import os import subprocess from extract_sfm import extract_all_to_dir from normalize_cam_dict import normalize_cam_dict ######################################################################### # Note: configure the colmap_bin to the colmap executable on your machine ######################################################################### def bash_run(cmd): colmap_bin = '/home/zhangka2/code/colmap/build/__install__/bin/colmap' cmd = colmap_bin + ' ' + cmd print('\nRunning cmd: ', cmd) subprocess.check_call(['/bin/bash', '-c', cmd]) gpu_index = '-1' def run_sift_matching(img_dir, db_file, remove_exist=False): print('Running sift matching...') if remove_exist and os.path.exists(db_file): os.remove(db_file) # otherwise colmap will skip sift matching # feature extraction # if there's no attached display, cannot use feature extractor with GPU cmd = ' feature_extractor --database_path {} \ --image_path {} \ --ImageReader.single_camera 1 \ --ImageReader.camera_model SIMPLE_RADIAL \ --SiftExtraction.max_image_size 5000 \ --SiftExtraction.estimate_affine_shape 0 \ --SiftExtraction.domain_size_pooling 1 \ --SiftExtraction.use_gpu 1 \ --SiftExtraction.max_num_features 16384 \ --SiftExtraction.gpu_index {}'.format(db_file, img_dir, gpu_index) bash_run(cmd) # feature matching cmd = ' exhaustive_matcher --database_path {} \ --SiftMatching.guided_matching 1 \ --SiftMatching.use_gpu 1 \ --SiftMatching.max_num_matches 65536 \ --SiftMatching.max_error 3 \ --SiftMatching.gpu_index {}'.format(db_file, gpu_index) bash_run(cmd) def run_sfm(img_dir, db_file, out_dir): print('Running SfM...') cmd = ' mapper \ --database_path {} \ --image_path {} \ --output_path {} \ --Mapper.tri_min_angle 3.0 \ --Mapper.filter_min_tri_angle 3.0'.format(db_file, img_dir, out_dir) bash_run(cmd) def prepare_mvs(img_dir, sparse_dir, mvs_dir): print('Preparing for MVS...') cmd = ' image_undistorter \ --image_path {} \ --input_path {} \ --output_path {} \ --output_type COLMAP \ --max_image_size 2000'.format(img_dir, sparse_dir, mvs_dir) bash_run(cmd) def run_photometric_mvs(mvs_dir, window_radius): print('Running photometric MVS...') cmd = ' patch_match_stereo --workspace_path {} \ --PatchMatchStereo.window_radius {} \ --PatchMatchStereo.min_triangulation_angle 3.0 \ --PatchMatchStereo.filter 1 \ --PatchMatchStereo.geom_consistency 1 \ --PatchMatchStereo.gpu_index={} \ --PatchMatchStereo.num_samples 15 \ --PatchMatchStereo.num_iterations 12'.format(mvs_dir, window_radius, gpu_index) bash_run(cmd) def run_fuse(mvs_dir, out_ply): print('Running depth fusion...') cmd = ' stereo_fusion --workspace_path {} \ --output_path {} \ --input_type geometric'.format(mvs_dir, out_ply) bash_run(cmd) def run_possion_mesher(in_ply, out_ply, trim): print('Running possion mesher...') cmd = ' poisson_mesher \ --input_path {} \ --output_path {} \ --PoissonMeshing.trim {}'.format(in_ply, out_ply, trim) bash_run(cmd) def main(img_dir, out_dir, run_mvs=False): os.makedirs(out_dir, exist_ok=True) #### run sfm sfm_dir = os.path.join(out_dir, 'sfm') os.makedirs(sfm_dir, exist_ok=True) img_dir_link = os.path.join(sfm_dir, 'images') if os.path.exists(img_dir_link): os.remove(img_dir_link) os.symlink(img_dir, img_dir_link) db_file = os.path.join(sfm_dir, 'database.db') run_sift_matching(img_dir, db_file, remove_exist=False) sparse_dir = os.path.join(sfm_dir, 'sparse') os.makedirs(sparse_dir, exist_ok=True) run_sfm(img_dir, db_file, sparse_dir) # undistort images mvs_dir = os.path.join(out_dir, 'mvs') os.makedirs(mvs_dir, exist_ok=True) prepare_mvs(img_dir, sparse_dir, mvs_dir) # extract camera parameters and undistorted images os.makedirs(os.path.join(out_dir, 'posed_images'), exist_ok=True) extract_all_to_dir(os.path.join(mvs_dir, 'sparse'), os.path.join(out_dir, 'posed_images')) undistorted_img_dir = os.path.join(mvs_dir, 'images') posed_img_dir_link = os.path.join(out_dir, 'posed_images/images') if os.path.exists(posed_img_dir_link): os.remove(posed_img_dir_link) os.symlink(undistorted_img_dir, posed_img_dir_link) # normalize average camera center to origin, and put all cameras inside the unit sphere normalize_cam_dict(os.path.join(out_dir, 'posed_images/kai_cameras.json'), os.path.join(out_dir, 'posed_images/kai_cameras_normalized.json')) if run_mvs: # run mvs run_photometric_mvs(mvs_dir, window_radius=7) out_ply = os.path.join(out_dir, 'mvs/fused.ply') run_fuse(mvs_dir, out_ply) out_mesh_ply = os.path.join(out_dir, 'mvs/meshed_trim_3.ply') run_possion_mesher(out_ply, out_mesh_ply, trim=3) if __name__ == '__main__': img_dir = '' out_dir = '' run_mvs = False main(img_dir, out_dir, run_mvs=run_mvs)