605 lines
28 KiB
Python
605 lines
28 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.optim
|
|
import torch.distributed
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
import torch.multiprocessing
|
|
import os
|
|
from collections import OrderedDict
|
|
from ddp_model import NerfNetWithAutoExpo
|
|
import time
|
|
from data_loader_split import load_data_split
|
|
import numpy as np
|
|
from tensorboardX import SummaryWriter
|
|
from utils import img2mse, mse2psnr, img_HWC2CHW, colorize, TINY_NUMBER
|
|
import logging
|
|
import json
|
|
|
|
|
|
logger = logging.getLogger(__package__)
|
|
|
|
|
|
def setup_logger():
|
|
# create logger
|
|
logger = logging.getLogger(__package__)
|
|
# logger.setLevel(logging.DEBUG)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
# create console handler and set level to debug
|
|
ch = logging.StreamHandler()
|
|
ch.setLevel(logging.DEBUG)
|
|
|
|
# create formatter
|
|
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(name)s: %(message)s')
|
|
|
|
# add formatter to ch
|
|
ch.setFormatter(formatter)
|
|
|
|
# add ch to logger
|
|
logger.addHandler(ch)
|
|
|
|
|
|
def intersect_sphere(ray_o, ray_d):
|
|
'''
|
|
ray_o, ray_d: [..., 3]
|
|
compute the depth of the intersection point between this ray and unit sphere
|
|
'''
|
|
# note: d1 becomes negative if this mid point is behind camera
|
|
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
|
|
p = ray_o + d1.unsqueeze(-1) * ray_d
|
|
# consider the case where the ray does not intersect the sphere
|
|
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
|
|
d2 = torch.sqrt(1. - torch.sum(p * p, dim=-1)) * ray_d_cos
|
|
|
|
return d1 + d2
|
|
|
|
|
|
def perturb_samples(z_vals):
|
|
# get intervals between samples
|
|
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
|
|
upper = torch.cat([mids, z_vals[..., -1:]], dim=-1)
|
|
lower = torch.cat([z_vals[..., 0:1], mids], dim=-1)
|
|
# uniform samples in those intervals
|
|
t_rand = torch.rand_like(z_vals)
|
|
z_vals = lower + (upper - lower) * t_rand # [N_rays, N_samples]
|
|
|
|
return z_vals
|
|
|
|
|
|
def sample_pdf(bins, weights, N_samples, det=False):
|
|
'''
|
|
:param bins: tensor of shape [..., M+1], M is the number of bins
|
|
:param weights: tensor of shape [..., M]
|
|
:param N_samples: number of samples along each ray
|
|
:param det: if True, will perform deterministic sampling
|
|
:return: [..., N_samples]
|
|
'''
|
|
# Get pdf
|
|
weights = weights + TINY_NUMBER # prevent nans
|
|
pdf = weights / torch.sum(weights, dim=-1, keepdim=True) # [..., M]
|
|
cdf = torch.cumsum(pdf, dim=-1) # [..., M]
|
|
cdf = torch.cat([torch.zeros_like(cdf[..., 0:1]), cdf], dim=-1) # [..., M+1]
|
|
|
|
# Take uniform samples
|
|
dots_sh = list(weights.shape[:-1])
|
|
M = weights.shape[-1]
|
|
|
|
min_cdf = 0.00
|
|
max_cdf = 1.00 # prevent outlier samples
|
|
|
|
if det:
|
|
u = torch.linspace(min_cdf, max_cdf, N_samples, device=bins.device)
|
|
