add camera visualizer
This commit is contained in:
parent
5792048384
commit
aa3d8a3461
7 changed files with 19062 additions and 0 deletions
|
@ -67,3 +67,9 @@ You can use the scripts inside *'colmap_runner/'* to generate camera parameters
|
|||
* Raw COLMAP intrinsics and poses are stored as a json file *'out_dir/posed_images/kai_cameras.json'*.
|
||||
* Normalized cameras are stored in *'out_dir/posed_images/kai_cameras_normalized.json'*. See the *'Scene normalization method'* in the *'Data'* section.
|
||||
* Split distortion-free images and their correspoinding normalized cameras according to your need.
|
||||
|
||||
## Visualize cameras in 3D
|
||||
Check camera_visualizer/visualize_cameras.py for visualizing cameras in 3D. It creates an interactive viewer for you to inspect whether your cameras have been normalized to be compatible with this codebase. Below is a screenshot of the viewer: green cameras are used for training, blue ones are for testing, while yellow ones denote a novel camera path to be synthesized.
|
||||
![](camera_visualizer/screenshot.png)
|
||||
|
||||
|
||||
|
|
8402
camera_visualizer/camera_path/cam_dict_norm.json
Normal file
8402
camera_visualizer/camera_path/cam_dict_norm.json
Normal file
File diff suppressed because it is too large
Load diff
BIN
camera_visualizer/mesh_norm.ply
Normal file
BIN
camera_visualizer/mesh_norm.ply
Normal file
Binary file not shown.
BIN
camera_visualizer/screenshot.png
Normal file
BIN
camera_visualizer/screenshot.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2 MiB |
1052
camera_visualizer/test/cam_dict_norm.json
Normal file
1052
camera_visualizer/test/cam_dict_norm.json
Normal file
File diff suppressed because it is too large
Load diff
9494
camera_visualizer/train/cam_dict_norm.json
Normal file
9494
camera_visualizer/train/cam_dict_norm.json
Normal file
File diff suppressed because it is too large
Load diff
108
camera_visualizer/visualize_cameras.py
Normal file
108
camera_visualizer/visualize_cameras.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
import open3d as o3d
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_camera_frustum(img_size, K, W2C, frustum_length=0.5, color=[0., 1., 0.]):
|
||||
W, H = img_size
|
||||
hfov = np.rad2deg(np.arctan(W / 2. / K[0, 0]) * 2.)
|
||||
vfov = np.rad2deg(np.arctan(H / 2. / K[1, 1]) * 2.)
|
||||
half_w = frustum_length * np.tan(np.deg2rad(hfov / 2.))
|
||||
half_h = frustum_length * np.tan(np.deg2rad(vfov / 2.))
|
||||
|
||||
# build view frustum for camera (I, 0)
|
||||
frustum_points = np.array([[0., 0., 0.], # frustum origin
|
||||
[-half_w, -half_h, frustum_length], # top-left image corner
|
||||
[half_w, -half_h, frustum_length], # top-right image corner
|
||||
[half_w, half_h, frustum_length], # bottom-right image corner
|
||||
[-half_w, half_h, frustum_length]]) # bottom-left image corner
|
||||
frustum_lines = np.array([[0, i] for i in range(1, 5)] + [[i, (i+1)] for i in range(1, 4)] + [[4, 1]])
|
||||
frustum_colors = np.tile(np.array(color).reshape((1, 3)), (frustum_lines.shape[0], 1))
|
||||
|
||||
# frustum_colors = np.vstack((np.tile(np.array([[1., 0., 0.]]), (4, 1)),
|
||||
# np.tile(np.array([[0., 1., 0.]]), (4, 1))))
|
||||
|
||||
# transform view frustum from (I, 0) to (R, t)
|
||||
C2W = np.linalg.inv(W2C)
|
||||
frustum_points = np.dot(np.hstack((frustum_points, np.ones_like(frustum_points[:, 0:1]))), C2W.T)
