voxelisation and marching cubes algorithms
This commit is contained in:
parent
adf7d25d37
commit
33adb79bf9
1 changed files with 154 additions and 0 deletions
154
voxelisation.py
Normal file
154
voxelisation.py
Normal file
|
@ -0,0 +1,154 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import mcubes
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.distributed
|
||||||
|
import trimesh
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from ddp_train_nerf import (cleanup, config_parser, create_nerf, setup,
|
||||||
|
setup_logger)
|
||||||
|
|
||||||
|
parser = config_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# hardcode settings
|
||||||
|
args.world_size = 1
|
||||||
|
args.rank = 0
|
||||||
|
|
||||||
|
# setup
|
||||||
|
setup(args.rank, args.world_size)
|
||||||
|
start, models = create_nerf(args.rank, args)
|
||||||
|
|
||||||
|
net_0 = models['net_0']
|
||||||
|
|
||||||
|
fg_far_depth = 1
|
||||||
|
|
||||||
|
# weird way to do it, should be change if something better exists
|
||||||
|
for idx, m in enumerate(net_0.modules()):
|
||||||
|
#print(idx, "->", m)
|
||||||
|
|
||||||
|
# foreground
|
||||||
|
if idx == 3:
|
||||||
|
fg_embedder_position = m
|
||||||
|
if idx == 4:
|
||||||
|
fg_embedder_viewdir = m
|
||||||
|
if idx == 5:
|
||||||
|
fg_mlp_net = m
|
||||||
|
|
||||||
|
# background
|
||||||
|
# if idx == 40:
|
||||||
|
# bg_embedder_position = m
|
||||||
|
# if idx == 41:
|
||||||
|
# bg_embedder_viewdir = m
|
||||||
|
# if idx == 42:
|
||||||
|
# bg_mlp_net = m
|
||||||
|
|
||||||
|
# put everything on GPU
|
||||||
|
device = "cuda"
|
||||||
|
|
||||||
|
def query_occupancy(position, embedder_position, embedder_viewdir, mlp_net, device="cuda"):
|
||||||
|
"""
|
||||||
|
Given a position returns the occupancy probabily of the network.
|
||||||
|
|
||||||
|
Given a poisition, appropriate embedders and the MLPNet, return the
|
||||||
|
corresponding occupancy.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
position : torch.tensor
|
||||||
|
A (x,y,z) tensor of the position to query
|
||||||
|
embedder_position, embedder_viewder : nerf_network.Embedder
|
||||||
|
Positional and view directions embedders
|
||||||
|
mlp_net : nerf_network.MLPNet
|
||||||
|
A simple MLP implementation written for NeRF
|
||||||
|
device : str, optional
|
||||||
|
The torch device, can be either `cpu` or `cuda`
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
sigma : float
|
||||||
|
The occupancy at the given position.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# take a random ray direction as it does not matter for sigma
|
||||||
|
ray_d = torch.rand(3, device=device)
|
||||||
|
|
||||||
|
# normalize ray direction
|
||||||
|
ray_d_norm = torch.norm(ray_d)
|
||||||
|
ray_d = ray_d / ray_d_norm
|
||||||
|
|
||||||
|
# forge the input
|
||||||
|
nn_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
|
||||||
|
|
||||||
|
# forward the NN
|
||||||
|
nn_raw = mlp_net(nn_input)
|
||||||
|
sigma = float(nn_raw["sigma"])
|
||||||
|
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
# annonymous function
|
||||||
|
f = lambda x, y, z: query_occupancy(torch.tensor([x,y,z], dtype=torch.float32, device=device), fg_embedder_position, fg_embedder_viewdir, mlp_net)
|
||||||
|
|
||||||
|
def marching_cube_and_render(sigma_list, threshold):
|
||||||
|
|
||||||
|
vertices, triangles = mcubes.marching_cubes(sigma_list, threshold)
|
||||||
|
mesh = trimesh.Trimesh(vertices / N - .5, triangles)
|
||||||
|
mesh.show()
|
||||||
|
|
||||||
|
|
||||||
|
#position = torch.rand(3, device=device)
|
||||||
|
#position = torch.tensor([0.1, 0.1, 0.1], device=device)
|
||||||
|
|
||||||
|
ray_d = torch.rand(3, device=device)
|
||||||
|
# normalize ray direction
|
||||||
|
ray_d_norm = torch.norm(ray_d)
|
||||||
|
ray_d = ray_d / ray_d_norm
|
||||||
|
|
||||||
|
|
||||||
|
N = 100
|
||||||
|
t = np.linspace(-1, 1, N+1)
|
||||||
|
|
||||||
|
query_pts = np.stack(np.meshgrid(t, t, t), -1).astype(np.float32)
|
||||||
|
#print(query_pts.shape)
|
||||||
|
sh = query_pts.shape
|
||||||
|
flat = query_pts.reshape([-1,3])
|
||||||
|
|
||||||
|
#raw_voxel = torch.zeros(N+1, N+1, N+1, 4) # N, D, H, W
|
||||||
|
fg_raw_voxel = torch.zeros(N+1, N+1, N+1)
|
||||||
|
#bg_raw_voxel = torch.zeros(N+1, N+1, N+1)
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
for x,y,z in tqdm(flat):
|
||||||
|
|
||||||
|
position = torch.tensor([x,y,z], device=device)
|
||||||
|
#bg_position = torch.cat((position, torch.tensor([1], device=device)))
|
||||||
|
|
||||||
|
# concat the output of the embedding
|
||||||
|
fg_input = torch.cat((fg_embedder_position(position), fg_embedder_viewdir(ray_d)), dim=-1)
|
||||||
|
#bg_input = torch.cat((bg_embedder_position(bg_position), bg_embedder_viewdir(ray_d)), dim=-1)
|
||||||
|
|
||||||
|
# forward
|
||||||
|
fg_raw = fg_mlp_net(fg_input)
|
||||||
|
#bg_raw = bg_mlp_net(bg_input)
|
||||||
|
|
||||||
|
#raw_voxel.append(position + float(nn_raw['sigma']))
|
||||||
|
fg_sigma = float(fg_raw["sigma"])
|
||||||
|
#bg_sigma = float(bg_raw["sigma"])
|
||||||
|
|
||||||
|
nx, ny, nz = np.unravel_index(i, (N+1, N+1, N+1))
|
||||||
|
i += 1 # update index
|
||||||
|
#raw_voxel[unraveled_index] = torch.tensor([sigma, x, y, z])
|
||||||
|
fg_raw_voxel[nx, ny, nz] = fg_sigma
|
||||||
|
#bg_raw_voxel[nx, ny, nz] = bg_sigma
|
||||||
|
|
||||||
|
|
||||||
|
fg_sigma = np.array(fg_raw_voxel)
|
||||||
|
#bg_sigma = np.array(bg_raw_voxel)
|
||||||
|
threshold = 0.5
|
||||||
|
|
||||||
|
|
||||||
|
#vertices, triangles = mcubes.marching_cubes(sigma, threshold)
|
||||||
|
#mesh = trimesh.Trimesh(vertices / N - .5, triangles)
|
||||||
|
#mesh.show()
|
Loading…
Reference in a new issue