clean code

This commit is contained in:
Kai-46 2020-10-11 21:36:58 -04:00
parent 5fbe15ff24
commit e60d030d34
5 changed files with 138 additions and 1029 deletions

138
.gitignore vendored Normal file
View file

@ -0,0 +1,138 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

Binary file not shown.

View file

@ -1,181 +0,0 @@
import os
import numpy as np
import imageio
from collections import OrderedDict
import logging
logger = logging.getLogger(__package__)
########################################################################################################################
# camera coordinate system: x-->right, y-->down, z-->scene (opencv/colmap convention)
# poses is camera-to-world
########################################################################################################################
def load_data(basedir, scene, testskip=8):
def parse_txt(filename):
assert os.path.isfile(filename)
nums = open(filename).read().split()
return np.array([float(x) for x in nums]).reshape([4, 4]).astype(np.float32)
def dir2poses(posedir):
poses = np.stack(
[parse_txt(os.path.join(posedir, f)) for f in sorted(os.listdir(posedir)) if f.endswith('txt')], 0)
poses = poses.astype(np.float32)
return poses
def dir2intrinsics(intrinsicdir):
intrinsics = np.stack(
[parse_txt(os.path.join(intrinsicdir, f)) for f in sorted(os.listdir(intrinsicdir)) if f.endswith('txt')], 0)
intrinsics = intrinsics.astype(np.float32)
return intrinsics
intrinsics = dir2intrinsics('{}/{}/train/intrinsics'.format(basedir, scene))
testintrinsics = dir2poses('{}/{}/test/intrinsics'.format(basedir, scene))
testintrinsics = testintrinsics[::testskip]
valintrinsics = dir2poses('{}/{}/validation/intrinsics'.format(basedir, scene))
valintrinsics = valintrinsics[::testskip]
print(intrinsics.shape, testintrinsics.shape, valintrinsics.shape)
poses = dir2poses('{}/{}/train/pose'.format(basedir, scene))
testposes = dir2poses('{}/{}/test/pose'.format(basedir, scene))
testposes = testposes[::testskip]
valposes = dir2poses('{}/{}/validation/pose'.format(basedir, scene))
valposes = valposes[::testskip]
print(poses.shape, testposes.shape, valposes.shape)
imgd = '{}/{}/train/rgb'.format(basedir, scene)
imgfiles = ['{}/{}'.format(imgd, f)
for f in sorted(os.listdir(imgd)) if f.endswith('png') or f.endswith('jpg')]
imgs = [imageio.imread(f).astype(np.float32)[..., :3] / 255. for f in imgfiles]
maskd = '{}/{}/train/mask'.format(basedir, scene)
if os.path.isdir(maskd):
logger.info('Loading mask from: {}'.format(maskd))
maskfiles = ['{}/{}'.format(maskd, f)
for f in sorted(os.listdir(maskd)) if f.endswith('png') or f.endswith('jpg')]
masks = [imageio.imread(f).astype(np.float32) / 255. for f in maskfiles]
else:
masks = [None for im in imgs]
# load min_depth map
min_depthd = '{}/{}/train/min_depth'.format(basedir, scene)
if os.path.isdir(min_depthd):
logger.info('Loading min_depth from: {}'.format(min_depthd))
max_depth = float(open('{}/{}/train/max_depth.txt'.format(basedir, scene)).readline().strip())
min_depthfiles = ['{}/{}'.format(min_depthd, f)
for f in sorted(os.listdir(min_depthd)) if f.endswith('png') or f.endswith('jpg')]
min_depths = [imageio.imread(f).astype(np.float32) / 255. * max_depth + 1e-4 for f in min_depthfiles]
else:
min_depths = [None for im in imgs]
testimgd = '{}/{}/test/rgb'.format(basedir, scene)
testimgfiles = ['{}/{}'.format(testimgd, f)
for f in sorted(os.listdir(testimgd)) if f.endswith('png') or f.endswith('jpg')]
testimgs = [imageio.imread(f).astype(np.float32)[..., :3] / 255. for f in testimgfiles]
testimgfiles = testimgfiles[::testskip]
testimgs = testimgs[::testskip]
testmaskd = '{}/{}/test/mask'.format(basedir, scene)
if os.path.isdir(testmaskd):
logger.info('Loading mask from: {}'.format(testmaskd))
testmaskfiles = ['{}/{}'.format(testmaskd, f)
for f in sorted(os.listdir(testmaskd)) if f.endswith('png') or f.endswith('jpg')]
testmasks = [imageio.imread(f).astype(np.float32) / 255. for f in testmaskfiles]
else:
testmasks = [None for im in testimgs]
# load min_depth map
min_depthd = '{}/{}/test/min_depth'.format(basedir, scene)
if os.path.isdir(min_depthd):
logger.info('Loading min_depth from: {}'.format(min_depthd))
max_depth = float(open('{}/{}/test/max_depth.txt'.format(basedir, scene)).readline().strip())
min_depthfiles = ['{}/{}'.format(min_depthd, f)
for f in sorted(os.listdir(min_depthd)) if f.endswith('png') or f.endswith('jpg')]
test_min_depths = [imageio.imread(f).astype(np.float32) / 255. * max_depth + 1e-4 for f in min_depthfiles]
else:
test_min_depths = [None for im in testimgs]