u = u.view([1]*len(dots_sh) + [N_samples]).expand(dots_sh + [N_samples,]) # [..., N_samples]
|
|
else:
|
|
sh = dots_sh + [N_samples]
|
|
u = torch.rand(*sh, device=bins.device) * (max_cdf - min_cdf) + min_cdf # [..., N_samples]
|
|
|
|
# Invert CDF
|
|
# [..., N_samples, 1] >= [..., 1, M] ----> [..., N_samples, M] ----> [..., N_samples,]
|
|
above_inds = torch.sum(u.unsqueeze(-1) >= cdf[..., :M].unsqueeze(-2), dim=-1).long()
|
|
|
|
# random sample inside each bin
|
|
below_inds = torch.clamp(above_inds-1, min=0)
|
|
inds_g = torch.stack((below_inds, above_inds), dim=-1) # [..., N_samples, 2]
|
|
|
|
cdf = cdf.unsqueeze(-2).expand(dots_sh + [N_samples, M+1]) # [..., N_samples, M+1]
|
|
cdf_g = torch.gather(input=cdf, dim=-1, index=inds_g) # [..., N_samples, 2]
|
|
|
|
bins = bins.unsqueeze(-2).expand(dots_sh + [N_samples, M+1]) # [..., N_samples, M+1]
|
|
bins_g = torch.gather(input=bins, dim=-1, index=inds_g) # [..., N_samples, 2]
|
|
|
|
# fix numeric issue
|
|
denom = cdf_g[..., 1] - cdf_g[..., 0] # [..., N_samples]
|
|
denom = torch.where(denom<TINY_NUMBER, torch.ones_like(denom), denom)
|
|
t = (u - cdf_g[..., 0]) / denom
|
|
|
|
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0] + TINY_NUMBER)
|
|
|
|
return samples
|
|
|
|
|
|
def render_single_image(rank, world_size, models, ray_sampler, chunk_size):
|
|
##### parallel rendering of a single image
|
|
ray_batch = ray_sampler.get_all()
|
|
# split into ranks; make sure different processes don't overlap
|
|
rank_split_sizes = [ray_batch['ray_d'].shape[0] // world_size, ] * world_size
|
|
rank_split_sizes[-1] = ray_batch['ray_d'].shape[0] - sum(rank_split_sizes[:-1])
|
|
for key in ray_batch:
|
|
if torch.is_tensor(ray_batch[key]):
|
|
ray_batch[key] = torch.split(ray_batch[key], rank_split_sizes)[rank].to(rank)
|
|
|
|
# split into chunks and render inside each process
|
|
ray_batch_split = OrderedDict()
|
|
for key in ray_batch:
|
|
if torch.is_tensor(ray_batch[key]):
|
|
ray_batch_split[key] = torch.split(ray_batch[key], chunk_size)
|
|
|
|
# forward and backward
|
|
ret_merge_chunk = [OrderedDict() for _ in range(models['cascade_level'])]
|
|
for s in range(len(ray_batch_split['ray_d'])):
|
|
ray_o = ray_batch_split['ray_o'][s]
|
|
ray_d = ray_batch_split['ray_d'][s]
|
|
min_depth = ray_batch_split['min_depth'][s]
|
|
|
|
dots_sh = list(ray_d.shape[:-1])
|
|
for m in range(models['cascade_level']):
|
|
net = models['net_{}'.format(m)]
|
|
# sample depths
|
|
N_samples = models['cascade_samples'][m]
|
|
if m == 0:
|
|
# foreground depth
|
|
fg_far_depth = intersect_sphere(ray_o, ray_d) # [...,]
|
|
# fg_near_depth = 0.18 * torch.ones_like(fg_far_depth)
|
|
fg_near_depth = min_depth # [..., 3]
|
|
step = (fg_far_depth - fg_near_depth) / (N_samples - 1)
|
|
fg_depth = torch.stack([fg_near_depth + i * step for i in range(N_samples)], dim=-1) # [..., N_samples]
|
|
|
|
# background depth
|
|
bg_depth = torch.linspace(0., 1., N_samples).view(
|
|
