import torch import torch.nn as nn # import torch.nn.functional as F # import numpy as np from collections import OrderedDict import logging logger = logging.getLogger(__package__) class Embedder(nn.Module): def __init__(self, input_dim, max_freq_log2, N_freqs, log_sampling=True, include_input=True, periodic_fns=(torch.sin, torch.cos)): ''' :param input_dim: dimension of input to be embedded :param max_freq_log2: log2 of max freq; min freq is 1 by default :param N_freqs: number of frequency bands :param log_sampling: if True, frequency bands are linerly sampled in log-space :param include_input: if True, raw input is included in the embedding :param periodic_fns: periodic functions used to embed input ''' super().__init__() self.input_dim = input_dim self.include_input = include_input self.periodic_fns = periodic_fns self.out_dim = 0 if self.include_input: self.out_dim += self.input_dim self.out_dim += self.input_dim * N_freqs * len(self.periodic_fns) if log_sampling: self.freq_bands = 2. ** torch.linspace(0., max_freq_log2, N_freqs) else: self.freq_bands = torch.linspace(2. ** 0., 2. ** max_freq_log2, N_freqs) self.freq_bands = self.freq_bands.numpy().tolist() def forward(self, input): ''' :param input: tensor of shape [..., self.input_dim] :return: tensor of shape [..., self.out_dim] ''' assert (input.shape[-1] == self.input_dim) out = [] if self.include_input: out.append(input) for i in range(len(self.freq_bands)): freq = self.freq_bands[i] for p_fn in self.periodic_fns: out.append(p_fn(input * freq)) out = torch.cat(out, dim=-1) assert (out.shape[-1] == self.out_dim) return out # default tensorflow initialization of linear layers def weights_init(m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: nn.init.zeros_(m.bias.data) class MLPNet(nn.Module): def __init__(self, D=8, W=256, input_ch=3, input_ch_viewdirs=3, skips=[4], use_viewdirs=False): ''' :param D: network depth :param W: network width :param input_ch: input channels for encodings of (x, y, z) :param input_ch_viewdirs: input channels for encodings of view directions :param skips: skip connection in network :param use_viewdirs: if True, will use the view directions as input ''' super().__init__() self.input_ch = input_ch self.input_ch_viewdirs = input_ch_viewdirs self.use_viewdirs = use_viewdirs self.skips = skips self.base_layers = [] dim = self.input_ch for i in range(D): self.base_layers.append( nn.Sequential(nn.Linear(dim, W), nn.ReLU()) ) dim = W if i in self.skips and i != (D-1): # skip connection after i^th layer dim += input_ch self.base_layers = nn.ModuleList(self.base_layers) # self.base_layers.apply(weights_init) # xavier init sigma_layers = [nn.Linear(dim, 1), ] # sigma must be positive self.sigma_layers = nn.Sequential(*sigma_layers) # self.sigma_layers.apply(weights_init) # xavier init # rgb color rgb_layers = [] base_remap_layers = [nn.Linear(dim, 256), ] self.base_remap_layers = nn.Sequential(*base_remap_layers) # self.base_remap_layers.apply(weights_init) dim = 256 + self.input_ch_viewdirs for i in range(1): rgb_layers.append(nn.Linear(dim, W // 2)) rgb_layers.append(nn.ReLU()) dim = W // 2 rgb_layers.append(nn.Linear(dim, 3)) rgb_layers.append(nn.Sigmoid()) # rgb values are normalized to [0, 1] self.rgb_layers = nn.Sequential(*rgb_layers) # self.rgb_layers.apply(weights_init) def forward(self, input): ''' :param input: [..., input_ch+input_ch_viewdirs] :return [..., 4] ''' input_pts = input[..., :self.input_ch] base = self.base_layers[0](input_pts) for i in range(len(self.base_layers)-1): if i in self.skips: base = torch.cat((input_pts, base), dim=-1) base = self.base_layers[i+1](base) sigma = self.sigma_layers(base) sigma = torch.abs(sigma) base_remap = self.base_remap_layers(base) input_viewdirs = input[..., -self.input_ch_viewdirs:] rgb = self.rgb_layers(torch.cat((base_remap, input_viewdirs), dim=-1)) ret = OrderedDict([('rgb', rgb), ('sigma', sigma.squeeze(-1))]) return ret