valimgd = '{}/{}/validation/rgb'.format(basedir, scene)
valimgfiles = ['{}/{}'.format(valimgd, f)
for f in sorted(os.listdir(valimgd)) if f.endswith('png') or f.endswith('jpg')]
valimgs = [imageio.imread(f).astype(np.float32)[..., :3] / 255. for f in valimgfiles]
valimgfiles = valimgfiles[::testskip]
valimgs = valimgs[::testskip]
valmaskd = '{}/{}/validation/mask'.format(basedir, scene)
if os.path.isdir(valmaskd):
logger.info('Loading mask from: {}'.format(valmaskd))
valmaskfiles = ['{}/{}'.format(valmaskd, f)
for f in sorted(os.listdir(valmaskd)) if f.endswith('png') or f.endswith('jpg')]
valmasks = [imageio.imread(f).astype(np.float32) / 255. for f in valmaskfiles]
else:
valmasks = [None for im in valimgs]
# load min_depth map
min_depthd = '{}/{}/validation/min_depth'.format(basedir, scene)
if os.path.isdir(min_depthd):
logger.info('Loading min_depth from: {}'.format(min_depthd))
max_depth = float(open('{}/{}/validation/max_depth.txt'.format(basedir, scene)).readline().strip())
min_depthfiles = ['{}/{}'.format(min_depthd, f)
for f in sorted(os.listdir(min_depthd)) if f.endswith('png') or f.endswith('jpg')]
val_min_depths = [imageio.imread(f).astype(np.float32) / 255. * max_depth + 1e-4 for f in min_depthfiles]
else:
val_min_depths = [None for im in valimgs]
# data format for training/testing
print(len(imgs), len(testimgs), len(valimgs))
all_imgs = imgs + valimgs + testimgs
all_masks = masks + valmasks + testmasks
all_min_depths = min_depths + val_min_depths + test_min_depths
all_paths = imgfiles + valimgfiles + testimgfiles
counts = [0] + [len(x) for x in [imgs, valimgs, testimgs]]
counts = np.cumsum(counts)
i_split = [list(np.arange(counts[i], counts[i+1])) for i in range(3)]
intrinsics = np.concatenate([intrinsics, valintrinsics, testintrinsics], 0)
poses = np.concatenate([poses, valposes, testposes], 0)
img_sizes = np.stack([np.array(x.shape[:2]) for x in all_imgs], axis=0) # [H, W]
cnt = len(all_imgs)
all_cams = np.concatenate((img_sizes.astype(dtype=np.float32), intrinsics.reshape((cnt, -1)), poses.reshape((cnt, -1))), axis=1)
if os.path.isdir('{}/{}/camera_path/intrinsics'.format(basedir, scene)):
camera_path_intrinsics = dir2poses('{}/{}/camera_path/intrinsics'.format(basedir, scene))
camera_path_poses = dir2poses('{}/{}/camera_path/pose'.format(basedir, scene))
# assume centered principal points
# img_sizes = np.stack((camera_path_intrinsics[:, 1, 2]*2, camera_path_intrinsics[:, 0, 2]*2), axis=1) # [H, W]
# img_sizes = np.int32(img_sizes)
H = all_cams[0, 0]
W = all_cams[0, 1]
img_sizes = np.stack((np.ones_like(camera_path_intrinsics[:, 1, 2])*H, np.ones_like(camera_path_intrinsics[:, 0, 2])*W), axis=1) # [H, W]
cnt = len(camera_path_intrinsics)
render_cams = np.concatenate(
(img_sizes.astype(dtype=np.float32), camera_path_intrinsics.reshape((cnt, -1)), camera_path_poses.reshape((cnt, -1))),
axis=1)
else:
render_cams = None
print(all_cams.shape)
data = OrderedDict([('images', all_imgs),
('masks', all_masks),
('paths', all_paths),
('min_depths', all_min_depths),
('cameras', all_cams),
('i_train', i_split[0]),
('i_val', i_split[1]),
('i_test', i_split[2]),
('render_cams', render_cams)])
logger.info('Data statistics:')
logger.info('\t # of training views: {}'.format(len(data['i_train'])))
logger.info('\t # of validation views: {}'.format(len(data['i_val'])))
logger.info('\t # of test views: {}'.format(len(data['i_test'])))
if data['render_cams'] is not None:
logger.info('\t # of render cameras: {}'.format(len(data['render_cams'])))
return data

View file

@ -1,617 +0,0 @@
import torch
import torch.nn as nn
import torch.optim
import torch.distributed
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing
import os
from collections import OrderedDict
from ddp_model import NerfNet
import time
# from data_loader import load_data
# from nerf_sample_ray import RaySamplerSingleImage
from data_loader_split import load_data_split
import numpy as np
from tensorboardX import SummaryWriter
from utils import img2mse, mse2psnr, img_HWC2CHW, colorize, TINY_NUMBER
import logging
logger = logging.getLogger(__package__)
def setup_logger():
# create logger
logger = logging.getLogger(__package__)
logger.setLevel(logging.DEBUG)
# create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# create formatter
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(name)s: %(message)s')
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
def intersect_sphere(ray_o, ray_d):
'''
ray_o, ray_d: [..., 3]
compute the depth of the intersection point between this ray and unit sphere