[1, ] * len(dots_sh) + [N_samples,]).expand(dots_sh + [N_samples,]).to(rank)
|
|
|
|
# delete unused memory
|
|
del fg_near_depth
|
|
del step
|
|
torch.cuda.empty_cache()
|
|
else:
|
|
# sample pdf and concat with earlier samples
|
|
fg_weights = ret['fg_weights'].clone().detach()
|
|
fg_depth_mid = .5 * (fg_depth[..., 1:] + fg_depth[..., :-1]) # [..., N_samples-1]
|
|
fg_weights = fg_weights[..., 1:-1] # [..., N_samples-2]
|
|
fg_depth_samples = sample_pdf(bins=fg_depth_mid, weights=fg_weights,
|
|
N_samples=N_samples, det=True) # [..., N_samples]
|
|
fg_depth, _ = torch.sort(torch.cat((fg_depth, fg_depth_samples), dim=-1))
|
|
|
|
# sample pdf and concat with earlier samples
|
|
bg_weights = ret['bg_weights'].clone().detach()
|
|
bg_depth_mid = .5 * (bg_depth[..., 1:] + bg_depth[..., :-1])
|
|
bg_weights = bg_weights[..., 1:-1] # [..., N_samples-2]
|
|
bg_depth_samples = sample_pdf(bins=bg_depth_mid, weights=bg_weights,
|
|
N_samples=N_samples, det=True) # [..., N_samples]
|
|
bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1))
|
|
|
|
# delete unused memory
|
|
del fg_weights
|
|
del fg_depth_mid
|
|
del fg_depth_samples
|
|
del bg_weights
|
|
del bg_depth_mid
|
|
del bg_depth_samples
|
|
torch.cuda.empty_cache()
|
|
|
|
with torch.no_grad():
|
|
ret = net(ray_o, ray_d, fg_far_depth, fg_depth, bg_depth)
|
|
|
|
for key in ret:
|
|
if key not in ['fg_weights', 'bg_weights']:
|
|
if torch.is_tensor(ret[key]):
|
|
if key not in ret_merge_chunk[m]:
|
|
ret_merge_chunk[m][key] = [ret[key].cpu(), ]
|
|
else:
|
|
ret_merge_chunk[m][key].append(ret[key].cpu())
|
|
|
|
ret[key] = None
|
|
|
|
# clean unused memory
|
|
torch.cuda.empty_cache()
|
|
|
|
# merge results from different chunks
|
|
for m in range(len(ret_merge_chunk)):
|
|
for key in ret_merge_chunk[m]:
|
|
ret_merge_chunk[m][key] = torch.cat(ret_merge_chunk[m][key], dim=0)
|
|
|
|
# merge results from different processes
|
|
if rank == 0:
|
|
ret_merge_rank = [OrderedDict() for _ in range(len(ret_merge_chunk))]
|
|
for m in range(len(ret_merge_chunk)):
|
|
for key in ret_merge_chunk[m]:
|
|
# generate tensors to store results from other processes
|
|
sh = list(ret_merge_chunk[m][key].shape[1:])
|
|
ret_merge_rank[m][key] = [torch.zeros(*[size,]+sh, dtype=torch.float32) for size in rank_split_sizes]
|
|
torch.distributed.gather(ret_merge_chunk[m][key], ret_merge_rank[m][key])
|
|
ret_merge_rank[m][key] = torch.cat(ret_merge_rank[m][key], dim=0).reshape(
|
|
(ray_sampler.H, ray_sampler.W, -1)).squeeze()
|
|
# print(m, key, ret_merge_rank[m][key].shape)
|
|
else: # send results to main process
|
|
for m in range(len(ret_merge_chunk)):
|
|
for key in ret_merge_chunk[m]:
|
|
torch.distributed.gather(ret_merge_chunk[m][key])
|
|
|
|
# only rank 0 program returns
|
|
if rank == 0:
|
|
return ret_merge_rank
|
|
else:
|
|
return None
|
|
|
|
|
|
def log_view_to_tb(writer, global_step, log_data, gt_img, mask, prefix=''):
|
|
rgb_im = img_HWC2CHW(torch.from_numpy(gt_img))
