import torch # import torch.nn as nn # import torch.nn.functional as F import numpy as np HUGE_NUMBER = 1e10 TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision # misc utils def img2mse(x, y, mask=None): if mask is None: return torch.mean((x - y) * (x - y)) else: return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (torch.sum(mask) * x.shape[-1] + TINY_NUMBER) img_HWC2CHW = lambda x: x.permute(2, 0, 1) gray2rgb = lambda x: x.unsqueeze(2).repeat(1, 1, 3) def normalize(x): min = x.min() max = x.max() return (x - min) / ((max - min) + TINY_NUMBER) to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8) # gray2rgb = lambda x: np.tile(x[:,:,np.newaxis], (1, 1, 3)) mse2psnr = lambda x: -10. * np.log(x+TINY_NUMBER) / np.log(10.) ######################################################################################################################## # ######################################################################################################################## from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure import matplotlib as mpl from matplotlib import cm import cv2 def get_vertical_colorbar(h, vmin, vmax, cmap_name='jet', label=None): fig = Figure(figsize=(1.2, 8), dpi=100) fig.subplots_adjust(right=1.5) canvas = FigureCanvasAgg(fig) # Do some plotting. ax = fig.add_subplot(111) cmap = cm.get_cmap(cmap_name) norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) tick_cnt = 6 tick_loc = np.linspace(vmin, vmax, tick_cnt) cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation='vertical') tick_label = ['{:3.2f}'.format(x) for x in tick_loc] cb1.set_ticklabels(tick_label) cb1.ax.tick_params(labelsize=18, rotation=0) if label is not None: cb1.set_label(label) fig.tight_layout() canvas.draw() s, (width, height) = canvas.print_to_buffer() im = np.frombuffer(s, np.uint8).reshape((height, width, 4)) im = im[:, :, :3].astype(np.float32) / 255. if h != im.shape[0]: w = int(im.shape[1] / im.shape[0] * h) im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA) return im def colorize_np(x, cmap_name='jet', mask=None, append_cbar=False): if mask is not None: # vmin, vmax = np.percentile(x[mask], (1, 99)) vmin = np.min(x[mask]) vmax = np.max(x[mask]) vmin = vmin - np.abs(vmin) * 0.01 x[np.logical_not(mask)] = vmin x = np.clip(x, vmin, vmax) # print(vmin, vmax) else: vmin = x.min() vmax = x.max() + TINY_NUMBER x = (x - vmin) / (vmax - vmin) # x = np.clip(x, 0., 1.) cmap = cm.get_cmap(cmap_name) x_new = cmap(x)[:, :, :3] if mask is not None: mask = np.float32(mask[:, :, np.newaxis]) x_new = x_new * mask + np.zeros_like(x_new) * (1. - mask) cbar = get_vertical_colorbar(h=x.shape[0], vmin=vmin, vmax=vmax, cmap_name=cmap_name) if append_cbar: x_new = np.concatenate((x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1) return x_new else: return x_new, cbar # tensor def colorize(x, cmap_name='jet', append_cbar=False, mask=None): x = x.numpy() if mask is not None: mask = mask.numpy().astype(dtype=np.bool) x, cbar = colorize_np(x, cmap_name, mask) if append_cbar: x = np.concatenate((x, np.zeros_like(x[:, :5, :]), cbar), axis=1) x = torch.from_numpy(x) return x