'''
# note: d1 becomes negative if this mid point is behind camera
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
p = ray_o + d1.unsqueeze(-1) * ray_d
# consider the case where the ray does not intersect the sphere
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
d2 = torch.sqrt(1. - torch.sum(p * p, dim=-1)) * ray_d_cos
return d1 + d2
def perturb_samples(z_vals):
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], dim=-1)
lower = torch.cat([z_vals[..., 0:1], mids], dim=-1)
# uniform samples in those intervals
t_rand = torch.rand_like(z_vals)
z_vals = lower + (upper - lower) * t_rand # [N_rays, N_samples]
return z_vals
def sample_pdf(bins, weights, N_samples, det=False):
'''
:param bins: tensor of shape [..., M+1], M is the number of bins
:param weights: tensor of shape [..., M]
:param N_samples: number of samples along each ray
:param det: if True, will perform deterministic sampling
:return: [..., N_samples]
'''
# Get pdf
weights = weights + TINY_NUMBER # prevent nans
pdf = weights / torch.sum(weights, dim=-1, keepdim=True) # [..., M]
cdf = torch.cumsum(pdf, dim=-1) # [..., M]
cdf = torch.cat([torch.zeros_like(cdf[..., 0:1]), cdf], dim=-1) # [..., M+1]
# Take uniform samples
dots_sh = list(weights.shape[:-1])
M = weights.shape[-1]
min_cdf = 0.00
max_cdf = 1.00 # prevent outlier samples
if det:
u = torch.linspace(min_cdf, max_cdf, N_samples, device=bins.device)
u = u.view([1]*len(dots_sh) + [N_samples]).expand(dots_sh + [N_samples,]) # [..., N_samples]
else:
sh = dots_sh + [N_samples]
u = torch.rand(*sh, device=bins.device) * (max_cdf - min_cdf) + min_cdf # [..., N_samples]
# Invert CDF
# [..., N_samples, 1] >= [..., 1, M] ----> [..., N_samples, M] ----> [..., N_samples,]
above_inds = torch.sum(u.unsqueeze(-1) >= cdf[..., :M].unsqueeze(-2), dim=-1).long()
# random sample inside each bin
below_inds = torch.clamp(above_inds-1, min=0)
inds_g = torch.stack((below_inds, above_inds), dim=-1) # [..., N_samples, 2]
cdf = cdf.unsqueeze(-2).expand(dots_sh + [N_samples, M+1]) # [..., N_samples, M+1]
cdf_g = torch.gather(input=cdf, dim=-1, index=inds_g) # [..., N_samples, 2]
bins = bins.unsqueeze(-2).expand(dots_sh + [N_samples, M+1]) # [..., N_samples, M+1]
bins_g = torch.gather(input=bins, dim=-1, index=inds_g) # [..., N_samples, 2]
# fix numeric issue
denom = cdf_g[..., 1] - cdf_g[..., 0] # [..., N_samples]
denom = torch.where(denom<TINY_NUMBER, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0] + TINY_NUMBER)
return samples
def render_single_image(rank, world_size, models, ray_sampler, chunk_size):
##### parallel rendering of a single image
ray_batch = ray_sampler.get_all()
# split into ranks; make sure different processes don't overlap
rank_split_sizes = [ray_batch['ray_d'].shape[0] // world_size, ] * world_size
rank_split_sizes[-1] = ray_batch['ray_d'].shape[0] - sum(rank_split_sizes[:-1])
for key in ray_batch:
if torch.is_tensor(ray_batch[key]):
ray_batch[key] = torch.split(ray_batch[key], rank_split_sizes)[rank].to(rank)
# split into chunks and render inside each process
ray_batch_split = OrderedDict()
for key in ray_batch:
if torch.is_tensor(ray_batch[key]):
ray_batch_split[key] = torch.split(ray_batch[key], chunk_size)
# forward and backward
ret_merge_chunk = [OrderedDict() for _ in range(models['cascade_level'])]
for s in range(len(ray_batch_split['ray_d'])):
ray_o = ray_batch_split['ray_o'][s]
ray_d = ray_batch_split['ray_d'][s]
min_depth = ray_batch_split['min_depth'][s]
dots_sh = list(ray_d.shape[:-1])
for m in range(models['cascade_level']):
net = models['net_{}'.format(m)]
# sample depths
N_samples = models['cascade_samples'][m]
if m == 0:
# foreground depth
fg_far_depth = intersect_sphere(ray_o, ray_d) # [...,]
# fg_near_depth = 0.18 * torch.ones_like(fg_far_depth)
fg_near_depth = min_depth # [..., 3]
step = (fg_far_depth - fg_near_depth) / (N_samples - 1)
fg_depth = torch.stack([fg_near_depth + i * step for i in range(N_samples)], dim=-1) # [..., N_samples]
# background depth
bg_depth = torch.linspace(0., 1., N_samples).view(
[1, ] * len(dots_sh) + [N_samples,]).expand(dots_sh + [N_samples,]).to(rank)
# delete unused memory
del fg_near_depth
del step
torch.cuda.empty_cache()
else:
# sample pdf and concat with earlier samples
fg_weights = ret['fg_weights'].clone().detach()
fg_depth_mid = .5 * (fg_depth[..., 1:] + fg_depth[..., :-1]) # [..., N_samples-1]
fg_weights = fg_weights[..., 1:-1] # [..., N_samples-2]
fg_depth_samples = sample_pdf(bins=fg_depth_mid, weights=fg_weights,
N_samples=N_samples, det=True) # [..., N_samples]