|
|
writer.add_image(prefix + 'rgb_gt', rgb_im, global_step)
|
|
|
|
for m in range(len(log_data)):
|
|
rgb_im = img_HWC2CHW(log_data[m]['rgb'])
|
|
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
|
|
writer.add_image(prefix + 'level_{}/rgb'.format(m), rgb_im, global_step)
|
|
|
|
rgb_im = img_HWC2CHW(log_data[m]['fg_rgb'])
|
|
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
|
|
writer.add_image(prefix + 'level_{}/fg_rgb'.format(m), rgb_im, global_step)
|
|
depth = log_data[m]['fg_depth']
|
|
depth_im = img_HWC2CHW(colorize(depth, cmap_name='jet', append_cbar=True,
|
|
mask=mask))
|
|
writer.add_image(prefix + 'level_{}/fg_depth'.format(m), depth_im, global_step)
|
|
|
|
rgb_im = img_HWC2CHW(log_data[m]['bg_rgb'])
|
|
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
|
|
writer.add_image(prefix + 'level_{}/bg_rgb'.format(m), rgb_im, global_step)
|
|
depth = log_data[m]['bg_depth']
|
|
depth_im = img_HWC2CHW(colorize(depth, cmap_name='jet', append_cbar=True,
|
|
mask=mask))
|
|
writer.add_image(prefix + 'level_{}/bg_depth'.format(m), depth_im, global_step)
|
|
bg_lambda = log_data[m]['bg_lambda']
|
|
bg_lambda_im = img_HWC2CHW(colorize(bg_lambda, cmap_name='hot', append_cbar=True,
|
|
mask=mask))
|
|
writer.add_image(prefix + 'level_{}/bg_lambda'.format(m), bg_lambda_im, global_step)
|
|
|
|
|
|
def setup(rank, world_size):
|
|
os.environ['MASTER_ADDR'] = 'localhost'
|
|
# port = np.random.randint(12355, 12399)
|
|
# os.environ['MASTER_PORT'] = '{}'.format(port)
|
|
os.environ['MASTER_PORT'] = '12355'
|
|
# initialize the process group
|
|
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
|
|
|
|
|
|
def cleanup():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
def create_nerf(rank, args):
|
|
###### create network and wrap in ddp; each process should do this
|
|
# fix random seed just to make sure the network is initialized with same weights at different processes
|
|
torch.manual_seed(777)
|
|
# very important!!! otherwise it might introduce extra memory in rank=0 gpu
|
|
torch.cuda.set_device(rank)
|
|
|
|
models = OrderedDict()
|
|
models['cascade_level'] = args.cascade_level
|
|
models['cascade_samples'] = [int(x.strip()) for x in args.cascade_samples.split(',')]
|
|
for m in range(models['cascade_level']):
|
|
img_names = None
|
|
if args.optim_autoexpo:
|
|
# load training image names for autoexposure
|
|
f = os.path.join(args.basedir, args.expname, 'train_images.json')
|
|
with open(f) as file:
|
|
img_names = json.load(file)
|
|
net = NerfNetWithAutoExpo(args, optim_autoexpo=args.optim_autoexpo, img_names=img_names).to(rank)
|
|
net = DDP(net, device_ids=[rank], output_device=rank, find_unused_parameters=True)
|
|
# net = DDP(net, device_ids=[rank], output_device=rank)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lrate)
|
|
models['net_{}'.format(m)] = net
|
|
models['optim_{}'.format(m)] = optim
|
|
|
|
start = -1
|
|
|
|