|
||||
frustum_points = frustum_points[:, :3] / frustum_points[:, 3:4]
|
||||
|
||||
return frustum_points, frustum_lines, frustum_colors
|
||||
|
||||
|
||||
def frustums2lineset(frustums):
|
||||
N = len(frustums)
|
||||
merged_points = np.zeros((N*5, 3)) # 5 vertices per frustum
|
||||
merged_lines = np.zeros((N*8, 2)) # 8 lines per frustum
|
||||
merged_colors = np.zeros((N*8, 3)) # each line gets a color
|
||||
|
||||
for i, (frustum_points, frustum_lines, frustum_colors) in enumerate(frustums):
|
||||
merged_points[i*5:(i+1)*5, :] = frustum_points
|
||||
merged_lines[i*8:(i+1)*8, :] = frustum_lines + i*5
|
||||
merged_colors[i*8:(i+1)*8, :] = frustum_colors
|
||||
|
||||
lineset = o3d.geometry.LineSet()
|
||||
lineset.points = o3d.utility.Vector3dVector(merged_points)
|
||||
lineset.lines = o3d.utility.Vector2iVector(merged_lines)
|
||||
lineset.colors = o3d.utility.Vector3dVector(merged_colors)
|
||||
|
||||
return lineset
|
||||
|
||||
def visualize_cameras(colored_camera_dicts, sphere_radius, camera_size=0.1, geometry_file=None, geometry_type='mesh'):
|
||||
sphere = o3d.geometry.TriangleMesh.create_sphere(radius=sphere_radius, resolution=10)
|
||||
sphere = o3d.geometry.LineSet.create_from_triangle_mesh(sphere)
|
||||
sphere.paint_uniform_color((1, 0, 0))
|
||||
|
||||
coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0., 0., 0.])
|
||||
things_to_draw = [sphere, coord_frame]
|
||||
|
||||
idx = 0
|
||||
for color, camera_dict in colored_camera_dicts:
|
||||
idx += 1
|
||||
|
||||
cnt = 0
|
||||
frustums = []
|
||||
for img_name in sorted(camera_dict.keys()):
|
||||
K = np.array(camera_dict[img_name]['K']).reshape((4, 4))
|
||||
W2C = np.array(camera_dict[img_name]['W2C']).reshape((4, 4))
|
||||
C2W = np.linalg.inv(W2C)
|
||||
img_size = camera_dict[img_name]['img_size']
|
||||
frustums.append(get_camera_frustum(img_size, K, W2C, frustum_length=camera_size, color=color))
|
||||
cnt += 1
|
||||
cameras = frustums2lineset(frustums)
|
||||
things_to_draw.append(cameras)
|
||||
|
||||
if geometry_file is not None:
|
||||
if geometry_type == 'mesh':
|
||||
geometry = o3d.io.read_triangle_mesh(geometry_file)
|
||||
geometry.compute_vertex_normals()
|
||||
elif geometry_type == 'pointcloud':
|
||||
geometry = o3d.io.read_point_cloud(geometry_file)
|
||||
else:
|
||||
raise Exception('Unknown geometry_type: ', geometry_type)
|
||||
|
||||
things_to_draw.append(geometry)
|
||||
|
||||
o3d.visualization.draw_geometries(things_to_draw)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
base_dir = './'
|
||||
|
||||
sphere_radius = 1.
|
||||
train_cam_dict = json.load(open(os.path.join(base_dir, 'train/cam_dict_norm.json')))
|
||||
test_cam_dict = json.load(open(os.path.join(base_dir, 'test/cam_dict_norm.json')))
|
||||
path_cam_dict = json.load(open(os.path.join(base_dir, 'camera_path/cam_dict_norm.json')))
|
||||
camera_size = 0.1
|
||||
colored_camera_dicts = [([0, 1, 0], train_cam_dict),
|
||||
([0, 0, 1], test_cam_dict),
|
||||
([1, 1, 0], path_cam_dict)
|
||||
]
|
||||
|
||||
geometry_file = os.path.join(base_dir, 'mesh_norm.ply')
|
||||
geometry_type = 'mesh'
|
||||
|
||||
visualize_cameras(colored_camera_dicts, sphere_radius,
|
||||
camera_size=camera_size, geometry_file=geometry_file, geometry_type=geometry_type)
|
Loading…
Reference in a new issue