fg_depth, _ = torch.sort(torch.cat((fg_depth, fg_depth_samples), dim=-1))
# sample pdf and concat with earlier samples
bg_weights = ret['bg_weights'].clone().detach()
bg_depth_mid = .5 * (bg_depth[..., 1:] + bg_depth[..., :-1])
bg_weights = bg_weights[..., 1:-1] # [..., N_samples-2]
bg_depth_samples = sample_pdf(bins=bg_depth_mid, weights=bg_weights,
N_samples=N_samples, det=True) # [..., N_samples]
bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1))
# delete unused memory
del fg_weights
del fg_depth_mid
del fg_depth_samples
del bg_weights
del bg_depth_mid
del bg_depth_samples
torch.cuda.empty_cache()
with torch.no_grad():
ret = net(ray_o, ray_d, fg_far_depth, fg_depth, bg_depth)
for key in ret:
if key not in ['fg_weights', 'bg_weights']:
if torch.is_tensor(ret[key]):
if key not in ret_merge_chunk[m]:
ret_merge_chunk[m][key] = [ret[key].cpu(), ]
else:
ret_merge_chunk[m][key].append(ret[key].cpu())
ret[key] = None
# clean unused memory
torch.cuda.empty_cache()
# merge results from different chunks
for m in range(len(ret_merge_chunk)):
for key in ret_merge_chunk[m]:
ret_merge_chunk[m][key] = torch.cat(ret_merge_chunk[m][key], dim=0)
# merge results from different processes
if rank == 0:
ret_merge_rank = [OrderedDict() for _ in range(len(ret_merge_chunk))]
for m in range(len(ret_merge_chunk)):
for key in ret_merge_chunk[m]:
# generate tensors to store results from other processes
sh = list(ret_merge_chunk[m][key].shape[1:])
ret_merge_rank[m][key] = [torch.zeros(*[size,]+sh, dtype=torch.float32) for size in rank_split_sizes]
torch.distributed.gather(ret_merge_chunk[m][key], ret_merge_rank[m][key])
ret_merge_rank[m][key] = torch.cat(ret_merge_rank[m][key], dim=0).reshape(
(ray_sampler.H, ray_sampler.W, -1)).squeeze()
# print(m, key, ret_merge_rank[m][key].shape)
else: # send results to main process
for m in range(len(ret_merge_chunk)):
for key in ret_merge_chunk[m]:
torch.distributed.gather(ret_merge_chunk[m][key])
# only rank 0 program returns
if rank == 0:
return ret_merge_rank
else:
return None
def log_view_to_tb(writer, global_step, log_data, gt_img, mask, prefix=''):
rgb_im = img_HWC2CHW(torch.from_numpy(gt_img))
writer.add_image(prefix + 'rgb_gt', rgb_im, global_step)
for m in range(len(log_data)):
rgb_im = img_HWC2CHW(log_data[m]['rgb'])
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
writer.add_image(prefix + 'level_{}/rgb'.format(m), rgb_im, global_step)
rgb_im = img_HWC2CHW(log_data[m]['fg_rgb'])
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
writer.add_image(prefix + 'level_{}/fg_rgb'.format(m), rgb_im, global_step)
depth = log_data[m]['fg_depth']
depth_im = img_HWC2CHW(colorize(depth, cmap_name='jet', append_cbar=True,
mask=mask))
writer.add_image(prefix + 'level_{}/fg_depth'.format(m), depth_im, global_step)
rgb_im = img_HWC2CHW(log_data[m]['bg_rgb'])
rgb_im = torch.clamp(rgb_im, min=0., max=1.) # just in case diffuse+specular>1
writer.add_image(prefix + 'level_{}/bg_rgb'.format(m), rgb_im, global_step)
depth = log_data[m]['bg_depth']
depth_im = img_HWC2CHW(colorize(depth, cmap_name='jet', append_cbar=True,
mask=mask))
writer.add_image(prefix + 'level_{}/bg_depth'.format(m), depth_im, global_step)
bg_lambda = log_data[m]['bg_lambda']
bg_lambda_im = img_HWC2CHW(colorize(bg_lambda, cmap_name='hot', append_cbar=True,
mask=mask))
writer.add_image(prefix + 'level_{}/bg_lambda'.format(m), bg_lambda_im, global_step)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
torch.distributed.destroy_process_group()
def ddp_train_nerf(rank, args):
###### set up multi-processing
setup(rank, args.world_size)
###### set up logger
logger = logging.getLogger(__package__)
setup_logger()
###### Create log dir and copy the config file
if rank == 0:
os.makedirs(os.path.join(args.basedir, args.expname), exist_ok=True)
f = os.path.join(args.basedir, args.expname, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
f = os.path.join(args.basedir, args.expname, 'config.txt')
with open(f, 'w') as file:
file.write(open(args.config, 'r').read())
torch.distributed.barrier()
###### load data and create ray samplers; each process should do this
# data = load_data(args.datadir, args.scene, args.testskip)
# ray_samplers = []
# for i in data['i_train']:
# ray_samplers.append(RaySamplerSingleImage(cam_params=data['cameras'][i],
# img=data['images'][i],
# img_path=data['paths'][i],
# mask=data['masks'][i],
# min_depth=data['min_depths'][i]))
#
# val_ray_samplers = []
# for i in data['i_val']:
# val_ray_samplers.append(RaySamplerSingleImage(cam_params=data['cameras'][i],
# img=data['images'][i],
# img_path=data['paths'][i],
# mask=data['masks'][i],
# min_depth=data['min_depths'][i]))
# # free memory
# del data
ray_samplers = load_data_split(args.datadir, args.scene, split='train')