###### load pretrained weights; each process should do this
|
|
if (args.ckpt_path is not None) and (os.path.isfile(args.ckpt_path)):
|
|
ckpts = [args.ckpt_path]
|
|
else:
|
|
ckpts = [os.path.join(args.basedir, args.expname, f)
|
|
for f in sorted(os.listdir(os.path.join(args.basedir, args.expname))) if f.endswith('.pth')]
|
|
def path2iter(path):
|
|
tmp = os.path.basename(path)[:-4]
|
|
idx = tmp.rfind('_')
|
|
return int(tmp[idx + 1:])
|
|
ckpts = sorted(ckpts, key=path2iter)
|
|
logger.info('Found ckpts: {}'.format(ckpts))
|
|
if len(ckpts) > 0 and not args.no_reload:
|
|
fpath = ckpts[-1]
|
|
logger.info('Reloading from: {}'.format(fpath))
|
|
start = path2iter(fpath)
|
|
# configure map_location properly for different processes
|
|
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
|
|
to_load = torch.load(fpath, map_location=map_location)
|
|
for m in range(models['cascade_level']):
|
|
for name in ['net_{}'.format(m), 'optim_{}'.format(m)]:
|
|
models[name].load_state_dict(to_load[name])
|
|
models[name].load_state_dict(to_load[name])
|
|
|
|
return start, models
|
|
|
|
|
|
def ddp_train_nerf(rank, args):
|
|
###### set up multi-processing
|
|
setup(rank, args.world_size)
|
|
###### set up logger
|
|
logger = logging.getLogger(__package__)
|
|
setup_logger()
|
|
|
|
###### decide chunk size according to gpu memory
|
|
logger.info('gpu_mem: {}'.format(torch.cuda.get_device_properties(rank).total_memory))
|
|
if torch.cuda.get_device_properties(rank).total_memory / 1e9 > 14:
|
|
logger.info('setting batch size according to 24G gpu')
|
|
args.N_rand = 1024
|
|
args.chunk_size = 8192
|
|
else:
|
|
logger.info('setting batch size according to 12G gpu')
|
|
args.N_rand = 512
|
|
args.chunk_size = 4096
|
|
|
|
###### Create log dir and copy the config file
|
|
if rank == 0:
|
|
os.makedirs(os.path.join(args.basedir, args.expname), exist_ok=True)
|
|
f = os.path.join(args.basedir, args.expname, 'args.txt')
|
|
with open(f, 'w') as file:
|
|
for arg in sorted(vars(args)):
|
|
attr = getattr(args, arg)
|
|
file.write('{} = {}\n'.format(arg, attr))
|
|
if args.config is not None:
|
|
f = os.path.join(args.basedir, args.expname, 'config.txt')
|
|
with open(f, 'w') as file:
|
|
file.write(open(args.config, 'r').read())
|
|
torch.distributed.barrier()
|
|
|
|
ray_samplers = load_data_split(args.datadir, args.scene, split='train',
|
|
try_load_min_depth=args.load_min_depth)
|
|
val_ray_samplers = load_data_split(args.datadir, args.scene, split='validation',
|
|
try_load_min_depth=args.load_min_depth, skip=args.testskip)
|
|
|
|
# write training image names for autoexposure
|
|
if args.optim_autoexpo:
|
|
f = os.path.join(args.basedir, args.expname, 'train_images.json')
|
|
with open(f, 'w') as file:
|
|
img_names = [ray_samplers[i].img_path for i in range(len(ray_samplers))]
|
|
json.dump(img_names, file, indent=2)
|
|
|
|
###### create network and wrap in ddp; each process should do this
|
|
start, models = create_nerf(rank, args)
