
cam_centers = []
|
|
for im_name in cam_dict:
|
|
W2C = np.array(cam_dict[im_name]['W2C']).reshape((4, 4))
|
|
C2W = np.linalg.inv(W2C)
|
|
cam_centers.append(C2W[:3, 3:4])
|
|
|
|
def get_center_and_diag(cam_centers):
|
|
cam_centers = np.hstack(cam_centers)
|
|
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
|
|
center = avg_cam_center
|
|
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
|
|
diagonal = np.max(dist)
|
|
return center.flatten(), diagonal
|
|
|
|
center, diagonal = get_center_and_diag(cam_centers)
|
|
radius = diagonal / 2. * 1.1
|
|
|
|
translate = -center
|
|
scale = target_radius / radius
|
|
|
|
return translate, scale
|
|
|
|
|
|
def normalize_cam_dict(in_cam_dict_file, out_cam_dict_file, target_radius=1.):
|
|
with open(in_cam_dict_file) as fp:
|
|
in_cam_dict = json.load(fp)
|
|
|
|
translate, scale = get_tf_cams(in_cam_dict, target_radius=target_radius)
|
|
|
|
def transform_pose(W2C, translate, scale):
|
|
C2W = np.linalg.inv(W2C)
|
|
cam_center = C2W[:3, 3]
|
|
cam_center = (cam_center + translate) * scale
|
|
C2W[:3, 3] = cam_center
|
|
return np.linalg.inv(C2W)
|
|
|
|
out_cam_dict = copy.deepcopy(in_cam_dict)
|
|
for img_name in out_cam_dict:
|
|
W2C = np.array(out_cam_dict[img_name]['W2C']).reshape((4, 4))
|
|
W2C = transform_pose(W2C, translate, scale)
|
|
assert(np.isclose(np.linalg.det(W2C[:3, :3]), 1.))
|
|
out_cam_dict[img_name]['W2C'] = list(W2C.flatten())
|
|
|
|
with open(out_cam_dict_file, 'w') as fp:
|
|
json.dump(out_cam_dict, fp, indent=2, sort_keys=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
in_cam_dict_file = ''
|
|
out_cam_dict_file = ''
|
|
normalize_cam_dict(in_cam_dict_file, out_cam_dict_file, target_radius=1.)
|