val_ray_samplers = load_data_split(args.datadir, args.scene, split='validation')
###### create network and wrap in ddp; each process should do this
# fix random seed just to make sure the network is initialized with same weights at different processes
torch.manual_seed(777)
# very important!!! otherwise it might introduce extra memory in rank=0 gpu
torch.cuda.set_device(rank)
models = OrderedDict()
models['cascade_level'] = args.cascade_level
models['cascade_samples'] = [int(x.strip()) for x in args.cascade_samples.split(',')]
for m in range(models['cascade_level']):
net = NerfNet(args).to(rank)
net = DDP(net, device_ids=[rank], output_device=rank)
optim = torch.optim.Adam(net.parameters(), lr=args.lrate)
models['net_{}'.format(m)] = net
models['optim_{}'.format(m)] = optim
start = -1
###### load pretrained weights; each process should do this
if (args.ckpt_path is not None) and (os.path.isfile(args.ckpt_path)):
ckpts = [args.ckpt_path]
else:
ckpts = [os.path.join(args.basedir, args.expname, f)
for f in sorted(os.listdir(os.path.join(args.basedir, args.expname))) if f.endswith('.pth')]
def path2iter(path):
tmp = os.path.basename(path)[:-4]
idx = tmp.rfind('_')
return int(tmp[idx + 1:])
ckpts = sorted(ckpts, key=path2iter)
logger.info('Found ckpts: {}'.format(ckpts))
if len(ckpts) > 0 and not args.no_reload:
fpath = ckpts[-1]
logger.info('Reloading from: {}'.format(fpath))
start = path2iter(fpath)
# configure map_location properly for different processes
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
to_load = torch.load(fpath, map_location=map_location)
for m in range(models['cascade_level']):
for name in ['net_{}'.format(m), 'optim_{}'.format(m)]:
models[name].load_state_dict(to_load[name])
models[name].load_state_dict(to_load[name])
##### important!!!
# make sure different processes sample different rays
np.random.seed((rank + 1) * 777)
# make sure different processes have different perturbations in depth samples
torch.manual_seed((rank + 1) * 777)
##### only main process should do the logging
if rank == 0:
writer = SummaryWriter(os.path.join(args.basedir, 'summaries', args.expname))
# start training
what_val_to_log = 0 # helper variable for parallel rendering of a image
what_train_to_log = 0
for global_step in range(start+1, start+1+args.N_iters):
time0 = time.time()
scalars_to_log = OrderedDict()
### Start of core optimization loop
scalars_to_log['resolution'] = ray_samplers[0].resolution_level
# randomly sample rays and move to device
i = np.random.randint(low=0, high=len(ray_samplers))
ray_batch = ray_samplers[i].random_sample(args.N_rand, center_crop=False)
for key in ray_batch:
if torch.is_tensor(ray_batch[key]):
ray_batch[key] = ray_batch[key].to(rank)
# forward and backward
dots_sh = list(ray_batch['ray_d'].shape[:-1]) # number of rays
all_rets = [] # results on different cascade levels
for m in range(models['cascade_level']):
optim = models['optim_{}'.format(m)]
net = models['net_{}'.format(m)]
# sample depths
N_samples = models['cascade_samples'][m]
if m == 0:
# foreground depth
fg_far_depth = intersect_sphere(ray_batch['ray_o'], ray_batch['ray_d']) # [...,]
# fg_near_depth = 0.18 * torch.ones_like(fg_far_depth)
fg_near_depth = ray_batch['min_depth'] # [..., 3]
step = (fg_far_depth - fg_near_depth) / (N_samples - 1)
fg_depth = torch.stack([fg_near_depth + i * step for i in range(N_samples)], dim=-1) # [..., N_samples]
fg_depth = perturb_samples(fg_depth) # random perturbation during training
# background depth
bg_depth = torch.linspace(0., 1., N_samples).view(
[1, ] * len(dots_sh) + [N_samples,]).expand(dots_sh + [N_samples,]).to(rank)
bg_depth = perturb_samples(bg_depth) # random perturbation during training
else:
# sample pdf and concat with earlier samples
fg_weights = ret['fg_weights'].clone().detach()
fg_depth_mid = .5 * (fg_depth[..., 1:] + fg_depth[..., :-1]) # [..., N_samples-1]
fg_weights = fg_weights[..., 1:-1] # [..., N_samples-2]
fg_depth_samples = sample_pdf(bins=fg_depth_mid, weights=fg_weights,
N_samples=N_samples, det=False) # [..., N_samples]
fg_depth, _ = torch.sort(torch.cat((fg_depth, fg_depth_samples), dim=-1))
# sample pdf and concat with earlier samples
bg_weights = ret['bg_weights'].clone().detach()
bg_depth_mid = .5 * (bg_depth[..., 1:] + bg_depth[..., :-1])
bg_weights = bg_weights[..., 1:-1] # [..., N_samples-2]