|
|
|
|
##### important!!!
|
|
# make sure different processes sample different rays
|
|
np.random.seed((rank + 1) * 777)
|
|
# make sure different processes have different perturbations in depth samples
|
|
torch.manual_seed((rank + 1) * 777)
|
|
|
|
##### only main process should do the logging
|
|
if rank == 0:
|
|
writer = SummaryWriter(os.path.join(args.basedir, 'summaries', args.expname))
|
|
|
|
# start training
|
|
what_val_to_log = 0 # helper variable for parallel rendering of a image
|
|
what_train_to_log = 0
|
|
for global_step in range(start+1, start+1+args.N_iters):
|
|
time0 = time.time()
|
|
scalars_to_log = OrderedDict()
|
|
### Start of core optimization loop
|
|
scalars_to_log['resolution'] = ray_samplers[0].resolution_level
|
|
# randomly sample rays and move to device
|
|
i = np.random.randint(low=0, high=len(ray_samplers))
|
|
ray_batch = ray_samplers[i].random_sample(args.N_rand, center_crop=False)
|
|
for key in ray_batch:
|
|
if torch.is_tensor(ray_batch[key]):
|
|
ray_batch[key] = ray_batch[key].to(rank)
|
|
|
|
# forward and backward
|
|
dots_sh = list(ray_batch['ray_d'].shape[:-1]) # number of rays
|
|
all_rets = [] # results on different cascade levels
|
|
for m in range(models['cascade_level']):
|
|
optim = models['optim_{}'.format(m)]
|
|
net = models['net_{}'.format(m)]
|
|
|
|
# sample depths
|
|
N_samples = models['cascade_samples'][m]
|
|
if m == 0:
|
|
# foreground depth
|
|
fg_far_depth = intersect_sphere(ray_batch['ray_o'], ray_batch['ray_d']) # [...,]
|
|
# fg_near_depth = 0.18 * torch.ones_like(fg_far_depth)
|
|
fg_near_depth = ray_batch['min_depth'] # [..., 3]
|
|
step = (fg_far_depth - fg_near_depth) / (N_samples - 1)
|
|
fg_depth = torch.stack([fg_near_depth + i * step for i in range(N_samples)], dim=-1) # [..., N_samples]
|
|
fg_depth = perturb_samples(fg_depth) # random perturbation during training
|
|
|
|
# background depth
|
|
bg_depth = torch.linspace(0., 1., N_samples).view(
|
|
[1, ] * len(dots_sh) + [N_samples,]).expand(dots_sh + [N_samples,]).to(rank)
|
|
bg_depth = perturb_samples(bg_depth) # random perturbation during training
|
|
else:
|
|
# sample pdf and concat with earlier samples
|
|
fg_weights = ret['fg_weights'].clone().detach()
|
|
fg_depth_mid = .5 * (fg_depth[..., 1:] + fg_depth[..., :-1]) # [..., N_samples-1]
|
|
fg_weights = fg_weights[..., 1:-1] # [..., N_samples-2]
|
|
fg_depth_samples = sample_pdf(bins=fg_depth_mid, weights=fg_weights,
|
|
N_samples=N_samples, det=False) # [..., N_samples]
|
|
fg_depth, _ = torch.sort(torch.cat((fg_depth, fg_depth_samples), dim=-1))
|
|
|
|
# sample pdf and concat with earlier samples
|
|
bg_weights = ret['bg_weights'].clone().detach()
|
|
bg_depth_mid = .5 * (bg_depth[..., 1:] + bg_depth[..., :-1])
|
|
bg_weights = bg_weights[..., 1:-1] # [..., N_samples-2]
|
|
bg_depth_samples = sample_pdf(bins=bg_depth_mid, weights=bg_weights,
|
|
N_samples=N_samples, det=False) # [..., N_samples]
|
|
bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1))
|
|
|
|
optim.zero_grad()
|
|
ret = net(ray_batch['ray_o'], ray_batch['ray_d'], fg_far_depth, fg_depth, bg_depth, img_name=ray_batch['img_name'])
|
|
all_rets.append(ret)
|
|
|
|
rgb_gt = ray_batch['rgb'].to(rank)
|
|
if 'autoexpo' in ret:
|
|
scale, shift = ret['autoexpo']
|
|
scalars_to_log['level_{}/autoexpo_scale'.format(m)] = scale.item()
|
|
scalars_to_log['level_{}/autoexpo_shift'.format(m)] = shift.item()
|
|
# rgb_gt = scale * rgb_gt + shift
|
|
rgb_pred = (ret['rgb'] - shift) / scale
|
|
rgb_loss = img2mse(rgb_pred, rgb_gt)
|
|
loss = rgb_loss + args.lambda_autoexpo * (torch.abs(scale-1.)+torch.abs(shift))
|
|
else:
|
|
rgb_loss = img2mse(ret['rgb'], rgb_gt)
|
|
loss = rgb_loss
|
|
scalars_to_log['level_{}/loss'.format(m)] = rgb_loss.item()
|
|
scalars_to_log['level_{}/pnsr'.format(m)] = mse2psnr(rgb_loss.item())
|
|
loss.backward()
|
|
optim.step()
|
|
|
|
# # clean unused memory
|
|
# torch.cuda.empty_cache()
|
|
|
|
### end of core optimization loop
|
|
dt = time.time() - time0
|
|
scalars_to_log['iter_time'] = dt
|
|
|
|
### only main process should do the logging
|
|
if rank == 0 and (global_step % args.i_print == 0 or global_step < 10):
|
|
logstr = '{} step: {} '.format(args.expname, global_step)
|
|
for k in scalars_to_log:
|
|
logstr += ' {}: {:.6f}'.format(k, scalars_to_log[k])
|
|
writer.add_scalar(k, scalars_to_log[k], global_step)
|
|
logger.info(logstr)
|
|
|
|
### each process should do this; but only main process merges the results
|
|
if global_step % args.i_img == 0 or global_step == start+1:
|
|
#### critical: make sure each process is working on the same random image
|
|
time0 = time.time()
|
|
idx = what_val_to_log % len(val_ray_samplers)
|
|
log_data = render_single_image(rank, args.world_size, models, val_ray_samplers[idx], args.chunk_size)
|
|
what_val_to_log += 1
|
|
dt = time.time() - time0
|
|
if rank == 0: # only main process should do this
|
|
logger.info('Logged a random validation view in {} seconds'.format(dt))
|
|
log_view_to_tb(writer, global_step, log_data, gt_img=val_ray_samplers[idx].get_img(), mask=None, prefix='val/')
|
|
|
|
time0 = time.time()
|
|
idx = what_train_to_log % len(ray_samplers)
|
|
log_data = render_single_image(rank, args.world_size, models, ray_samplers[idx], args.chunk_size)
|
|
what_train_to_log += 1
|
|
dt = time.time() - time0
|
|
if rank == 0: # only main process should do this
|
|
logger.info('Logged a random training view in {} seconds'.format(dt))
|
|
log_view_to_tb(writer, global_step, log_data, gt_img=ray_samplers[idx].get_img(), mask=None, prefix='train/')
|
|
|
|
del log_data
|
|
torch.cuda.empty_cache()
|
|
|
|
if rank == 0 and (global_step % args.i_weights == 0 and global_step > 0):
|
|
# saving checkpoints and logging
|
|
fpath = os.path.join(args.basedir, args.expname, 'model_{:06d}.pth'.format(global_step))
|
|
to_save = OrderedDict()
|
|
for m in range(models['cascade_level']):
|
|
name = 'net_{}'.format(m)
|
|
to_save[name] = models[name].state_dict()
|
|
|
|
name = 'optim_{}'.format(m)
|
|
to_save[name] = models[name].state_dict()
|
|
torch.save(to_save, fpath)
|
|
|
|
# clean up for multi-processing
|
|
cleanup()
|
|
|
|
|
|
def config_parser():
|
|
import configargparse
|
|
parser = configargparse.ArgumentParser()
|
|
parser.add_argument('--config', is_config_file=True, help='config file path')
|
|
parser.add_argument("--expname", type=str, help='experiment name')
|
|
parser.add_argument("--basedir", type=str, default='./logs/', help='where to store ckpts and logs')
|
|
# dataset options
|
|
parser.add_argument("--datadir", type=str, default=None, help='input data directory')
|
|
parser.add_argument("--scene", type=str, default=None, help='scene name')
|
|
parser.add_argument("--testskip", type=int, default=8,
|
|
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
|
|
# model size
|
|
parser.add_argument("--netdepth", type=int, default=8, help='layers in coarse network')