bg_depth_samples = sample_pdf(bins=bg_depth_mid, weights=bg_weights,
N_samples=N_samples, det=False) # [..., N_samples]
bg_depth, _ = torch.sort(torch.cat((bg_depth, bg_depth_samples), dim=-1))
optim.zero_grad()
ret = net(ray_batch['ray_o'], ray_batch['ray_d'], fg_far_depth, fg_depth, bg_depth)
all_rets.append(ret)
rgb_gt = ray_batch['rgb'].to(rank)
loss = img2mse(ret['rgb'], rgb_gt)
scalars_to_log['level_{}/loss'.format(m)] = loss.item()
scalars_to_log['level_{}/pnsr'.format(m)] = mse2psnr(loss.item())
# regularize sigma with photo-consistency
loss = loss + img2mse(ret['diffuse_rgb'], rgb_gt)
loss.backward()
optim.step()
# # clean unused memory
# torch.cuda.empty_cache()
### end of core optimization loop
dt = time.time() - time0
scalars_to_log['iter_time'] = dt
### only main process should do the logging
if rank == 0 and (global_step % args.i_print == 0 or global_step < 10):
logstr = '{} step: {} '.format(args.expname, global_step)
for k in scalars_to_log:
logstr += ' {}: {:.6f}'.format(k, scalars_to_log[k])
writer.add_scalar(k, scalars_to_log[k], global_step)
logger.info(logstr)
### each process should do this; but only main process merges the results
if global_step % args.i_img == 0 or global_step == start+1:
#### critical: make sure each process is working on the same random image
time0 = time.time()
idx = what_val_to_log % len(val_ray_samplers)
log_data = render_single_image(rank, args.world_size, models, val_ray_samplers[idx], args.chunk_size)
what_val_to_log += 1
dt = time.time() - time0
if rank == 0: # only main process should do this
logger.info('Logged a random validation view in {} seconds'.format(dt))
log_view_to_tb(writer, global_step, log_data, gt_img=val_ray_samplers[idx].img_orig, mask=None, prefix='val/')
time0 = time.time()
idx = what_train_to_log % len(ray_samplers)
log_data = render_single_image(rank, args.world_size, models, ray_samplers[idx], args.chunk_size)
what_train_to_log += 1
dt = time.time() - time0
if rank == 0: # only main process should do this
logger.info('Logged a random training view in {} seconds'.format(dt))
log_view_to_tb(writer, global_step, log_data, gt_img=ray_samplers[idx].img_orig, mask=None, prefix='train/')
log_data = None
torch.cuda.empty_cache()
if rank == 0 and (global_step % args.i_weights == 0 and global_step > 0):
# saving checkpoints and logging
fpath = os.path.join(args.basedir, args.expname, 'model_{:06d}.pth'.format(global_step))
to_save = OrderedDict()
for m in range(models['cascade_level']):
name = 'net_{}'.format(m)
to_save[name] = models[name].state_dict()
name = 'optim_{}'.format(m)
to_save[name] = models[name].state_dict()
torch.save(to_save, fpath)
# clean up for multi-processing
cleanup()
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True, help='config file path')
parser.add_argument("--expname", type=str, help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/', help='where to store ckpts and logs')
# dataset options
parser.add_argument("--datadir", type=str, default=None, help='input data directory')
parser.add_argument("--scene", type=str, default=None, help='scene name')
parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
# model size
parser.add_argument("--netdepth", type=int, default=8, help='layers in coarse network')
parser.add_argument("--netwidth", type=int, default=256, help='channels per layer in coarse network')
parser.add_argument("--use_viewdirs", action='store_true', help='use full 5D input instead of 3D')
# checkpoints
parser.add_argument("--no_reload", action='store_true', help='do not reload weights from saved ckpt')
parser.add_argument("--ckpt_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
# batch size
parser.add_argument("--N_rand", type=int, default=32 * 32 * 2,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--chunk_size", type=int, default=1024 * 8,
help='number of rays processed in parallel, decrease if running out of memory')
# iterations
parser.add_argument("--N_iters", type=int, default=250001,
help='number of iterations')
# cascade training
parser.add_argument("--cascade_level", type=int, default=2,
help='number of cascade levels')
parser.add_argument("--cascade_samples", type=str, default='64,64',
help='samples at each level')
parser.add_argument("--devices", type=str, default='0,1',
help='cuda device for each level')
parser.add_argument("--bg_devices", type=str, default='0,2',
help='cuda device for the background of each level')
parser.add_argument("--world_size", type=int, default='-1',
help='number of processes')