|
|
parser.add_argument("--netwidth", type=int, default=256, help='channels per layer in coarse network')
|
|
parser.add_argument("--use_viewdirs", action='store_true', help='use full 5D input instead of 3D')
|
|
# checkpoints
|
|
parser.add_argument("--no_reload", action='store_true', help='do not reload weights from saved ckpt')
|
|
parser.add_argument("--ckpt_path", type=str, default=None,
|
|
help='specific weights npy file to reload for coarse network')
|
|
# batch size
|
|
parser.add_argument("--N_rand", type=int, default=32 * 32 * 2,
|
|
help='batch size (number of random rays per gradient step)')
|
|
parser.add_argument("--chunk_size", type=int, default=1024 * 8,
|
|
help='number of rays processed in parallel, decrease if running out of memory')
|
|
# iterations
|
|
parser.add_argument("--N_iters", type=int, default=250001,
|
|
help='number of iterations')
|
|
# render only
|
|
parser.add_argument("--render_splits", type=str, default='test',
|
|
help='splits to render')
|
|
# cascade training
|
|
parser.add_argument("--cascade_level", type=int, default=2,
|
|
help='number of cascade levels')
|
|
parser.add_argument("--cascade_samples", type=str, default='64,64',
|
|
help='samples at each level')
|
|
parser.add_argument("--devices", type=str, default='0,1',
|
|
help='cuda device for each level')
|
|
parser.add_argument("--bg_devices", type=str, default='0,2',
|
|
help='cuda device for the background of each level')
|
|
# multiprocess learning
|
|
parser.add_argument("--world_size", type=int, default='-1',
|
|
help='number of processes')
|
|
# optimize autoexposure
|
|
parser.add_argument("--optim_autoexpo", action='store_true',
|
|
help='optimize autoexposure parameters')
|
|
parser.add_argument("--lambda_autoexpo", type=float, default=1., help='regularization weight for autoexposure')
|
|
|
|
# learning rate options
|
|
parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
|
|
parser.add_argument("--lrate_decay_factor", type=float, default=0.1,
|
|
help='decay learning rate by a factor every specified number of steps')
|
|
parser.add_argument("--lrate_decay_steps", type=int, default=5000,
|
|
help='decay learning rate by a factor every specified number of steps')
|
|
# rendering options
|
|
parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples')
|
|
parser.add_argument("--max_freq_log2", type=int, default=10,
|
|
help='log2 of max freq for positional encoding (3D location)')
|
|
parser.add_argument("--max_freq_log2_viewdirs", type=int, default=4,
|
|
help='log2 of max freq for positional encoding (2D direction)')
|
|
parser.add_argument("--load_min_depth", action='store_true', help='whether to load min depth')
|
|
# logging/saving options
|
|
parser.add_argument("--i_print", type=int, default=100, help='frequency of console printout and metric loggin')
|
|
parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging')
|
|
parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving')
|
|
|
|
return parser
|
|
|
|
|
|
def train():
|
|
parser = config_parser()
|
|
args = parser.parse_args()
|
|
logger.info(parser.format_values())
|
|
|
|
if args.world_size == -1:
|
|
args.world_size = torch.cuda.device_count()
|
|
logger.info('Using # gpus: {}'.format(args.world_size))
|
|
torch.multiprocessing.spawn(ddp_train_nerf,
|
|
args=(args,),
|
|
nprocs=args.world_size,
|
|
join=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
setup_logger()
|
|
train()
|
|
|
|
|