# mixed precison training
parser.add_argument("--opt_level", type=str, default='O1',
help='mixed precison training')
parser.add_argument("--near_depth", type=float, default=0.1,
help='near depth plane')
parser.add_argument("--far_depth", type=float, default=50.,
help='far depth plane')
# learning rate options
parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
parser.add_argument("--lrate_decay_factor", type=float, default=0.1,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument("--lrate_decay_steps", type=int, default=5000,
help='decay learning rate by a factor every specified number of steps')
# rendering options
parser.add_argument("--inv_uniform", action='store_true',
help='if True, will uniformly sample inverse depths')
parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples')
parser.add_argument("--max_freq_log2", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--max_freq_log2_viewdirs", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--N_iters_perturb", type=int, default=1000,
help='perturb and center-crop at first 1000 iterations to prevent training from getting stuck')
parser.add_argument("--raw_noise_std", type=float, default=1.,
help='std dev of noise added to regularize sigma output, 1e0 recommended')
parser.add_argument("--white_bkgd", action='store_true',
help='apply the trick to avoid fitting to white background')
# no training; render only
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_train", action='store_true', help='render the training set')
parser.add_argument("--render_test", action='store_true', help='render the test set instead of render_poses path')
# no training; extract mesh only
parser.add_argument("--mesh_only", action='store_true',
help='do not optimize, extract mesh from pretrained model')
parser.add_argument("--N_pts", type=int, default=256,
help='voxel resolution; N_pts * N_pts * N_pts')
parser.add_argument("--mesh_thres", type=str, default='10,20,30,40,50',
help='threshold(s) for mesh extraction; can use multiple thresholds')
# logging/saving options
parser.add_argument("--i_print", type=int, default=100, help='frequency of console printout and metric loggin')
parser.add_argument("--i_img", type=int, default=500, help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving')
parser.add_argument("--i_testset", type=int, default=50000, help='frequency of testset saving')
parser.add_argument("--i_video", type=int, default=50000, help='frequency of render_poses video saving')
return parser
def train():
parser = config_parser()
args = parser.parse_args()
logger.info(parser.format_values())
if args.world_size == -1:
args.world_size = torch.cuda.device_count()
logger.info('Using # gpus: {}'.format(args.world_size))
torch.multiprocessing.spawn(ddp_train_nerf,
args=(args,),
nprocs=args.world_size,
join=True)
if __name__ == '__main__':
setup_logger()
train()

View file

@ -1,231 +0,0 @@
import numpy as np
from collections import OrderedDict
import torch
import cv2
########################################################################################################################
# ray batch sampling
########################################################################################################################
def parse_camera(params):
H, W = params[:2]
intrinsics = params[2:18].reshape((4, 4))
c2w = params[18:34].reshape((4, 4))
return int(W), int(H), intrinsics.astype(np.float32), c2w.astype(np.float32)
def get_rays_single_image(H, W, intrinsics, c2w):
'''
:param H: image height
:param W: image width
:param intrinsics: 4 by 4 intrinsic matrix
:param c2w: 4 by 4 camera to world extrinsic matrix
:return:
'''
u, v = np.meshgrid(np.arange(W), np.arange(H))
u = u.reshape(-1).astype(dtype=np.float32) + 0.5 # add half pixel
v = v.reshape(-1).astype(dtype=np.float32) + 0.5
pixels = np.stack((u, v, np.ones_like(u)), axis=0) # (3, H*W)
rays_d = np.dot(np.linalg.inv(intrinsics[:3, :3]), pixels)
rays_d = np.dot(c2w[:3, :3], rays_d) # (3, H*W)
rays_d = rays_d.transpose((1, 0)) # (H*W, 3)
rays_o = c2w[:3, 3].reshape((1, 3))
rays_o = np.tile(rays_o, (rays_d.shape[0], 1)) # (H*W, 3)
depth = np.linalg.inv(c2w)[2, 3]
depth = depth * np.ones((rays_o.shape[0],), dtype=np.float32) # (H*W,)
return rays_o, rays_d, depth
class RaySamplerSingleImage(object):
def __init__(self, cam_params, img_path=None, img=None, resolution_level=1, mask=None, min_depth=None):
super().__init__()
self.W_orig, self.H_orig, self.intrinsics_orig, self.c2w_mat = parse_camera(cam_params)
self.img_path = img_path
self.img_orig = img
self.mask_orig = mask
self.min_depth_orig = min_depth
self.resolution_level = -1
self.set_resolution_level(resolution_level)
def set_resolution_level(self, resolution_level):
if resolution_level != self.resolution_level:
self.resolution_level = resolution_level
self.W = self.W_orig // resolution_level
self.H = self.H_orig // resolution_level
self.intrinsics = np.copy(self.intrinsics_orig)
self.intrinsics[:2, :3] /= resolution_level
if self.img_orig is not None:
self.img = cv2.resize(self.img_orig, (self.W, self.H), interpolation=cv2.INTER_AREA)
self.img = self.img.reshape((-1, 3))
else:
self.img = None
if self.mask_orig is not None:
self.mask = cv2.resize(self.mask_orig, (self.W, self.H), interpolation=cv2.INTER_NEAREST)
self.mask = self.mask.reshape((-1))
else:
self.mask = None
if self.min_depth_orig is not None:
self.min_depth = cv2.resize(self.min_depth_orig, (self.W, self.H), interpolation=cv2.INTER_LINEAR)
self.min_depth = self.min_depth.reshape((-1))
else:
self.min_depth = None
self.rays_o, self.rays_d, self.depth = get_rays_single_image(self.H, self.W,
self.intrinsics, self.c2w_mat)
def get_all(self):
if self.min_depth is not None:
min_depth = self.min_depth
else:
min_depth = 1e-4 * np.ones_like(self.rays_d[..., 0])
ret = OrderedDict([
('ray_o', self.rays_o),
('ray_d', self.rays_d),
('depth', self.depth),
('rgb', self.img),
('mask', self.mask),
('min_depth', min_depth)
])
# return torch tensors
for k in ret:
if ret[k] is not None:
ret[k] = torch.from_numpy(ret[k])
return ret
def random_sample(self, N_rand, center_crop=False):
'''
:param N_rand: number of rays to be casted
:return:
'''
if center_crop:
half_H = self.H // 2
half_W = self.W // 2
quad_H = half_H // 2
quad_W = half_W // 2
# pixel coordinates
u, v = np.meshgrid(np.arange(half_W-quad_W, half_W+quad_W),
np.arange(half_H-quad_H, half_H+quad_H))
u = u.reshape(-1)
v = v.reshape(-1)
select_inds = np.random.choice(u.shape[0], size=(N_rand,), replace=False)
# Convert back to original image
select_inds = v[select_inds] * self.W + u[select_inds]
else:
# Random from one image
select_inds = np.random.choice(self.H*self.W, size=(N_rand,), replace=False)
rays_o = self.rays_o[select_inds, :] # [N_rand, 3]
rays_d = self.rays_d[select_inds, :] # [N_rand, 3]
depth = self.depth[select_inds] # [N_rand, ]
if self.img is not None:
rgb = self.img[select_inds, :] # [N_rand, 3]
else:
rgb = None
if self.mask is not None:
mask = self.mask[select_inds]
else:
mask = None
if self.min_depth is not None:
min_depth = self.min_depth[select_inds]
else:
min_depth = 1e-4 * np.ones_like(rays_d[..., 0])
ret = OrderedDict([
('ray_o', rays_o),
('ray_d', rays_d),
('depth', depth),
('rgb', rgb),
('mask', mask),
('min_depth', min_depth)
])
# return torch tensors
for k in ret:
if ret[k] is not None:
ret[k] = torch.from_numpy(ret[k])
return ret
# def random_sample_patches(self, N_patch, r_patch=16, center_crop=False):
# '''
# :param N_patch: number of patches to be sampled
# :param r_patch: patch size will be (2*r_patch+1)*(2*r_patch+1)
# :return:
# '''
# # even size patch
# # offsets to center pixels
# u, v = np.meshgrid(np.arange(-r_patch, r_patch),
# np.arange(-r_patch, r_patch))
# u = u.reshape(-1)
# v = v.reshape(-1)
# offsets = v * self.W + u
# # center pixel coordinates
# u_min = r_patch
# u_max = self.W - r_patch
# v_min = r_patch
# v_max = self.H - r_patch
# if center_crop:
# u_min = self.W // 4 + r_patch
# u_max = self.W - self.W // 4 - r_patch
# v_min = self.H // 4 + r_patch
# v_max = self.H - self.H // 4 - r_patch
# u, v = np.meshgrid(np.arange(u_min, u_max, r_patch),
# np.arange(v_min, v_max, r_patch))
# u = u.reshape(-1)
# v = v.reshape(-1)
# select_inds = np.random.choice(u.shape[0], size=(N_patch,), replace=False)
# # Convert back to original image
# select_inds = v[select_inds] * self.W + u[select_inds]
# # pick patches
# select_inds = np.stack([select_inds + shift for shift in offsets], axis=1)
# select_inds = select_inds.reshape(-1)
# rays_o = self.rays_o[select_inds, :] # [N_rand, 3]
# rays_d = self.rays_d[select_inds, :] # [N_rand, 3]
# depth = self.depth[select_inds] # [N_rand, ]
# if self.img is not None:
# rgb = self.img[select_inds, :] # [N_rand, 3]
# # ### debug
# # import imageio
# # imgs = rgb.reshape((N_patch, r_patch*2, r_patch*2, -1))
# # for kk in range(imgs.shape[0]):
# # imageio.imwrite('./debug_{}.png'.format(kk), imgs[kk])
# # ###
# else:
# rgb = None
# ret = OrderedDict([
# ('ray_o', rays_o),
# ('ray_d', rays_d),
# ('depth', depth),
# ('rgb', rgb)
# ])
# # return torch tensors
# for k in ret:
# ret[k] = torch.from_numpy(ret[k])
# return ret